Topology-Hiding Communication from Minimal Assumptions

Marshall Ball, Elette Boyle, Ran Cohen, Lisa Kohl, Tal Malkin, Pierre Meyer, Tal Moran

TCC 2020

Topology-Hiding Computation:

- ▶ Parties can only see their local view
- ▶ The MPC reveals nothing else about the graph

Difficulties of Topology-Hiding Computation

- 1. Fewer point-to-point secure channels
- 2. Only local views (and graph class) initially known
- 3. The topology of the network should not be leaked

▶ Computational (DDH, QR, or LWE), (t = n - 1) passive

- ▶ Computational (DDH, QR, or LWE), (t = n 1) passive
- ▶ Computational, (t = n 1) passive + fail-stop

[LaVigne, Liu-Zhang, Maurer, Moran, Mularczyk, Tschudi 2018]

- ▶ Computational (DDH, QR, or LWE), (t = n 1) passive
- ▶ Computational, (t = n 1) passive + fail-stop
- Asynchronous model, (t = n 1) passive

- ▶ Computational (DDH, QR, or LWE), (t = n 1) passive
- ▶ Computational, (t = n 1) passive + fail-stop
- Asynchronous model, (t = n 1) passive
- ightharpoonup Revisiting information-theoretic setting, t=1 passive

- Broadcast Only (and Anonymous Broadcast)
- ▶ One Semi-Honest Corruption
- Synchronous Communication

- Broadcast Only (and Anonymous Broadcast)
- ▶ One Semi-Honest Corruption
- Synchronous Communication

1-THB

1-THAB

- Broadcast Only (and Anonymous Broadcast)
- ▶ One Semi-Honest Corruption
- Synchronous Communication

1-THB

1-THAB

Trivial without Topology-Hiding

Very Rich with Topology-Hiding!

Broadcast Only (and Anonymous Broadcast)

For each graph class, what is the minimal (cryptographic) assumption required for 1-THB and 1-THAB?

<u>Broadcast</u> Only (and Anonymous Broadcast)

For each graph class, what is the minimal (cryptographic) assumption required for 1-THB and 1-THAB?

Information Theoretic (IT) / Key-Agreement (KA) / Oblivious Transfer (OT)

Topology-Hiding Anonymous Broadcast (t = 1)

Topology-Hiding Broadcast (t=1)

Topology-Hiding Anonymous Broadcast (t=1)

Topology-Hiding Broadcast (t=1)

Topology-Hiding Anonymous Broadcast (t = 1)

Topology-Hiding Broadcast (t=1)

Topology-Hiding Anonymous Broadcast (t = 1)

This Talk

1. 'Paths of Length Two and Three': 1-THAB requires OT

2. 'All 2-connected Graphs': 1-THAB is possible Information-Theoretically

'Paths of Length Two and Three':

1-THAB requires OT

'Paths of Length Two and Three': 1-THAB requires OT

- ► Functionality: Anonymous Broadcast
- Player Pool: $\{1,2,3\}$
- ► Graph Class: G_{P2-Vs-P3}

'Paths of Length Two and Three': 1-THAB requires OT

- ► Functionality: Anonymous Broadcast
- Player Pool: $\{1,2,3\}$
- ► Graph Class: $\mathcal{G}_{P_2-vs-P_3}$

 $1\text{-}\mathsf{THAB}(\mathcal{G}_{P_2\text{-}\textit{vs-}P_3})\Rightarrow\mathsf{OT}$

'Paths of Length Two and Three': 1-THAB requires OT

- Functionality: Anonymous Broadcast in 2 Rounds
- Player Pool: $\{1,2,3\}$
- ► Graph Class:

 $[2\text{-round }1\text{-THAB}(\mathcal{G}_{P_2\text{-vs-}P_3})] \Rightarrow \text{Semi-honest AND} \Rightarrow \text{OT}$

$$[2\text{-round }1\text{-THAB}(\mathcal{G}_{P_2\text{-}\textit{vs-}P_3})] \Rightarrow \mathsf{OT} \qquad (\mathsf{Correctness})$$

Bob

If
$$x = 0$$

If
$$y = 0$$

If
$$x = 1$$

If
$$y = 1$$

$[2\text{-round } 1\text{-THAB}(\mathcal{G}_{P_2\text{-}vs\text{-}P_3})] \Rightarrow \mathsf{OT}$ (Correctness)

Alice

Bob

$$r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

If
$$x = 0$$

If
$$y = 0$$

If
$$x = 1$$

If
$$y = 1$$

$[2\text{-round }1\text{-THAB}(\mathcal{G}_{P_2\text{-}\textit{vs-}P_3})]\Rightarrow \mathsf{OT}$ (Correctness)

Alice

Bob

 $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

2

If y = 0

If x = 1

If x = 0

If y = 1

$[2\text{-round }1\text{-THAB}(\mathcal{G}_{P_2\text{-}\textit{vs-}P_3})] \Rightarrow \mathsf{OT} \qquad (\mathsf{Correctness})$

Alice Bob $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda} \longrightarrow$

If x = 0

2

3

If y = 0

If y = 1

If x = 1

<u>(2</u>

3)—(1')

9 / 16

$[2\text{-round } 1\text{-THAB}(\mathcal{G}_{P_2\text{-}vs\text{-}P_3})] \Rightarrow \mathsf{OT}$ (Correctness)

Alice Bob $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda} \longrightarrow$

If x = 0

(2)

2)~::

)

If y = 0

If y = 1

If x = 1

<u>___(2</u>

3)—(1'

If x = 1 (BC)

If y = 1

$[2\text{-round } 1\text{-THAB}(\mathcal{G}_{P_2\text{-}\textit{vs-}P_3})] \Rightarrow \mathsf{OT}$ (Correctness)

If
$$(x, y) = (0, 0)$$
:
If $(x, y) = (0, 1)$:
If $(x, y) = (1, 0)$:
If $(x, y) = (1, 1)$:

$$[2\text{-round } 1\text{-THAB}(\mathcal{G}_{P_2\text{-}\textit{vs-}P_3})] \Rightarrow \mathsf{OT}$$
 (Correctness)

If
$$x = 0$$
 (BC) (2)

If
$$x = 1$$
 (BC) (1) (2) (3) (1)

If
$$(x, y) = (0, 0)$$
: (BC) 2 3
If $(x, y) = (0, 1)$: (BC) 2 3 1'
If $(x, y) = (1, 0)$: (BC) 1 2 3
If $(x, y) = (1, 1)$: (BC) 1 2 3

If y = 0

$$[2\text{-round } 1\text{-THAB}(\mathcal{G}_{P_2\text{-}vs\text{-}P_3})] \Rightarrow \mathsf{OT}$$
 (Correctness)

If
$$x = 0$$
 (BC)

If
$$x = 1$$
 (BC) (1) (2) (3) $(1')$ If $y = 1$

If
$$(x,y) = (0,0)$$
: (BC) 2 3
If $(x,y) = (0,1)$: (BC) 2 3 1'
If $(x,y) = (1,0)$: (BC) 1 2 3
If $(x,y) = (1,1)$: (BC) 1 2 3

If y = 0

$$[2\text{-round } 1\text{-THAB}(\mathcal{G}_{P_2\text{-}vs\text{-}P_3})] \Rightarrow \mathsf{OT}$$
 (Correctness)

If (x, y) = (0, 0):

$$| \text{If } (x,y) = (0,1): \qquad \text{(BC)} \quad 2 - 3 - 1'$$

$$| \text{If } (x,y) = (1,0): \qquad \text{(BC)} \quad 1 - 2 - 3$$

$$| \text{If } (x,y) = (1,1): \qquad \text{(BC)} \quad 1 - 2 - 3 - 1'$$

$$| \text{Breaks } (\textcircled{1}) \text{ cannot output } r)$$

$$[\text{2-round }1\text{-}\mathsf{THAB}(\mathcal{G}_{P_2\text{-}\textit{vs-}P_3})]\Rightarrow\mathsf{OT}$$

(Security)

Alice

Bob

If x = 0

If x = 1

If y = 0If y = 1

$$[\text{2-round }1\text{-}\mathsf{THAB}(\mathcal{G}_{P_2\text{-}\textit{vs-}P_3})]\Rightarrow\mathsf{OT}$$

(Security)

$$[\text{2-round }1\text{-}\mathsf{THAB}(\mathcal{G}_{P_2\text{-}\textit{vs-}P_3})]\Rightarrow\mathsf{OT}$$

(Security)

Alice

Bob

If
$$x = 0$$
 (BC)

(2)

3

If x = 1 (BC) (1)—(2

If y = 0

If y = 1

$1\text{-THAB}(\mathcal{G}_{P_2\text{-}\mathit{VS}\text{-}P_3}) \Rightarrow \mathsf{OT}$

If (x, y) = (0, 0):

(BC)

Alice Bob
$$r \overset{\$}{\leftarrow} \{0,1\}^{\lambda} \longrightarrow$$
If $x = 0$ (BC) 2 3 If $y = 0$
If $y = 1$

$$| \text{If } (x,y) = (0,1): \\ | \text{If } (x,y) = (1,0): \\ | \text{If } (x,y) = (1,1): \\ | \text{BC}) \boxed{1} \boxed{2} \boxed{3}$$
 Breaks (① cannot output r)

'All 2-connected Graphs': 1-THAB is possible Information-Theoretically

'All 2-connected Graphs': 1-THAB is possible IT

- ► Functionality: Anonymous Broadcast
- ightharpoonup Player Pool: $\{P_1, \ldots, P_N\}$
- ► Graph Class: All two-connected graphs

1-THAB(\mathcal{G}_{2-conn}) is possible

- Functionality: Anonymous Broadcast
- Player Pool: $\{P_1, \dots, P_N\}$
- ► Graph Class: All two-connected graphs with all the players

1-THAB(\mathcal{G}_{2-conn}) is possible Unconditionally

1-THAB(\mathcal{G}_{2-conn}) is possible

- Functionality: Secure Message Transmission from (s) to (t)
- Player Pool: $\{P_1, \dots, P_N\}$
- ► Graph Class: All two-connected graphs with all the players

 $1\text{-SMT}_{s \to t}(\mathcal{G}_{P_2 \text{-} \nu s \text{-} P_3})$ is possible Unconditionally

bipolar orientation from s **to** t: orientation as D.A.G. with single source s and single sink t

- ▶ $G = \{G_1, G_2, ..., G_k\}$ on V = [N]
- ▶ st-orientations $s \rightarrow t : H_1, H_2, \dots H_k$

- ▶ $G = \{G_1, G_2, ..., G_k\}$ on V = [N]
- ▶ *st*-orientations $s \rightarrow t : H_1, H_2, \dots H_k$

- ▶ $G = \{G_1, G_2, ..., G_k\}$ on V = [N]
- st-orientations $s \rightarrow t : H_1, H_2, \dots H_k$

- ▶ $G = \{G_1, G_2, ..., G_k\}$ on V = [N]
- st-orientations $s \rightarrow t : H_1, H_2, \dots H_k$

- ▶ $G = \{G_1, G_2, ..., G_k\}$ on V = [N]
- ▶ st-orientations $s \rightarrow t : H_1, H_2, \dots H_k$

- ▶ $G = \{G_1, G_2, ..., G_k\}$
- \blacktriangleright st-orientations $s \rightarrow t : H_1, H_2, \dots H_k$

- ▶ $G = \{G_1, G_2, ..., G_k\}$
- \blacktriangleright st-orientations $s \rightarrow t : H_1, H_2, \dots H_k$

Public:

$$\triangleright \ \mathcal{G} = \{G_1, G_2, \dots, G_k\}$$

 \blacktriangleright st-orientations $s \rightarrow t : H_1, H_2, \dots H_k$

Our Results (Extended)

Topology-Hiding Anonymous Broadcast (t = 1)

Topology-Hiding Anonymous Broadcast (t = 1)

Only 2-connected graphs + 2-paths ≥ 3 nodes Only graphs with of length 2 and 3

Topology-Hiding Anonymous Broadcast (t = 1)

Thank You!