Batch Verification for
Statistical Zero-Knowledge

Proofs
Inbar Kaslasi Guy N. Rothblum Ron D. Rothblum
Technion Weizmann Institute Technion
Adam Sealfon Prashant N. Vasudevan

UC Berkeley UC Berkeley

Statistical Zero-Knowledge Proofs

* Zero-knowledge proofs [GMR8?] are an amazing and incredibly
influential notion

* ZK proof lets a prover P to convince a verifier V of the validity
of some statement without revealing any additional information

* We focus on SZK

e 7K and soundness are information theoretic

* Contains many problems studied in cryptography (e.g.,
variants of QR, dlog, LWE)

* Has rich structure (see e.g. [Vad?9?])

Statistical Zero-Knowledge Proofs

Def: (P, V) is a statistical zero-knowledge (SZK) proof if
* x € YES = V accepts w.h.p. when interacting with P
e x & NO — V rejects w.h.p. when interacting with any prover P*

* For every poly-time verifier V* there exists a poly-time Sim s.t. for
any X € YES

A((P, V) (x), Sim(x)) < neg

* We also consider a weaker notion of honest verifier SZK

Batch Verification

V wants to check that k statements X, X, ..., X3, are all true,
* Accept if X1, X5, ..., X} are all YES instances

*Reject if at least one x; is a NO instance

Naive Solution

*
m bits for x4
<
4>
m bits for x,
<

<>
m bits for xj,
prover P > verifier V

Batch Verification

Communication is a key resource in modern networks

Verifying one instance takes m communication. Can we
verify k instances with less than m - k communication?

Prior Work

[LFKN92, Sha?2] Batching for IP via IP = PSPACE

* Inefficient prover

[RRRT16, RRR18, RR20] Batching for UP with
communication poly(m,log k) (m = witness length)

* Efficient prover

Kil92, BHK17/] Batching with computational soundness
(under crypto assumptions)

This Work: Batch Verification for SZK

Main question: suppose Il € SZK, can we verify that

X1, -, X € llygg in zero knowledge with non trivial
communication?

Why? natural problem, also batch verification of signatures,
public-keys

Main results: We give a partial positive answer.

Non-Interactive Statistical Zero-Knowledge [BFM88]

Verifier

Prover

3 poly-time Sim s.t. for any x € YES: A((CRS, n),Sim(x)) < neg

Qur Results

Main Thm: Every II € NISZK has an HVSZK batch-verification
protocol with k + poly(n) communication

Shown via two steps:

* New NISZK complete problem: Approximate Injectivity (Al)
* HVSZK batch-verification protocol for Al

* In this talk we ignore polylog factors

Warmup: Batch Verification for Permutations

Input: length-preserving circuit C: {0,1}"* — {0,1}"

* YES case: circuit defines a * NO case: every image has
permutation at least two preimages
_/

VVVVYYY

HV Public-Coin Batching for PERM

C,(x;) € YES Cr—1(xx_1) € YES C.(x;) € YES
@»@ > U .Q@ >Q@
x; €{0,1}" y, €{0,1}" Xk-1=Yk-2 yr_q €{0,1}" Xk =Yr-1 yr €{0,1}"

HVSZK batching protocol:
* Vsamples x; € {0,1}" and sends y;, = Ck(Ck—l (Cl(xl)) to P
e Psends x; st y, = Ck(Ck—l (Cl(x{))
* V checks that x; = x4

PERM-YES Cases

C,(x,) € YES Cie—1(Xx_1) € YES Ci(x;) € YES

___________ . QC

x; €{0,1}" y, €{0,1}" Xk-1=Yk-2 yr_q €{0,1}" Xk =Yr-1 yr €{0,1}"

\AAA/
\AAAS

\AAA/

HVSZK batching protocol:

* Vsamples x; € {0,1}" and sends y;, = Ck(Ck—l (Cl(xl)) to P

e Psends x; st y, = Ck(Ck—1 (Cl(xi))
* V checks that x; = x4

PERM-NO Cases

C1(x1) C;(x;) ENO Cy.(x1) € YES
>
>
........... > > > . >
>
x; € {0,1}" 1y, €{0,1}" Xi =Yi-1 ¥ €{0,1}" Xk =Yk-1 Yk €{0,1}"

HVSZK batching protocol:

* Vsamples x; € {0,1}" and sends y;, = Ck(Ck—l (Cl(xl)) to P

e Psends x; st y, = Ck(Ck—1 (Cl(xi))
* V checks that x; = x4

The Approximate Injectivity Problem Alg

* Input: circuit C: {0,1}"* - {0,1}™

* YES cases: All but 0 frac’rlon of inputs are mapped injectively by C
[|cC71(Cc()| > 1] < 6(n)

* NO cases: At most O fraction of inputs are mapped injectively by C
(Cc)|>1]=1-6m)

x<—{0 1}n

[lc
x<—{0 1}n
Later: Alg is NISZK-hard

YES

vvy

NO

This Talk: Exact Injectivity (Alj)

* For simplicity, 6 = 0

» Goal: Distinguish circuits that are injective from those in
which every image has at least two preimages

YES NO

vvYy

Batch Verification for Al

* Difficulty: output size is not the same as input size - cannot directly compose

* Idea: hash each circuit output to the next circuit input

* Want: each x; to be close to uniform, for soundness

Civ1(Xit1)

yi €10,1}™ yi+1 € {0,1}™

Batch Verification for Al

Natural ldea: use extractors

Need extractors that extract (almost) all entropy with d = polylog(n) seed
[GUVO7]

The Protocol - First Attempt

* Samples x; « {0,1}" and
Z1, ..., Zr € {0,1}4

e Computesfori=1,..k—1:

Finds consistent x1,
i.e., s.t. the following

yields same yy: Z4, e Z

e Fori=1,..k-1: > Yo 21 « * yi = Ci(xy)
* ¥i = CGi(xy) * Xi+1 = Ext(y;, z;)
« x/,, = Ext(yi, z;) x] * Computes Vi, = Cr(xg)

* Vi = Cr(xp)

|

S m .é:

Verifiers that x; = x4

Prover Verifier 3 §

Protocol - First Attempt

* Problem: even if Ext(+, z;) were a random function:
* Constant fraction of the x;,1 has > 1 preimages
» P’s chances to guess the correct x; are negligible

* ldea: give P additional information about x4

* New Problem: additional information can help the malicious prover

* Solution: use interaction
* The verifier gradually reveals information about the y;’s

The Protocol - Second Attempt

* Samples x; « {0,1}" and
Z1, ..., Zx € {0,1}4

e Computesfori=1,..k—1:

For i = k, . 1 o yl — Cl(xl)
v, * xi+1 = Ext(y;, z;)
/ / e C f = C,(x;
Finds x; s.t. y; = C;(x;) omputes Yk (%)
A Xi :
> Verifiers x; = x;

S m .é:

Prover Verifier 3 §

The Protocol - Second Attempt

* Samples x; « {0,1}" and
Z1, ..., Zx € {0,1}4

e Computesfori=1,..k—1:

Fori=k, .., 1 ¢ y; = C;(x;)
v, * Xijp1 = EXt(Yi:Zi),
Finds x{ st y; = Ci(xl{) * Computes yi = Ck(xk)
X;

> Verifiers x; = x;

Communication

Overhead

Verifier 55

Prover

Protocol Analysis

* Completeness: for each injective C;, P can guess correctly x;

* Soundness: for the first No instance C;+, the input Xx;« is close to
uniform = P’s chances to guess the correct x;« given ;= is

1
roughly < S

* Lero-knowledge: simulator that generates
X1y wery Xfey Z1y eoey Zy V1, - Vi Similarly to the verifier.

The Protocol - Second Attempt

* Samples x; « {0,1}" and
Z1, ..., Zx € {0,1}4

e Computesfori=1,..k—1:

Fori=k, .., 1 ¢ y; = C;(x;)
v, * Xijp1 = EXt(Yi:Zi),
Finds x{ st y; = Ci(xl{) * Computes yi = Ck(xk)
X;

> Verifiers x; = x;

Communication

Overhead

Verifier 55

Prover

The Protocol - Second Attempt

Finds x; s.t. y; = C;(x})
and Ext(y;, z;) = Xi41

a

Prover

Vie * Samples x; « {0,1}" and

Z1, ..., Zx € {0,1}4

e Computesfori=1,..k—1:
* yi = Ci(xp)

* xip1 = Ext(y;, ;)

Fori=k, .., 1

¥+ Hint about y;, zZ;

* Computes y, = Ci(x3)

x; Hint about x;

> Verifiers x; = x;

Verifier 55

Al is NISZK-complete

* Entropy Approximation (EA) is NISZK-complete [GSV99]

* To show Al € NISZK: reduction from Al to EA
* To show Al is NISZK-hard: reduction from EA to Al

Summary and Open Problems

Main Thm: Every Il € NISZK has an HVSZK batch-verification
protocol with k + poly(n) communication

No longer open problems: SZK protocol, public-coin protocol [KRV27?]

Open problems:

* Batch verification for SZK

* Communication poly(n,log k)
* Constant number of rounds

* Efficient prover (for I € SZK N NP, see also [NV06])

Thank Youl!

Harry Potter images by Sarit Evrani

