
Time-memory trade-off in Toom-Cook
multiplication: an application to

module-lattice based cryptography

Jose Maria Bermudo Mera
Angshuman Karmakar CHES 2020
Ingrid Verbauwhede

Speaker

• Jose Maria Bermudo Mera

• PhD researcher at KU Leuven

– Implementation aspects of
lattice-based cryptography

– Publications at
https://bit.ly/311onEM

• Contact me at
Jose.Bermudo@esat.kuleuven.be
in EN/ES/IT

2

Contents

• Introduction

• Speed optimizations

• Memory optimizations

• Results

• Conclusions

3

Context

• Security of existing public key schemes is based on hard problems (e.g., integer
factorization and discrete logarithm)

– Shor’s algorithm solves them efficiently on quantum computers

• NIST has recently announced the finalists of the standardization contest for post-
quantum cryptography:

4

Context

• Security of existing public key schemes is based on hard problems (e.g., integer
factorization and discrete logarithm)

– Shor’s algorithm solves them efficiently on quantum computers

• NIST has recently announced the finalists of the standardization contest for post-
quantum cryptography:

5

Module
lattices

Module lattices

6

l

l

n

Public matrix (A) Secret (s) Error (e) (M-)LWE sample b = A · s + e

Module lattices → Polynomial arithmetic rather than matrix-vector multiplication

Polynomial multiplication – coefficient form

7

Polynomial multiplication – point-value form

8

Polynomial multiplication – point-value form

9

Evaluation/interpolation

• NTT

– Complexity O(n log n)

– Requires prime modulus q and q ≡ 1 mod 2n

• Karatsuba

– Complexity O(n1.585)

– No restrictions

• Toom-Cook k-way

– Complexity O(c(k) nlog(2k-1)/log(k))

– No restrictions
10

Evaluation/interpolation

• NTT

– Complexity O(n log n)

– Requires prime modulus q and q ≡ 1 mod 2n

• Karatsuba

– Complexity O(n1.585)

– No restrictions

• Toom-Cook k-way

– Complexity O(c(k) nlog(2k-1)/log(k))

– No restrictions
11

Saber l = 3

12

• 12 polynomial multiplication per encryption
 Matrix multiplication for the ciphertext Vector multiplication for the key

• Algorithmic choice for polymul

– Top layer: Toom-Cook 4-way (1 256x256 to 7 64x64)

– Intermediate layer: 2 levels of Karatsuba (1 64x64 to 9 16x16)

– Bottom layer: 16x16 coefficient multiplication (63 16x16 in total)

(
a00 a01 a02

a10 a11 a12

a20 a21 a22
)⋅(

s0

s1

s2
) (

b0

b1

b2
)
T

⋅(
s ' 0
s ' 1
s ' 2

)

Polynomial multiplication in Saber

13

Polynomial multiplication in Saber

14

Polynomial multiplication in Saber

15

Speed optimizations

16

Lazy interpolation Pre-computation

Lazy interpolation

17

Precomputation

18

Lazy interpolation + Precomputation

19

Analysis of our improvements

20

Implementation on AVX2

21

Lazy interpolation
+

Lazy transposition

Implementation on Cortex-M4

22

pre-load

pre-load

accumulate

accumulate

Small storage for secrets

23

• Secrets are stored as polynomials with n = 256 coefficients mod q = 213

• Secrets are sampled from a centered binomial distribution

– β
μ
 → coefficients lie in [-μ, μ]μ, μ]

– Worst case for Saber μ = 5

• Instead, store secrets using only 4 bits per coefficient

Advantages

24

• Reduced footprint of the secret keys

• Simple packing/unpacking functions

– Embed unpacking in multiplication evaluation

Memory optimizations

25

• Book-keeping of randomness for hash functions

• Just-in-time polynomial generation

• In-place verification of ciphertext

• Use only Karatsuba for multiplication

• Merge unpacking of secrets and Karatsuba evaluation

Results – Matrix-vector multiplication

26

• AVX2

• Cortex-M4

Results – plain C

LightSaber Saber FireSaber
0

200

400

600

800

1000

1200

1400

Old method, keygen [kcycles]

Old method, enc [kcycles]

Old method, dec [kcycles]

This work, keygen [kcycles]

This work, enc [kcycles]

This work, dec [kcycles]

27

Results – AVX2

LightSaber Saber FireSaber
0

20

40

60

80

100

120

140

160

180

200

Old method, keygen [kcycles]

Old method, enc [kcycles]

Old method, dec [kcycles]

This work, keygen [kcycles]

This work, enc [kcycles]

This work, dec [kcycles]

28

Results – Cortex-M4 optimized for speed

LightSaber Saber FireSaber
0

500

1000

1500

2000

2500

3000

3500

Old method, keygen [kcycles]

Old method, enc [kcycles]

Old method, dec [kcycles]

This work, keygen [kcycles]

This work, enc [kcycles]

This work, dec [kcycles]

Old method, max RAM [bytes/20]

This work, max RAM [bytes/20]

29

Results – Cortex-M4 Saber optimized for memory

Key generation Encapsulation Decapsulation
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Old method [kcycles]

This work [kcycles]

Old method RAM [bytes]

This work RAM [bytes]

30

Conclusions

• Generalize and formalize Lazy interpolation and Pre-computation

• Show the difference between theoretical/algorithmic optimizations and real world
implementations

• Fastest software implementations of Saber

• Alternatively, smallest Saber implementation for embedded platforms

• Reduced the storage required for the secret key of Saber

31

Thank you for your attention!

32

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Thank you!

