KU LEUVEN

Time-memory trade-off in Toom-Cook multiplication: an application to module-lattice based cryptography

Jose Maria Bermudo Mera Angshuman Karmakar Ingrid Verbauwhede

CHES 2020

Speaker

- Jose Maria Bermudo Mera
- PhD researcher at KU Leuven
 - Implementation aspects of lattice-based cryptography
 - Publications at https://bit.ly/311onEM
- Contact me at Jose.Bermudo@esat.kuleuven.be in EN/ES/IT

Contents

- Introduction
- Speed optimizations
- Memory optimizations
- Results
- Conclusions

Context

- Security of existing public key schemes is based on hard problems (e.g., integer factorization and discrete logarithm)
 - Shor's algorithm solves them *efficiently* on quantum computers
- NIST has recently announced the finalists of the standardization contest for postquantum cryptography:

McEliece	Code-based			
Kyber	Lattice-based			
NTRU	Lattice-based			
Saber	Lattice-based			

Signature			
$\operatorname{Dilithium}$	Lattice-based		
Falcon	Lattice-based		
Rainbow	Multivariate		

Context

- Security of existing public key schemes is based on hard problems (e.g., integer factorization and discrete logarithm)
 - Shor's algorithm solves them *efficiently* on quantum computers
- NIST has recently announced the finalists of the standardization contest for postquantum cryptography:

Module lattices

Module lattices → Polynomial arithmetic rather than matrix-vector multiplication

Polynomial multiplication – coefficient form

 $A(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$

 $B(x) = b_3 x^3 + b_2 x^2 + b_1 x + b_0$

 $C(x) = c_6 x^6 + c_5 x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0$

Polynomial multiplication – point-value form

Polynomial multiplication – point-value form

Evaluation/interpolation

• NTT

- Complexity O(n log n)
- Requires prime modulus q and $q \equiv 1 \mod 2n$
- Karatsuba
 - Complexity O(n^{1.585})
 - No restrictions
- Toom-Cook k-way
 - Complexity O(c(k) n^{log(2k-1)/log(k)})
 - No restrictions

Evaluation/interpolation

• NTT

- Complexity O(n log n)
- Requires prime modulus q and $q \equiv 1 \mod 2n$
- Karatsuba
 - Complexity O(n^{1.585})
 - No restrictions
- Toom-Cook k-way
 - Complexity O(c(k) n^{log(2k-1)/log(k)})
 - No restrictions

Saber I = 3

• 12 polynomial multiplication per encryption

Matrix multiplication for the ciphertext $\begin{pmatrix}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{pmatrix} \cdot \begin{pmatrix}
s_0 \\
s_1 \\
s_2
\end{pmatrix}$

Vector multiplication for the key

$$\begin{pmatrix} \boldsymbol{b}_{0} \\ \boldsymbol{b}_{1} \\ \boldsymbol{b}_{2} \end{pmatrix}^{T} \cdot \begin{pmatrix} \boldsymbol{s}'_{0} \\ \boldsymbol{s}'_{1} \\ \boldsymbol{s}'_{2} \end{pmatrix}$$

- Algorithmic choice for polymul
 - Top layer: Toom-Cook 4-way (**1 256x256 to 7 64x64**)
 - Intermediate layer: 2 levels of Karatsuba (1 64x64 to 9 16x16)
 - Bottom layer: 16x16 coefficient multiplication (63 16x16 in total)

Polynomial multiplication in Saber

Polynomial multiplication in Saber

Polynomial multiplication in Saber

Speed optimizations

Lazy interpolation

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} s_0 \\ s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix}$$

 $= \begin{bmatrix} a_{00} \cdot s_0 + a_{01} \cdot s_1 + a_{02} \cdot s_2 \\ a_{10} \cdot s_0 + a_{11} \cdot s_1 + a_{12} \cdot s_2 \\ a_{20} \cdot s_0 + a_{21} \cdot s_1 + a_{22} \cdot s_2 \end{bmatrix} = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix}$

Pre-computation

a_{00}	a_{01}	a_{02}		s_0		b_0	
a_{10}	a_{11}	a_{12}	•	s_1	=	b_1	
a_{20}	a_{21}	a_{22}		s_2		b_2	

Precomputation

Lazy interpolation + Precomputation

Analysis of our improvements

Primitivos	Polynomial	Evaluations		Interpolations	
1 1111101765	multiplications	Base case	Our work	Base case	Our work
KeyGen	l^2	$2l^2$	$l^{2} + l$	l^2	l
Encryption	$l^{2} + l$	$2(l^2+l)$	$l^2 + 2l$	$l^2 + l$	l+1
Decryption	l	2l	2l	l	1

Implementation on Cortex-M4

1. 2. З. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.

Original schoolbook

Proposed modification

ldr r6, [r1, #0] ldr.w ip, [r1, #4] ldr.w r3, [r1, #8] ldr.w sl, [r1, #12] ldr.w r7, [r2, #0] ldr.w r8, [r2, #4] ldr.w r4, [r2, #8] ldr.w lr, [r2, #12] smulbb r9, r7, r6		1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	<pre>ldr.w r6, [r1, #0] ldr.w ip, [r1, #4] ldr.w r3, [r1, #8] ldr.w s1, [r1, #12] ldrh.w r9, [r2] ldrh.w fp, [r2, #2] ldr.w r7, [r0, #0] ldr.w r8, [r0, #4] ldr.w r4, [r0, #8] ldr.w lr, [r0, #12]</pre>	pre-load
pkhbt r9, r9, fp, lsl #16 str.w r9, [r0]		11. 12.	smlabb r9, r7, r6, r9 smladx fp, r7, r6, fp	accumulate
smuadx fp, r7, ip smulbb r5, r7, ip pkhbt r9, r8, r7		13. 14. 15.	pkhbt r9, r9, fp, lsl #16 ldrh.w fp, [r2, #6] ldrh.w r5. [r2, #4]	pre-load
<pre>smladx fp, r8, r6, fp smlad r5, r9, r6, r5 pkhbt fp, r5, fp, lsl #16</pre>		16. 17. 18.	str.w r9, [r2] smladx fp, r7, ip, fp smlabb r5, r7, ip, r5	accumulate
str.w fp, [r0, #4]		19. 20. 21. 22.	<pre>pkhbt r9, r8, r7 smladx fp, r8, r6, fp smlad r5, r9, r6, r5 pkhbt fp, r5, fp, lsl #16</pre>	
	22	23.	str.w fp, [r2, #4]	KU LEUVEN

Small storage for secrets

- Secrets are stored as polynomials with n = 256 coefficients mod $q = 2^{13}$
- Secrets are sampled from a centered binomial distribution
 - $\beta_{\mu} \rightarrow$ coefficients lie in [- μ , μ]
 - Worst case for Saber μ = 5
- Instead, store secrets using only 4 bits per coefficient

Advantages

• Reduced footprint of the secret keys

	Old	This work	Compression
l = 2	1568	992	36.7 %
l = 3	2304	1440	37.5 %
l = 4	3040	1888	38.2 %

- Simple packing/unpacking functions
 - Embed unpacking in multiplication evaluation

Memory optimizations

- Book-keeping of randomness for hash functions
- Just-in-time polynomial generation
- In-place verification of ciphertext
- Use only Karatsuba for multiplication
- Merge unpacking of secrets and Karatsuba evaluation

Results – Matrix-vector multiplication

• AVX2

	Old method	This work	Speedup
l=2	10199	7214	29.3 %
l = 3	21356	13574	36.4 %
l = 4	39039	24767	36.6 %

• Cortex-M4

	Old method	This work	Speedup
l=2	$162 \ k$ cycles	$159 \ k$ cycles	1.9 %
l = 3	$361 \ k$ cycles	$317 \ k$ cycles	12.2 %
l = 4	$646 \ k$ cycles	$528 \ k$ cycles	18.3 %

Results – plain C

Results – AVX2

Results – Cortex-M4 optimized for speed

Results – Cortex-M4 Saber optimized for memory

Conclusions

- Generalize and formalize Lazy interpolation and Pre-computation
- Show the difference between theoretical/algorithmic optimizations and real world implementations
- Fastest software implementations of Saber
- Alternatively, smallest Saber implementation for embedded platforms
- Reduced the storage required for the secret key of Saber

Thank you for your attention!

