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Why radios and computing devices?



Modern Connected Devices Have Radios

Mixed-signal architecture
CPU + Crypto + Radio
Same chip
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Modern Connected Devices Have Radios

Mixed-signal architecture
CPU + Crypto + Radio
Same chip

Benefits
Low Power, Cheap, Small
Easy to integrate

Examples
BT, BLE, WiFi, GPS, etc
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What can go wrong?
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Screaming Channels [1] in Action

Cortex-M4 
+ BT TX

Antenna + SDR RX

𝟐𝒎

Radio Off Radio TX AES On

Noise

AES Starts Time domain

Packet
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A New Threat [1]
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10m in anechoic chamber
Countermeasures
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The "Screaming Channels" Leak Vector

Idea, Root Cause, First Attack
Intuition and root cause
10m in anechoic chamber
Countermeasures

CCS 2018 [1] & BHUSA18 [2]
Camurati, Poeplau, Muench, 
Hayes, Francillon

TCHES 2020
Camurati, Francillon, Standaert

Systematic Analysis
Data/leak coexistence
Distortion, profile reuse, etc.
Improved Attacks
Realistic environment up to 15m
Google Eddystone Beacons
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Some Other Interesting Cases
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“LeakyNoise” 
CPU to ADC side channel in mixed-signal chips
CHES2019 [14]

Second-Order Soft-TEMPEST
Soft-TEMPEST + (un)intentional cascaded effects
EMC Europe 2018 [15]
AP-RASC 2019 [16]



Let us answer some open questions about 

Screaming Channels
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What is the difference with conventional leakages?

1/4
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Intuitively

Near-field probe

CPU TX

Coupling on chip Radio channel (data + leakage)
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Intuitively

Near-field probe

CPU TX

Coupling on chip Radio channel (data + leakage)

1. SNR?
2. Distortion?

3. SNR & Distortion
• Distance & Setup
• BLE Channel

4. Data/Leakage 
modulation

5. Discrete packets
6. Frequency hopping
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Necessary Steps Before We Can Start

1. Extract traces (in the specific case of our BLE device)
1. Data (GFSK) and leakage (AM) are orthogonal
2. Trigger on a peculiar frequency
3. Fix the channel (we will consider hopping later)
4. Time diversity to deal with deep fade between packets
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3. Fix the channel (we will consider hopping later)
4. Time diversity to deal with deep fade between packets

2. Normalize
1. Z-score normalization inspired by [3,4,5,6]
2. Per-trace normalization removes the effect 

of the channel!

𝑦 𝑡 = 𝐺𝑥(𝑡)

y’  = 
𝑦−𝑎𝑣𝑔(𝑦)

𝑠𝑡𝑑(𝑦)
=

𝐺𝑥−𝐺𝑎𝑣𝑔(𝑥)

𝐺𝑠𝑡𝑑(𝑥)
= 𝑥′
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Leakage variable y

Leakage model m(y)

Leakage l(y)

= SBox(p xor k)

= HW[y] model(y) Estimate (nonlinear) leakage model 
for each y, using the profiling set

Estimate the linear correlation 
between m(y) and l(y) on test set

This is the r-test [7]

Results for Screaming vs. Conventional
• Less POIs
• Slightly lower but still high correlation
• HW is not a good model

SNR is comparable
But the leakage is distorted
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Leakage variable y

Leakage model m(y)

Leakage l(y)

= SBox(p xor k)

= HW[y] Linear combination of the bits of y 

Estimate a linear model of the bits 
of y using linear regression [7]
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Understanding the Leakage
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Leakage variable y

Leakage model m(y)

Leakage l(y)

= SBox(p xor k)

= HW[y] Linear combination of the bits of y 

Estimate a linear model of the bits 
of y using linear regression [7]

Results for Screaming vs. Conventional
• Confirm leakage from Sbox output
• Linear model is good for conventional traces
• Bad for screaming traces The leakage model is nonlinear 
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Leakage variable y

Leakage model m(y)

Leakage l(y)

Templates [9] can capture a second 
order relation between m(y) and l(y)

Results for Screaming vs. Conventional
• Templates attacks are not considerably 

better than profiled correlation attacks

First-order leakage (for our sample size) 



Conclusion
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1. Comparable SNR, distorted leakage model
2. Nonlinear leakage model
3. First order leakage

Profiled Correlation Attacks
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Can we reuse the profiles?

2/4
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Distance & Device

P1, A1 P2, A2

#Traces for key recovery [10]
Given profile P and attack traces A

Reuse P1

𝐍𝟏𝟏 ∝ 𝒓−𝟐 𝑷𝟏, 𝑨𝟏 𝐍𝟐𝟐 ∝ 𝒓−𝟐 𝑷𝟐, 𝑨𝟐

𝐍𝟏𝟐 ∝ 𝒓−𝟐 𝑷𝟏, 𝑨𝟐

𝒓 𝑷𝟏, 𝑨𝟐 = 𝒓 𝑷𝟐, 𝑨𝟐 𝒓 𝑷𝟏, 𝑷𝟐

The higher the better
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Distance, Setup, Channel Frequency, Instance, Time

Distance
• Quadratic power loss, but we can amplify
• Normalization cancels the multiplicative channel gain
• No extra distortion (different from conventional [11])

Environment (noise) and setup
• Bigger role than distance, but we can improve the setup
• Some connections are better

Device instance 
• No significant impact, per-trace normalization helps

Big Advantage
• Profile in good conditions, attack another instance 

in harsh conditions
27



Example: Distance
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High correlation 
at each distance

High correlation 
between profiles
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Can we attack more challenging targets?

3/4



Attacks with obstacles and spatial diversity

TX

RX

RX

Spatial Diversity
Different paths
Uncorrelated noise
Combine with Maximal Ratio

Attack
55cm in home environment
37k x 500 profiling traces
1990 x 500 attack traces
Rank 2^26
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Attacks in an office environment

Simple Profiling
Connection via cable
(10k x 500 traces)

Complex Attack
Different instance and time
10m (1.5k x 1000 traces, 2^28)
15m (5k x 1000 traces, 2^23, hard)

Setup tuning becomes critical

34m (2k x 1000 traces, t-test only)
60m (extraction only)
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What about the hardware AES block?

Simple Setup
10cm in office
USRP N210
350k x 100 traces

Leaks from Memory Transfers
Firmware memcpy of p,c,k
Hardware DMA of p,c,k
No leak detected inside the AES

Attacks
Only SPA attack are possible
As of now we have not succeeded

32



Can we attack a real system?

4/4
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What are Google Eddystone Beacons [12]?
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What are Google Eddystone Beacons [12]?

UID identifier
URL e.g., www.museumshop.com
(e)TML (encrypted) telemetry
EID ephemeral id

Configuration
Authentication at GATT layer
Preshared key
AES128

Security & Privacy
Considered during design of 
the protocol

Physical Web, 
Proximity 
Marketing, ...
Really used, though 
less popular now

34



Triggering AES encryptions with known plaintext

Beacon
Owner/
Attacker

Read Unlock 
Characteristic

P = Random()

P

CB = AES128(P,K) CO = AES128(P,K)

Write Unlock 
Characteristic

Unlocked = (CB == CO)

Pre-shared key K

35



Reducing the problem of frequency hopping

2.4GHz to 2.482GHz

Frequency Hopping
A form of spread spectrum
Channel changes randomly

37 Data Channels
3 Advertising Channels

Hard to follow (sequence, speed, bandwidth)
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Reducing the problem of frequency hopping

2.4GHz to 2.482GHz

Frequency Hopping
A form of spread spectrum
Channel changes randomly

37 Data Channels
3 Advertising Channels

2.4GHz to 2.482GHz

2 Data Channels
3 Advertising Channels

Channel Map
E.g., hcitool cmd 0x08 0x0014 0x0000000003
The attacker can block
up to 35 channels

Hard to follow (sequence, speed, bandwidth)

36



The complete attack

Threat Model
Beacon with no physical access
• Not protected from EM/Power side channels
• Always connectable 

37

Google Bughunter Program 
Honorable Mention



The complete attack

Threat Model
Beacon with no physical access
• Not protected from EM/Power side channels
• Always connectable 

Realistic Demo
Unmodified Nordic SDK demo [13]
• Optimized code (O3)
• Hopping Enabled (reduced with channel map)
• TinyAES software (hardware in later versions)

37

Google Bughunter Program 
Honorable Mention



The complete attack

Threat Model
Beacon with no physical access
• Not protected from EM/Power side channels
• Always connectable 

Realistic Demo
Unmodified Nordic SDK demo [13]
• Optimized code (O3)
• Hopping Enabled (reduced with channel map)
• TinyAES software (hardware in later versions)

Proof-of-Concept Attack (connection via cable on PCA10040)
70k x 1 profiling traces, 33k x 1 attack traces, rank 2^30

37

Google Bughunter Program 
Honorable Mention



Countermeasures?
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Resource constraint devices:
Cost, power, time to market, etc.
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Countermeasures

Resource constraint devices:
Cost, power, time to market, etc.

Classic HW/SW:
Masking, noise, key refresh, limit attempts, use hardware block, ...

Specific (SW):
Radio off during sensitive computations
Force use of HW encryption (for now)

Specific (HW):
Consider impact of coupling on
security during design and test

39
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Conclusion

General Problem: Radios and Side Channels
New threat point: Digital activity visible from a large distance

Peculiar: Not a conventional side channel vector
Easier: Amplified leak, large distance, simple and cheap setup
Harder: Distortion, channel noise, data/leak coexistence

Threat: More and more realistic attacks
Potential threat: More devices or new devices are vulnerable
Countermeasures: Clever, specific countermeasures

WiFi? Possible even if not orthogonal?
Hardware AES? Attack the memory transfers?

41



Open Source!
https://eurecom-s3.github.io/screaming_channels/

Code + Data + Instructions
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Thank You!

Come to the live session for questions!
Or write me:

@GioCamurati

https://giocamurati.github.io

camurati@eurecom.fr

https://giocamurati.github.io/
mailto:camurati@eurecom.fr
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Third-Party Images

• "nRF51822 - Bluetooth LE SoC : weekend die-shot" - CC-BY– Modified with annotations. 

Original by zeptobars https://zeptobars.com/en/read/nRF51822-Bluetooth-LE-SoC-Cortex-M0
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