
Security Analysis of SPAKE2+

Victor Shoup

(NYU)



Traditional password authentication

P (client) Q (server)
secret: π secret: st, h := H(π, dP, dQ, st)

π−−−−−−→ Test h
?
= H(π, dP, dQ, st)

. . . plus one-sided authenticated key exchange
• Client/server run a one-sided authenticated key exchange

protocol, using server’s public key

• Client/server use established key to build a secure channel
◦ Client “knows” he is talking securely to server

◦ Server “knows” he is talking securely to “somebody”

• Client/server run traditional password authentication protocol
over the secure channel
◦ Now server “knows” who he is really talking to



Limitations of this traditional approach:

• Requires PKI

• Phishing attacks

PAKE: Password Authenticated Key Exchange

• introduced by [Bellovin, Merritt 1992]

• Eliminiates need for PKI

• Prevents offline dictionary attacks

◦ An adversary that actively interacts with client or server
effectively gets just one guess at the password

◦ An adversary that passively observes client and server
effectively gets no information about the password

◦ This holds even if adversary learns (information derived from)
the session key



Protocol SPAKE0

shared secret password: π

P Q

←R R y←R R
−−−−−−−−→
y

←−−−−−−−−

session key: k := H(π, dP, dQ, , y)

Problem: eavesdropper can mount an offline dictionary attack

• attacker sees , y and (say) t = HMAC(k,m) for a known message
m

• attacker tries all passwords π′ ∈ Dct and test if t
?
= HMAC(k′,m),

where k′ := H(π′, dP, dQ, , y)



Protocol SPAKE1

shared secret password: π

P Q

α←R Zq, ← gα β←R Zq, ← gβ
−−−−−−−−→
←−−−−−−−−

← α ← β

session key: k := H(π, dP, dQ, , ,)

• CDH =⇒ eavesdropper cannot mount an offline dictionary attack

• active attacker can still mount an offline dictionary attack

• attacker runs protocol as Q against honest P, so knows ,,

• attacker tries all passwords π′ ∈ Dct and test if t
?
= HMAC(k′,m),

where k′ := H(π′, dP, dQ, , ,)



Protocol SPAKE2

public system parameters: random , b ∈ G
shared secret password: π ∈ Zq

P Q

α←R Zq, ← gαπ β←R Zq, ← gβbπ
−−−−−−−−→
←−−−−−−−−

← (/bπ)α ← (/π)β

session key: k := H(π, dP, dQ, , ,)

• From [Abdalla, Pointcheval 2005]

• CDH + Random Oracle =⇒ no offline dictionary attacks

• only online dictionary attacks are possible — cannot be avoided



Limitation of SPAKE2: symmetry

Typical scenario:

• Client memorizes π

• Server stores π in a password file

Password file compromised =⇒ all passwords
immediately compromised

Asymmetric PAKE: [Gentry, MacKenzie, Ramzan
2006]

Protection against password file compromise

In order to impersonate client to server, attacker must
carry out an offline dictionary attack even if password file
is compromised



Protocol SPAKE2+

public system parameters: random , b ∈ G
password: π, (ϕ0, ϕ1) := F(π, dP, dQ)

P (client) Q (server)
secret: ϕ0, ϕ1 secret: ϕ0, c := gϕ1

α←R Zq, ← gαϕ0 β←R Zq, ← gβbϕ0
−−−−−−−−→
←−−−−−−−−

← (/bϕ0 )α ← (/ϕ0 )β
d← (/bϕ0 )ϕ1 d← cβ

session key: k := H(π, dP, dQ, , ,, d)

• From [Cash, Kiltz, Shoup 2008; Boneh, Shoup 2008]

• Currently being standardized

• Unproven claim: provides resilience against password file
compromise



Limitation of SPAKE2+: pre-processing attacks

For a given pair of users P and Q, attacker can
precompute (ϕ′0, ϕ

′
1) := F(π

′, dP, dQ) for all π′ ∈ Dct

As soon as the the attacker obtains (ϕ0, c) from
password file, attacker can perform a quick table
lookup to determine π

We will not address this limitation here, but see:

Strong asymmetric PAKE: [Jarecki,Krawczyk,Xu
2018]

Protection against pre-processing attacks

In order to impersonate client to server, attacker must
carry out an offline dictionary attack AFTER password file
is compromised



Original goal of this work:

Prove the claim: CDH + Random Oracle =⇒ SPAKE2+ is a secure
asymmetric PAKE

Two popular security models for PAKE:

• BPR model: game based [Bellare, Pointcheval,
Rogaway 2000]
◦ But . . . no extension to asymmetric PAKE :-(

• UC (Universal Composability) model: simulation
based [Canetti, Halevi, Katz, Lindell, MacKenzie 2005]
◦ Extends to asymmetric PAKE :-) [Gentry, MacKenzie, Ramzan

2006]

◦ But. . . SPAKE2 is not even secure in symmetric UC model :-(

◦ For the same reason, SPAKE2+ cannot be secure in the
asymmetric UC model :-(



Main results of this work:

• Define a new protocol

kcSPAKE2+ ≈≈≈ (SPAKE2+) +++ (key-confirmation)

• Prove that kcSPAKE2+ is a secure asymmetric
PAKE in the UC model (assuming CDH + RO)

Along the way, we also:

• Prove that kcSPAKE2 is a secure symmetric PAKE
in the UC model (assuming CDH + RO)

• Prove that a variant of kcSPAKE2+ currently being
standardized is a secure asymmetric PAKE in the
UC model

• Fix a few problems in the current definitions of UC
secure symmetric and asymmetric PAKE



UC framework

Real world Ideal world

H

Z

A
· · ·

· · ·

⇧⇧⇧

Z

SF

· · ·

∀A ∃S ∀Z : Exec[,A,Z] ≈ Exec[F ,S,Z]



Interface for symmetric PAKE (both real and
ideal)
• Many clients P, each associated with a unique server Q
• Many servers Q, each associated with a unique client P
• Each client server pair (P,Q) has a shared password π
◦ Z chooses π arbitrarily

• Z initiates many protocol instances of a client or server
• When a protocol instance terminates, it outputs either
◦ abort, or
◦ (sd, k), where
· sd is a“session ID”
· k is a “session key”

• Intuition about session IDs:
◦ For a given client server pair (P,Q) and a given sd:

· At most one instance of P should hold sd
· At most one instance of Q should hold sd
· Instances holding sd should hold same k



Ideal functionality for symmetric PAKE
• S may make a single password guess on any protocol

instance:
◦ S gives π′ to F

◦ F tells S if π′ = π

• S instructs F how to generate protocol instance ’s output:
◦ abort:  outputs abort

◦ (fresh-key, sd): no password guess allowed on 

F chooses k at random, and  outputs (sd, k)

◦ (copy-key, sd): no password guess allowed on , and there
must be a unique compatible instance with the same sd, with
a “fresh” key k

 outputs (sd, k)

◦ (spoiled-key, sd, k): S must have made a successful
password guess on 

 outputs (sd, k)



From symmetric to asymmetric PAKE
• New interface elements:

◦ Z can compromise a server Q
· In the real world, A obtains Q’s “password file”

· In the ideal world, S is allowed to assign “spoiled keys” to
any instance of the corresponding client P

◦ Z can make explicit queries to a random oracle F at
inputs (π′, dP, dQ)
· Idea: queries to F are “externally visible” events

· In the real world, A obtains (π′, dP, dQ) along with
F(π′, dP, dQ)

- A does not have direct access to F

· In the ideal world, after a server is compromised, S may
make corresponding “offline password guesses”

• This repairs problems in previous work identified by
[Hesse 2019]



Why isn’t SPAKE2 UC secure?
• “Theorem”: Protocol SPAKE2 is not UC secure (according to my

definition — or any others in the literature)
◦ Details need to be worked out . . .

• More fundamentally: any secure-channels protocol layered
directly on top of Protocol SPAKE2 is not UC secure either

• In concurrent work, [Abdalla, et al 2020] also observe that
SPAKE2 is not UC secure
◦ They show that SPAKE2 is UC secure w/r to a much weaker ideal

functionality: “lazy extraction security”

· and they use a stronger and ”non-falsifiable” assumption: Gap CDH

◦ Fact: any secure-channels protocol layered on top of a “lazy extraction
secure” PAKE protocol cannot be UC secure in any reasonable sense

· so it’s not clear what the applications are

◦ They show that “lazy extraction secure” PAKE + key-confirmation = UC
secure PAKE

· so perhaps their security notion is useful for modular proofs



Why isn’t SPAKE2 UC secure?

bP

π′

Q

π

α←R Zq, ← gαπ
′

β←R Zq, ← gβbπ
−−−−−→
←−−−−−

← (/π)β
k← H(π, dP, dQ, , ,)
Q starts encrypting using k
Simulator must immediately decide

if k is “fresh” or “spoiled”
...

′ ← (/bπ′ )α
k′ ← H(π′, dP, dQ, , ,′)
But only now can simulator test

if π′ = π



Protocol kcSPAKE2+

public system parameter: random  ∈ G
password: π, (ϕ0, ϕ1) := F(π, dP, dQ)

P (client) Q (server)

secret: ϕ0, ϕ1 secret: ϕ0, c := gϕ1

α←R Zq, ← gαϕ0
−−−−−−−−→ β←R Zq, ← gβ

← (/ϕ0 )β, d← cβ

(k, k1, k2)←
H(ϕ0, dP, dQ, , ,, d)

← α, d← ϕ1
(k, k1, k2)←
H(ϕ0, dP, dQ, , ,, d)

validate k1

, k1←−−−−−−−−

k2−−−−−−−−→ validate k2

session key: k


