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Context

• Security of existing public key schemes is based on hard problems (e.g., integer 
factorization and discrete logarithm)

– Shor’s algorithm solves them efficiently on quantum computers

• NIST has recently announced the finalists of the standardization contest for post-
quantum cryptography:
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Module
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Module lattices
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l

l

n

Public matrix (A) Secret (s) Error (e) (M-)LWE sample b = A · s + e

Module lattices → Polynomial arithmetic rather than matrix-vector multiplication



Polynomial multiplication – coefficient form
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Polynomial multiplication – point-value form
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Polynomial multiplication – point-value form
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Evaluation/interpolation

• NTT

– Complexity O(n log n)

– Requires prime modulus q and q ≡ 1 mod 2n

• Karatsuba

– Complexity O(n1.585)

– No restrictions

• Toom-Cook k-way

– Complexity O(c(k) nlog(2k-1)/log(k))

– No restrictions
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Saber l = 3
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• 12 polynomial multiplication per encryption
          Matrix multiplication for the ciphertext                       Vector multiplication for the key

• Algorithmic choice for polymul

– Top layer: Toom-Cook 4-way (1 256x256 to 7 64x64)

– Intermediate layer: 2 levels of Karatsuba (1 64x64 to 9 16x16)

– Bottom layer: 16x16 coefficient multiplication (63 16x16 in total)
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Polynomial multiplication in Saber
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Polynomial multiplication in Saber
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Polynomial multiplication in Saber
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Speed optimizations
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Lazy interpolation Pre-computation



Lazy interpolation
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Precomputation
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Lazy interpolation + Precomputation
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Analysis of our improvements
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Implementation on AVX2
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Lazy interpolation
+

Lazy transposition



Implementation on Cortex-M4
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Small storage for secrets
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• Secrets are stored as polynomials with n = 256 coefficients mod q = 213

• Secrets are sampled from a centered binomial distribution

– β
μ
 →  coefficients lie in [-μ, μ]μ, μ]

– Worst case for Saber μ = 5

• Instead, store secrets using only 4 bits per coefficient



Advantages
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• Reduced footprint of the secret keys

• Simple packing/unpacking functions

– Embed unpacking in multiplication evaluation



Memory optimizations
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• Book-keeping of randomness for hash functions

• Just-in-time polynomial generation

• In-place verification of ciphertext

• Use only Karatsuba for multiplication

• Merge unpacking of secrets and Karatsuba evaluation



Results – Matrix-vector multiplication
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• AVX2

• Cortex-M4



Results – plain C
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Results – AVX2
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Results – Cortex-M4 optimized for speed
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Results – Cortex-M4 Saber optimized for memory
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Conclusions

• Generalize and formalize Lazy interpolation and Pre-computation

• Show the difference between theoretical/algorithmic optimizations and real world 
implementations

• Fastest software implementations of Saber

• Alternatively, smallest Saber implementation for embedded platforms

• Reduced the storage required for the secret key of Saber

31



Thank you for your attention!
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