
A Secret-Sharing Based MPC Protocol for Boolean Circuits
with Good Amortized Complexity

Ignacio Cascudo 1 Jaron Skovsted Gundersen 2

1IMDEA Software Institute 2Aalborg University

TCC, 18 November 2020

Secure multiparty computation (MPC)

 xn

x4

x3

x2

x1

.. .

y=f (x1 , ... , xn)
I Private inputs x1, . . . , xn.

I Goal: compute y = f (x1, . . . , xn).

I Secure channel between each pair.

I Adversary corrupts a set of parties.

I Obtains no info. on honest xi (beyond
that implied by y and corrupted xi).

I Can only alter computation of y by
changing corrupted xi .

Secret-sharing based MPC

x1

x2

xn

y=f (x1 , ... , xn)

...

C
Arithmetic circuit over F

q

G

[x1]

[x2]

[xn]

[a]

[b]
[G (a ,b)] [y]......

[.] :Linear secret sharing scheme over F
q

I Function represented by arithmetic circuit over some finite field Fq.
I Parties secret-share inputs.
I Gate-by-gate computation ([a], [b]→ [G(a,b)])

I Linear gates: using linearity of secret sharing.
I Multiplication gates: Dedicated subprotocol.

Secret-sharing based MPC

x1

x2

xn

y=f (x1 , ... , xn)

...

C
Arithmetic circuit over F

q

G

[x1]

[x2]

[xn]

[a]

[b]
[G (a ,b)] [y]......

[.] :Linear secret sharing scheme over F
q

I Function represented by arithmetic circuit over some finite field Fq.
I Parties secret-share inputs.
I Gate-by-gate computation ([a], [b]→ [G(a,b)])

I Linear gates: using linearity of secret sharing.
I Multiplication gates: Dedicated subprotocol.

Large finite fields

Many secret-sharing-based MPC protocols need large finite fields Fq:

I Honest majority, info th. security: BGW-style protocols use Shamir’s secret
sharing scheme (requires q > n).

I Dishonest majority, computational security (this work): Protocols such as
SPDZ achieve active security via (linear homomorphic) message
authentication codes (requires q > 2λ, for sec. parameter λ).

Large finite fields

Many secret-sharing-based MPC protocols need large finite fields Fq:
I Honest majority, info th. security: BGW-style protocols use Shamir’s secret

sharing scheme (requires q > n).

I Dishonest majority, computational security (this work): Protocols such as
SPDZ achieve active security via (linear homomorphic) message
authentication codes (requires q > 2λ, for sec. parameter λ).

SPDZ (Damgård et al., 2012)

I Over field Fq, actively secure for dishonest majority ((n − 1) out of n)
I One additively shared global key α = α1 + · · ·+ αn ∈ Fq

I Every data x ∈ Fq has MAC m = α · x .
I i-th party holds additive share αi for α, xi for every x , and mi for every α · x .
I [x] =

(
(x1, . . . , xn), (m1, . . . ,mn)

)
, where x =

∑
xi , and α · x =

∑
mi .

I If adversary tries to output x ′ = x + e instead of x , (e 6= 0), and introduces a
MAC error ∆, then:

α · x ′ = m + ∆⇔ α · e = ∆

So probability that adversary is not caught when opening is 1/|Fq| (too large
for small q!).

“SPDZ for small fields”

Our goal: A version of SPDZ for arithmetic circuit over Fq, q small (from now on
q = 2).
I Naive idea: Since F2 ⊆ F2m one could just use SPDZ over F2m for large

enough m.
I Problem: wasteful, m bits to represent one, + input ZK-validation

I Next idea: does bundling data in batches of k bits, x ∈ Fk
2, and MACing them

together help?
I Using a coordinatewise MAC α ∗ x = m (where α ∈ Fk

2) does not help.
I Adversary can add error in one coordinate, succeed w.p. 1/2 (i.e. guessing one

coordinate of α)

MiniMAC (Damgård/Zakarias, 2013)

A solution: MiniMAC (Damgård/Zakarias, 2013):
I Encode x ∈ Fk

2 with an error correcting code, x→ C(x) ∈ F`2
I Use the MAC above on C(x) (i.e. α ∗ C(x) = m where α ∈ F`2)
I Cheating now requires to modify d coordinates (d min. distance of code)
I MAC fooled w.p. 1/2d .

MiniMAC (Damgård/Zakarias, 2013)

MiniMAC computes then on data-batches of k bits, i.e. can be seen as:
I Computing arithmetic circuits over the ring Fk

2 with componentwise addition
and multiplication, or

I Computing k evaluations of a circuit over F2 simultaneously.

Note: This can be adapted for single evaluations of a well-formed boolean circuit
(more on that later).

MiniMAC (Damgård/Zakarias, 2013)

MiniMAC computes then on data-batches of k bits, i.e. can be seen as:
I Computing arithmetic circuits over the ring Fk

2 with componentwise addition
and multiplication, or

I Computing k evaluations of a circuit over F2 simultaneously.
Note: This can be adapted for single evaluations of a well-formed boolean circuit
(more on that later).

MiniMAC (Damgård/Zakarias, 2013)

x11 , x12 , ... , x1k

x21 , x22 , ... , x2k

xn1 , xn2 , ... , xnk

y1 , y2 , ... , yk

Binary circuit

C

y1=C (x11 , x21 , ... , xn1)
y2=C (x12 , x22 , ... , xn2)

yk=C (x1k , x2k , ... , xnk)

...

...

MiniMAC (Damgård/Zakarias, 2013)

I Multiplication is done through Beaver’s technique and involves the so-called
Schur-square of the code C∗2

I Requirement: dmin(C∗2) ≥ λ (sec. parameter)
I Overhead depends on `/k (` length of the code, k dimension).
I For binary codes and λ ∼ 128, best constructions (Cascudo, 2019) give
`/k ∼ 10

I Alternative (Damgård/Lauritsen/Toft, 2014): use Reed-Solomon over constant
extension of F2 (requires much more preprocessing).

This paper: Alternative to MiniMAC with “better packing”

We present an alternative approach to compute simultaneously k instances of a
boolean circuit,
I We use the notion of Reverse Multiplication Friendly Embeddings (RMFE)
I Previously used (Cascudo/Cramer/Xing/Yuan, 2018) in the case of

information-theoretically perfectly secure MPC.
I More precisely: adapted Beerliova-Trubini/Hirt info th. secure protocol (see

TCC Test of Time Award) for small fields, obtaining the same amortized
communication.

Embedding via Reverse Multiplication Friendly Embeddings

Reverse Multiplication Friendly Embeddings: allows to embed the ring Fk
2 into a

field F2m while “reconciling” enough of their algebraic structures.

A (k ,m)2-RMFE is a pair (φ,ψ) where
I φ : Fk

2 → F2m is F2-linear.
I ψ : F2m → Fk

2 is F2-linear.
I For all x,y ∈ Fk

2,
x ∗ y = ψ(φ(x) · φ(y))

(here ∗ denotes coordinate-wise product in Fk
2, · field product in F2m)

The point: m can be made to be “not much larger” than k

Embedding via Reverse Multiplication Friendly Embeddings

Reverse Multiplication Friendly Embeddings: allows to embed the ring Fk
2 into a

field F2m while “reconciling” enough of their algebraic structures.

A (k ,m)2-RMFE is a pair (φ,ψ) where
I φ : Fk

2 → F2m is F2-linear.
I ψ : F2m → Fk

2 is F2-linear.
I For all x,y ∈ Fk

2,
x ∗ y = ψ(φ(x) · φ(y))

(here ∗ denotes coordinate-wise product in Fk
2, · field product in F2m)

The point: m can be made to be “not much larger” than k

Constructions of RMFE

[Remember a (k ,m)2-RMFE embeds Fk
2 into F2m]

I Asymptotical (algebraic geometric constructions): There exist families of
(k ,O(k))2-RMFE.

I Non-asymptotical (polynomial interpolation-based constructions): For all

r ≤ 33, there exists a (3r ,10r − 5)2-RMFE. (m ∼ 3.3k)
E.g. we can embed F42

2 into F2135 .

For all r ≤ 16, there exists a (2r ,8r)2-RMFE. (m = 4k , but “nicer” ext. fields)
E.g. we can embed F32

2 into F2128 .

Constructions of RMFE

[Remember a (k ,m)2-RMFE embeds Fk
2 into F2m]

I Asymptotical (algebraic geometric constructions): There exist families of
(k ,O(k))2-RMFE.

I Non-asymptotical (polynomial interpolation-based constructions): For all

r ≤ 33, there exists a (3r ,10r − 5)2-RMFE. (m ∼ 3.3k)
E.g. we can embed F42

2 into F2135 .

For all r ≤ 16, there exists a (2r ,8r)2-RMFE. (m = 4k , but “nicer” ext. fields)
E.g. we can embed F32

2 into F2128 .

Our protocol (online phase)

Let (φ, ψ) be a (k ,m)2-RMFE.
Our online phase:
I Global additively-shared key α ∈ F2m

I Authenticated sharings of x ∈ Fk
2 are 〈x〉 = ((x1, ...,xn), (m1, ...,mn)) where:∑

xi = x (in Fk
2)∑

mi = α · φ(x) (in F2m)

I Sums: 〈x + y〉 can be computed locally from 〈x〉, 〈y〉 (uses that φ is F2-linear).
I Products: 〈x ∗ y〉?

Computing products

We need the following from preprocessing:
I A triple (〈a〉, 〈b〉, 〈c〉), for random a,b ∈ Fk

2, where c = a ∗ b
I A reencoding pair (〈ψ(r)〉, [r]) for random r ∈ F2m , where [·] is the SPDZ

authenticated sharing (same α as for 〈·〉).
Multiplication of 〈x〉, 〈y〉:
I Open* 〈ε〉 = 〈x〉 − 〈a〉, 〈δ〉 = 〈y〉 − 〈b〉
I Compute [σ] = ε ∗ 〈y〉+ δ ∗ 〈x〉 − φ(ε) · φ(δ)− [r]

I Open* σ
I Compute and output ψ(σ) + 〈c〉+ 〈ψ(r)〉 = 〈x ∗ y〉

*Partial open: only data shares are revealed, not MAC shares.

Comparison
I We compare to MiniMAC and Committed MPC (Frederiksen/Pinkas/Yanai,

2018).
I Committed MPC: uses UC homomorphic commitments, implemented from

linear codes.
I The comparison essentially boils down to the “encoding expansion factor” (in

our case m/k).

Sec. par. Phase MiniMAC Committed MPC Our protocol

λ = 64 Multiply 20.14 · (n − 1) 29.89 · (n − 1) 10.2 · (n − 1)
Output 19.5 · n + 2(n − 1) 19.5 · (n − 1)n 6.2 · n + 2(n − 1)

λ = 128 Multiply 23.48 · (n − 1) 35.58 · (n − 1) 10.42 · (n − 1)
Output 24.22 · n + 2(n − 1) 24.22 · (n − 1)n 6.42 · n + 2(n − 1)

Table: Total number of bits sent per instance at multiplication and output gates

The version of MiniMAC in Damgård/Lauritsen/Toft, 2014 needs only to
communicate 8(n − 1) per multiplication gate – But much more preprocessing.

Preprocessing

In the preprocessing we need to produce the following:
I Input pairs (r, 〈r〉), where r ∈ Fk

2 is random and known by a single party.
I Multiplication triples (〈a〉, 〈b〉, 〈a ∗ b〉), where a,b ∈ Fk

2 are random.
I Reencoding pairs (〈ψ(r)〉, [r]), where r ∈ F2m is random.

We use techniques from MASCOT (Keller/Orsini/Scholl, 2016).
MASCOT is based on bit-OT’s, and this fits well with the F2-linearity of φ and ψ.

From multiple instance to single instance evaluation
So far: We showed how to simultaneously compute k instances of a circuit over F2.

x11 , x12 , ... , x1k

x21 , x22 , ... , x2k

xn1 , xn2 , ... , xnk

y1 , y2 , ... , yk

Binary circuit

C

y1=C (x11 , x21 , ... , xn1)
y2=C (x12 , x22 , ... , xn2)

yk=C (x1k , x2k , ... , xnk)

...

...

From multiple instance to single instance evaluation

Damgård/Zakarias, 2013: Showed how to adapt MiniMAC to efficiently computing
a single instance of a “well-formed” circuit:
I Layers of gates of the same type.
I Number of gates in most layers large (or multiple of k)
I Number of “direct wires” from layer i to j is large, or 0.

We can then:
I Group gates in a layer in batches of k, adding a small number of overhead

dummy gates.
I Construct maps that reorganize all outputs of one layer into blocks of inputs of

next layers (again without much overhead from additional dummy gates).

From multiple instance to single instance evaluation

+
+

x1

y1

x2

y2

+

+

x3

y3

xk
yk

z1

z2

z3

zk

·
·

x1

y1

x2

y2

·

·

x3

y3

xk
yk

z1

z2

z3

zk

·
·

x1

y1

x2

y2

·

·

x3

y3

xk
yk

z1

z2

z3

zk

From multiple instance to single instance evaluation

We simply follow approach from Damgård-Zakarias.

We compute block of gates in one layer with our protocol. Then we reorganize
outputs to fit next layers:
I Let X = (x1,x2, . . . ,xl) be all the output blocks from one layer.
I Reorganizing by Fi(X) = x′i ∈ Fk

2 s.t. x′i are input blocks to a subsequent layer.
I Assume we have 〈R〉 = (〈r1〉, . . . , 〈rl〉), 〈Fi(R)〉 from the preprocessing.

Opening X− R and computing Fi(X− R) + 〈Fi(R)〉 yields 〈Fi(X)〉 = x′i .
I Preprocessing again easy (F2-linearity)

Conclusion

We presented a secret-sharing-based MPC protocol for computation of boolean
circuits.
I Our approach applies the RMFE strategy from Cascudo et al., 2018 to the

dishonest majority setting: RMFE+SPDZ
I Structurally similar to MiniMAC (Damgård/Zakarias, 2013)...
I ...but MACs over extension field allow for shorter encoding.
I In the paper we also present how to produce preprocessed data needed for

the online phase.

