Batch Verification for Statistical Zero-Knowledge Proofs

Inbar Kaslasi Technion Guy N. Rothblum Weizmann Institute

Ron D. Rothblum Technion

Adam Sealfon UC Berkeley

Prashant N. Vasudevan UC Berkeley

Statistical Zero-Knowledge Proofs

- Zero-knowledge proofs [GMR89] are an amazing and incredibly influential notion
- ZK proof lets a prover P to convince a verifier V of the validity of some statement without revealing any additional information
- We focus on SZK
 - ZK and soundness are information theoretic
 - Contains many problems studied in cryptography (e.g., variants of QR, dlog, LWE)
 - Has rich structure (see e.g. [Vad99])

Statistical Zero-Knowledge Proofs

Def: (P, V) is a statistical zero-knowledge (SZK) proof if

- $x \in YES \rightarrow V$ accepts w.h.p. when interacting with P
- $x \notin NO \to V$ rejects w.h.p. when interacting with any prover P^*
- For every poly-time verifier V^* there exists a poly-time Sim s.t. for any $x \in YES$

$$\Delta((P, V^*)(x), Sim(x)) \le neg$$

• We also consider a weaker notion of honest verifier SZK

Batch Verification

V wants to check that k statements $x_1, x_2, ..., x_k$ are all true,

• Accept if x_1, x_2, \dots, x_k are all YES instances

• Reject if at least one x_i is a NO instance

Naïve Solution

Batch Verification

Communication is a key resource in modern networks

Verifying one instance takes m communication. Can we verify k instances with less than $m \cdot k$ communication?

Prior Work

[LFKN92, Sha92] Batching for IP via IP = PSPACE

Inefficient prover

[RRR16, RRR18, RR20] Batching for UP with communication poly(m, log k) (m = witness length)

Efficient prover

[Kil92, BHK17] Batching with computational soundness (under crypto assumptions)

This Work: Batch Verification for SZK

Main question: suppose $\Pi \in SZK$, can we verify that

 $x_1, \dots, x_k \in \Pi_{YES}$ in zero knowledge with non trivial communication?

Why? natural problem, also batch verification of signatures, public-keys

Main results: We give a partial positive answer.

Non-Interactive Statistical Zero-Knowledge [BFM88]

 \exists poly-time Sim s.t. for any $x \in YES$: $\Delta((CRS, \pi), Sim(x)) \leq neg$

Our Results

Main Thm: Every $\Pi \in \text{NISZK}$ has an HVSZK batch-verification protocol with k + poly(n) communication

Shown via two steps:

- New NISZK complete problem: Approximate Injectivity (AI)
- HVSZK batch-verification protocol for AI

In this talk we ignore polylog factors

Warmup: Batch Verification for Permutations

Input: length-preserving circuit $C: \{0,1\}^n \to \{0,1\}^n$

• YES case: circuit defines a permutation

• NO case: every image has at least two preimages

HV Public-Coin Batching for PERM

HVSZK batching protocol:

- V samples $x_1 \in \{0,1\}^n$ and sends $y_k = C_k(C_{k-1} \dots (C_1(x_1)))$ to P
- P sends x'_1 s.t. $y_k = C_k(C_{k-1} ... (C_1(x'_1))$
- V checks that $x_1 = x_1'$

PERM-YES Cases

HVSZK batching protocol:

- V samples $x_1 \in \{0,1\}^n$ and sends $y_k = C_k(C_{k-1} \dots (C_1(x_1)))$ to P
- P sends x'_1 s.t. $y_k = C_k(C_{k-1} \dots (C_1(x'_1))$
- V checks that $x_1 = x_1'$

PERM-NO Cases

HVSZK batching protocol:

- V samples $x_1 \in \{0,1\}^n$ and sends $y_k = C_k(C_{k-1} \dots (C_1(x_1)))$ to P
- P sends x'_1 s.t. $y_k = C_k(C_{k-1} ... (C_1(x'_1))$
- V checks that $x_1 = x_1'$

The Approximate Injectivity Problem AI_{δ}

- Input: circuit $C: \{0,1\}^n \rightarrow \{0,1\}^m$
- YES cases: All but δ fraction of inputs are mapped injectively by C $\Pr_{x \leftarrow \{0,1\}^n} [|C^{-1}(C(x))| > 1] \le \delta(n)$
- NO cases: At most δ fraction of inputs are mapped injectively by ${\mathcal C}$

$$\Pr_{x \leftarrow \{0,1\}^n} [|C^{-1}(C(x))| > 1] \ge 1 - \delta(n)$$

Later: AI_{δ} is NISZK-hard

This Talk: Exact Injectivity (AI₀)

- For simplicity, $\delta=0$
- <u>Goal</u>: Distinguish circuits that are injective from those in which every image has at least two preimages

Batch Verification for AI₀

- Difficulty: output size is not the same as input size cannot directly compose
- Idea: hash each circuit output to the next circuit input
- Want: each x_i to be close to uniform, for soundness

Batch Verification for AI₀

Natural Idea: use extractors

Need extractors that extract (almost) all entropy with d = polylog(n) seed [GUV07]

The Protocol - First Attempt

Finds consistent x'_1 , i.e., s.t. the following yields same y_k :

- For i=1,...k-1:
 - $y_i = C_i(x_i')$
 - $x'_{i+1} = \operatorname{Ext}(y_i, z_i)$
- $y_k = C_k(x'_k)$

- Samples $x_1 \leftarrow \{0,1\}^n$ and $z_1, \dots, z_k \in \{0,1\}^d$
- Computes for $i = 1, \dots k 1$:
 - $y_i = C_i(x_i)$
 - $x_{i+1} = \operatorname{Ext}(y_i, z_i)$
- Computes $y_k = C_k(x_k)$

Verifiers that $x_1 = x_1'$

Verifier

Protocol - First Attempt

- Problem: even if $\text{Ext}(\cdot, z_i)$ were a random function:
 - Constant fraction of the x_{i+1} has > 1 preimages
 - \triangleright P's chances to guess the correct x_1 are negligible
- Idea: give P additional information about x_1
- New Problem: additional information can help the malicious prover
- Solution: use interaction
 - ullet The verifier gradually reveals information about the y_i 's

The Protocol - Second Attempt

For
$$i = k, ..., 1$$

$$x_i'$$

- Samples $x_1 \leftarrow \{0,1\}^n$ and $z_1, \dots, z_k \in \{0,1\}^d$
- Computes for i = 1, ... k 1:
 - $y_i = C_i(x_i)$
 - $x_{i+1} = \operatorname{Ext}(y_i, z_i)$
- Computes $y_k = C_k(x'_k)$

Verifiers $x_i = x_i'$

Finds x_i' s.t. $y_i = C_i(x_i')$

The Protocol - Second Attempt

For
$$i = k, ..., 1$$

 y_i

- Samples $x_1 \leftarrow \{0,1\}^n$ and $z_1, \dots, z_k \in \{0,1\}^d$
- Computes for i = 1, ... k 1:

Verifier

- $y_i = C_i(x_i)$
- $x_{i+1} = \operatorname{Ext}(y_i, z_i)$
- Computes $y_k = C_k(x'_k)$

Verifiers $x_i = x_i'$

Communication Overhead

Prover

Protocol Analysis

• Completeness: for each injective C_i , P can guess correctly x_i

• <u>Soundness:</u> for the first No instance C_{i^*} , the input x_{i^*} is close to uniform $\Rightarrow \tilde{P}$'s chances to guess the correct x_{i^*} given y_{i^*} is roughly $\leq \frac{1}{2}$

• Zero-knowledge: simulator that generates $x_1, ..., x_k, z_1, ..., z_k, y_1, ... y_k$ similarly to the verifier.

The Protocol - Second Attempt

For
$$i = k, ..., 1$$

 y_i

- Samples $x_1 \leftarrow \{0,1\}^n$ and $z_1, \dots, z_k \in \{0,1\}^d$
- Computes for i = 1, ... k 1:

Verifier

- $y_i = C_i(x_i)$
- $x_{i+1} = \operatorname{Ext}(y_i, z_i)$
- Computes $y_k = C_k(x'_k)$

Verifiers $x_i = x_i'$

Communication Overhead

Prover

The Protocol - Second Attempt

For
$$i = k, ..., 1$$

 y_i Hint about y_i, z_i

$$x_i'$$
 Hint about x_i'

$$x'_1$$

- Samples $x_1 \leftarrow \{0,1\}^n$ and $z_1, \dots, z_k \in \{0,1\}^d$
- Computes for i = 1, ... k 1:
 - $y_i = C_i(x_i)$
 - $x_{i+1} = \operatorname{Ext}(y_i, z_i)$
- Computes $y_k = C_k(x'_k)$

Verifiers
$$x_i = x_i'$$

Prover

Finds x_i' s.t. $y_i = C_i(x_i')$

and $\operatorname{Ext}(y_i, z_i) = x_{i+1}$

Verifier

AI is NISZK-complete

• Entropy Approximation (EA) is NISZK-complete [GSV99]

- To show $AI \in NISZK$: reduction from AI to EA
- To show AI is NISZK-hard: reduction from EA to AI

Summary and Open Problems

Main Thm: Every $\Pi \in \text{NISZK}$ has an HVSZK batch-verification protocol with k + poly(n) communication

No longer open problems: SZK protocol, public-coin protocol [KRV2?]

Open problems:

- Batch verification for SZK
- Communication poly(n, log k)
- Constant number of rounds
- Efficient prover (for $\Pi \in SZK \cap NP$, see also [NV06])

Thank You!

Harry Potter images by Sarit Evrani