# A Secret-Sharing Based MPC Protocol for Boolean Circuits with Good Amortized Complexity

Ignacio Cascudo <sup>1</sup> Jaron Skovsted Gundersen <sup>2</sup>

<sup>1</sup>IMDEA Software Institute <sup>2</sup>Aalborg University

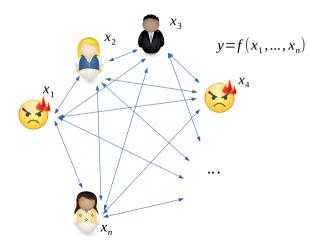
TCC, 18 November 2020





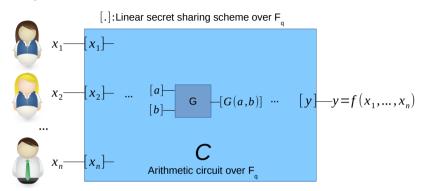
AALBORG UNIVERSITY

# Secure multiparty computation (MPC)



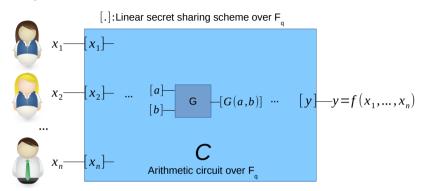
- Private inputs  $x_1, \ldots, x_n$ .
- Goal: compute  $y = f(x_1, \ldots, x_n)$ .
- Secure channel between each pair.
- Adversary corrupts a set of parties.
- Obtains no info. on honest x<sub>i</sub> (beyond that implied by y and corrupted x<sub>i</sub>).
- Can only alter computation of y by changing corrupted x<sub>i</sub>.

## Secret-sharing based MPC



- Function represented by arithmetic circuit over some finite field  $\mathbb{F}_q$ .
- Parties secret-share inputs.
- Gate-by-gate computation ([a], [b]  $\rightarrow$  [G(a, b)])
  - Linear gates: using linearity of secret sharing.
  - Multiplication gates: Dedicated subprotocol.

## Secret-sharing based MPC



- Function represented by arithmetic circuit over some finite field  $\mathbb{F}_q$ .
- Parties secret-share inputs.
- Gate-by-gate computation ([a], [b]  $\rightarrow$  [G(a, b)])
  - Linear gates: using linearity of secret sharing.
  - Multiplication gates: Dedicated subprotocol.

Many secret-sharing-based MPC protocols need large finite fields  $\mathbb{F}_q$ :

Many secret-sharing-based MPC protocols need large finite fields  $\mathbb{F}_q$ :

- Honest majority, info th. security: BGW-style protocols use Shamir's secret sharing scheme (requires q > n).
- Dishonest majority, computational security (this work): Protocols such as SPDZ achieve active security via (linear homomorphic) message authentication codes (requires q > 2<sup>λ</sup>, for sec. parameter λ).

## SPDZ (Damgård et al., 2012)

- Over field  $\mathbb{F}_q$ , actively secure for dishonest majority ((n-1) out of n)
- One additively shared global key  $\alpha = \alpha_1 + \cdots + \alpha_n \in \mathbb{F}_q$
- Every data  $x \in \mathbb{F}_q$  has MAC  $m = \alpha \cdot x$ .
- ▶ *i*-th party holds additive share  $\alpha_i$  for  $\alpha$ ,  $x_i$  for every x, and  $m_i$  for every  $\alpha \cdot x$ .
- $[x] = ((x_1, \ldots, x_n), (m_1, \ldots, m_n))$ , where  $x = \sum x_i$ , and  $\alpha \cdot x = \sum m_i$ .
- If adversary tries to output x' = x + e instead of x, (e ≠ 0), and introduces a MAC error Δ, then:

$$\alpha \cdot \mathbf{x}' = \mathbf{m} + \Delta \Leftrightarrow \alpha \cdot \mathbf{e} = \Delta$$

So probability that adversary is not caught when opening is  $1/|\mathbb{F}_q|$  (too large for small q!).

#### "SPDZ for small fields"

Our goal: A version of SPDZ for arithmetic circuit over  $\mathbb{F}_q$ , q small (from now on q = 2).

- Naive idea: Since 𝔽<sub>2</sub> ⊆ 𝔽<sub>2</sub><sup>m</sup> one could just use SPDZ over 𝔽<sub>2</sub><sup>m</sup> for large enough *m*.
  - Problem: wasteful, m bits to represent one, + input ZK-validation
- Next idea: does bundling data in batches of k bits, x ∈ F<sup>k</sup><sub>2</sub>, and MACing them together help?
- ▶ Using a coordinatewise MAC  $\alpha * \mathbf{x} = \mathbf{m}$  (where  $\alpha \in \mathbb{F}_2^k$ ) does **not** help.
  - Adversary can add error in one coordinate, succeed w.p. 1/2 (i.e. guessing one coordinate of α)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### MiniMAC (Damgård/Zakarias, 2013)

A solution: MiniMAC (Damgård/Zakarias, 2013):

- Encode  $\mathbf{x} \in \mathbb{F}_2^k$  with an error correcting code,  $\mathbf{x} \to C(\mathbf{x}) \in \mathbb{F}_2^\ell$
- ▶ Use the MAC above on  $C(\mathbf{x})$  (i.e.  $\alpha * C(\mathbf{x}) = \mathbf{m}$  where  $\alpha \in \mathbb{F}_2^{\ell}$ )
- Cheating now requires to modify d coordinates (d min. distance of code)

▶ MAC fooled w.p. 1/2<sup>d</sup>.

MiniMAC computes then on data-batches of k bits, i.e. can be seen as:

Computing arithmetic circuits over the ring F<sup>k</sup><sub>2</sub> with componentwise addition and multiplication, or

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

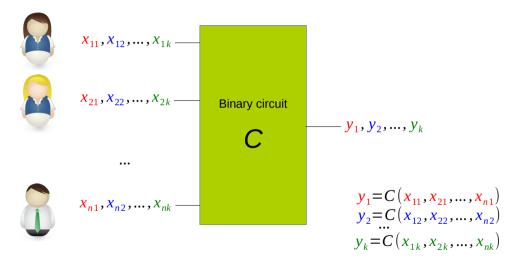
• Computing *k* evaluations of a circuit over  $\mathbb{F}_2$  simultaneously.

MiniMAC computes then on data-batches of *k* bits, i.e. can be seen as:

- Computing arithmetic circuits over the ring F<sup>k</sup><sub>2</sub> with componentwise addition and multiplication, or
- Computing *k* evaluations of a circuit over  $\mathbb{F}_2$  simultaneously.

**Note:** This can be adapted for **single** evaluations of a well-formed boolean circuit (more on that later).

## MiniMAC (Damgård/Zakarias, 2013)



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

## MiniMAC (Damgård/Zakarias, 2013)

- Multiplication is done through Beaver's technique and involves the so-called Schur-square of the code C\*2
- ▶ Requirement:  $d_{min}(C^{*2}) \ge \lambda$  (sec. parameter)
- Overhead depends on  $\ell/k$  ( $\ell$  length of the code, k dimension).
- For binary codes and  $\lambda \sim$  128, best constructions (Cascudo, 2019) give  $\ell/k \sim 10$
- Alternative (Damgård/Lauritsen/Toft, 2014): use Reed-Solomon over constant extension of F<sub>2</sub> (requires much more preprocessing).

## This paper: Alternative to MiniMAC with "better packing"

We present an alternative approach to compute simultaneously k instances of a boolean circuit,

- We use the notion of Reverse Multiplication Friendly Embeddings (RMFE)
- Previously used (Cascudo/Cramer/Xing/Yuan, 2018) in the case of information-theoretically perfectly secure MPC.
- More precisely: adapted Beerliova-Trubini/Hirt info th. secure protocol (see TCC Test of Time Award) for small fields, obtaining the same amortized communication.

### Embedding via Reverse Multiplication Friendly Embeddings

Reverse Multiplication Friendly Embeddings: allows to embed the **ring**  $\mathbb{F}_2^k$  into a **field**  $\mathbb{F}_{2^m}$  while "reconciling" enough of their algebraic structures.

## Embedding via Reverse Multiplication Friendly Embeddings

Reverse Multiplication Friendly Embeddings: allows to embed the **ring**  $\mathbb{F}_2^k$  into a **field**  $\mathbb{F}_{2^m}$  while "reconciling" enough of their algebraic structures.

- A  $(k, m)_2$ -RMFE is a pair  $(\phi, \psi)$  where
  - $\phi : \mathbb{F}_2^k \to \mathbb{F}_{2^m}$  is  $\mathbb{F}_2$ -linear.
  - $\psi : \mathbb{F}_{2^m} \to \mathbb{F}_2^k$  is  $\mathbb{F}_2$ -linear.
  - ▶ For all  $\mathbf{x}, \mathbf{y} \in \mathbb{F}_2^k$ ,

$$\mathbf{x} \ast \mathbf{y} = \psi(\phi(\mathbf{x}) \cdot \phi(\mathbf{y}))$$

(here \* denotes coordinate-wise product in  $\mathbb{F}_2^k$ ,  $\cdot$  field product in  $\mathbb{F}_{2^m}$ )

The point: *m* can be made to be "not much larger" than *k* 

## Constructions of RMFE

[Remember a  $(k, m)_2$ -RMFE embeds  $\mathbb{F}_2^k$  into  $\mathbb{F}_{2^m}$ ]

Asymptotical (algebraic geometric constructions): There exist families of (k, O(k))<sub>2</sub>-RMFE.

#### Constructions of RMFE

[Remember a  $(k, m)_2$ -RMFE embeds  $\mathbb{F}_2^k$  into  $\mathbb{F}_{2^m}$ ]

Asymptotical (algebraic geometric constructions): There exist families of (k, O(k))<sub>2</sub>-RMFE.

Non-asymptotical (polynomial interpolation-based constructions): For all

 $r \leq 33$ , there exists a  $(3r, 10r - 5)_2$ -RMFE.  $(m \sim 3.3k)$ E.g. we can embed  $\mathbb{F}_2^{42}$  into  $\mathbb{F}_{2^{135}}$ .

For all  $r \le 16$ , there exists a  $(2r, 8r)_2$ -RMFE. (m = 4k, but "nicer" ext. fields) E.g. we can embed  $\mathbb{F}_2^{32}$  into  $\mathbb{F}_{2^{128}}$ .

Our protocol (online phase)

Let  $(\phi, \psi)$  be a  $(k, m)_2$ -RMFE. Our online phase:

- ▶ Global additively-shared key  $\alpha \in \mathbb{F}_{2^m}$
- Authenticated sharings of  $\mathbf{x} \in \mathbb{F}_2^k$  are  $\langle \mathbf{x} \rangle = ((\mathbf{x}_1, ..., \mathbf{x}_n), (m_1, ..., m_n))$  where:

$$\sum \mathbf{x}_i = \mathbf{x} \quad (\text{in } \mathbb{F}_2^k)$$

$$\sum m_i = \alpha \cdot \phi(\mathbf{x}) \quad (\text{in } \mathbb{F}_{2^m})$$

Sums: (x + y) can be computed locally from (x), (y) (uses that \u03c6 is \u03c8\_2-linear).
Products: (x \* y)?

### Computing products

We need the following from preprocessing:

- ► A triple ( $\langle a \rangle$ ,  $\langle b \rangle$ ,  $\langle c \rangle$ ), for random  $a, b \in \mathbb{F}_2^k$ , where c = a \* b
- A reencoding pair (⟨ψ(r)⟩, [r]) for random r ∈ 𝔽<sub>2<sup>m</sup></sub>, where [·] is the SPDZ authenticated sharing (same α as for ⟨·⟩).

Multiplication of  $\langle \mathbf{x} \rangle, \langle \mathbf{y} \rangle$ :

$$\blacktriangleright \ \text{Open*} \ \langle \boldsymbol{\epsilon} \rangle = \langle \boldsymbol{\mathsf{x}} \rangle - \langle \boldsymbol{\mathsf{a}} \rangle, \langle \boldsymbol{\delta} \rangle = \langle \boldsymbol{\mathsf{y}} \rangle - \langle \boldsymbol{\mathsf{b}} \rangle$$

• Compute  $[\sigma] = \epsilon * \langle \mathbf{y} \rangle + \delta * \langle \mathbf{x} \rangle - \phi(\epsilon) \cdot \phi(\delta) - [r]$ 

Open\* σ

• Compute and output  $\psi(\sigma) + \langle \mathbf{c} \rangle + \langle \psi(\mathbf{r}) \rangle = \langle \mathbf{x} * \mathbf{y} \rangle$ 

\*Partial open: only data shares are revealed, not MAC shares.

## Comparison

- We compare to MiniMAC and Committed MPC (Frederiksen/Pinkas/Yanai, 2018).
- Committed MPC: uses UC homomorphic commitments, implemented from linear codes.
- The comparison essentially boils down to the "encoding expansion factor" (in our case m/k).

| Sec. par.       | Phase    | MiniMAC                  | Committed MPC           | Our protocol            |
|-----------------|----------|--------------------------|-------------------------|-------------------------|
| $\lambda = 64$  | Multiply | $20.14 \cdot (n-1)$      | 29.89 · ( <i>n</i> − 1) | $10.2 \cdot (n-1)$      |
|                 | Output   | $19.5 \cdot n + 2(n-1)$  | $19.5 \cdot (n-1)n$     | $6.2 \cdot n + 2(n-1)$  |
| $\lambda = 128$ | Multiply | $23.48 \cdot (n-1)$      | 35.58 · ( <i>n</i> − 1) | $10.42 \cdot (n-1)$     |
|                 | Output   | $24.22 \cdot n + 2(n-1)$ | $24.22 \cdot (n-1)n$    | $6.42 \cdot n + 2(n-1)$ |

Table: Total number of bits sent per instance at multiplication and output gates

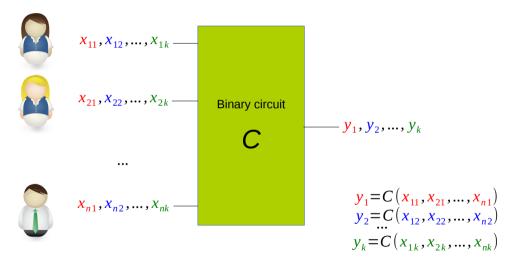
The version of MiniMAC in Damgård/Lauritsen/Toft, 2014 needs only to communicate 8(n-1) per multiplication gate – But much more preprocessing.

In the preprocessing we need to produce the following:

- ▶ Input pairs  $(\mathbf{r}, \langle \mathbf{r} \rangle)$ , where  $\mathbf{r} \in \mathbb{F}_2^k$  is random and known by a single party.
- Multiplication triples  $(\langle a \rangle, \langle b \rangle, \langle a * b \rangle)$ , where  $a, b \in \mathbb{F}_2^k$  are random.
- ▶ Reencoding pairs ( $\langle \psi(r) \rangle$ , [*r*]), where  $r \in \mathbb{F}_{2^m}$  is random.

We use techniques from MASCOT (Keller/Orsini/Scholl, 2016). MASCOT is based on bit-OT's, and this fits well with the  $\mathbb{F}_2$ -linearity of  $\phi$  and  $\psi$ .

So far: We showed how to simultaneously compute k instances of a circuit over  $\mathbb{F}_2$ .

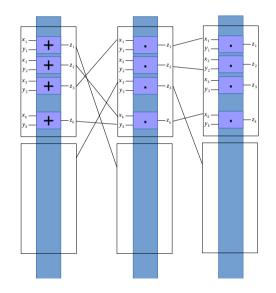


Damgård/Zakarias, 2013: Showed how to adapt MiniMAC to efficiently computing a **single** instance of a "**well-formed**" circuit:

- Layers of gates of the same type.
- Number of gates in most layers large (or multiple of k)
- Number of "direct wires" from layer i to j is large, or 0.

We can then:

- Group gates in a layer in batches of k, adding a small number of overhead dummy gates.
- Construct maps that reorganize all outputs of one layer into blocks of inputs of next layers (again without much overhead from additional dummy gates).



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We simply follow approach from Damgård-Zakarias.

We compute block of gates in one layer with our protocol. Then we reorganize outputs to fit next layers:

- Let  $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_l)$  be all the output blocks from one layer.
- ▶ Reorganizing by  $F_i(\mathbf{X}) = \mathbf{x}'_i \in \mathbb{F}_2^k$  s.t.  $\mathbf{x}'_i$  are input blocks to a subsequent layer.

- Assume we have  $\langle \mathbf{R} \rangle = (\langle \mathbf{r}_1 \rangle, \dots, \langle \mathbf{r}_i \rangle), \langle F_i(\mathbf{R}) \rangle$  from the preprocessing. Opening  $\mathbf{X} - \mathbf{R}$  and computing  $F_i(\mathbf{X} - \mathbf{R}) + \langle F_i(\mathbf{R}) \rangle$  yields  $\langle F_i(\mathbf{X}) \rangle = \mathbf{x}'_i$ .
- Preprocessing again easy (F<sub>2</sub>-linearity)

#### Conclusion

We presented a secret-sharing-based MPC protocol for computation of boolean circuits.

- Our approach applies the RMFE strategy from Cascudo et al., 2018 to the dishonest majority setting: RMFE+SPDZ
- Structurally similar to MiniMAC (Damgård/Zakarias, 2013)...
- ...but MACs over extension field allow for shorter encoding.
- In the paper we also present how to produce preprocessed data needed for the online phase.