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d-probing security

Probing attack
The attacker places a probe on a wire of interest and recover some
information about the value carried along that wire during
computation.
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d-probing security

Definition
A gadget is d-probing secure if, given at most d probes, it is
impossible to derive information about the secret values, also
encoded in the masks/shares.

Example
x secret, x0 and x1 shares such that x = x0 + x1

1-probing secure
NOT 1-probing secure
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d-Non Interference security

Definition
A gadget is d-NI if, given at most d probes, it is possible to derive
information about at most d masks/shares of any secret value.

Example
x secret, x0 and x1 shares such that x = x0 + x1

1-NI
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d-Strong Non Interference security

Definition
A gadget is d-SNI if, given at most d1 internal probes and d2

output probes such that d1 + d2 = d , it is possible to derive
information about at most d1 masks/shares of any secret value.

Example
x secret, x0 and x1 shares such that x = x0 + x1

NOT 1-SNI
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d-Strong Non Interference security

Definition
A gadget is d-SNI if, given at most d1 internal probes and d2

output probes such that d1 + d2 = d , it is possible to derive
information about at most d1 secret values, also encoded in the
masks/shares.

Example
x secret, x0 and x1 shares such that x = x0 + x1

1-SNI

Internal probe Output probe
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Robust Probing Security

Extended Probes
Probes that model the leakage situation in presence of some
physical defaults.

Types od Extended probes1

I Modelling glitches, i.e. combinatorial recombination

I Modelling transitions, i.e. memory recombinations

I Modelling couplings, i.e.routing recombinations

1S. Faust et Al., Composable Masking Schemes in the Presence of Physical
Defaults and the Robust Probing Model
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Motivation: mathematical improvement

Research standpoint

I Previous works: instance-by-instance approaches or tools
(maskVerif2)

I Our work: new conceptual tools to derive general solutions
and rules

Development standpoint

I Previous works: efficient approaches might need validation

I Our work: further verification approach based on the exact
theory of Boolean Functions

2G. Barthe et Al., maskVerif: automated analysis of software and hardware
higher-order masked implementations.
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Our contribution

Exploited tools
I Boolean Function Theory

I Walsh Matrices
I Tensor Product
I String Diagrams

New contributions

I Vulnerability Profile

I Composition Rules

I Classification of Extended Probes
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Our method

Walsh Matrix

I Given a Boolean function f , with m inputs and n outputs, any
element of its Walsh matrix is:

f̂ω,α =
∑
x∈Fn

2

(−1)ω
T f (x)⊕αT x

I Matrix that describes the results profile of a Boolean Function

I To any matrix corresponds only one function and viceversa

I Its dimension is 2n × 2m

Correlation Matrix
Matrix computed from the Walsh matrix:

W̃f (ω, α) := (f̂ω,α 6= 0)
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Our method

Example

f (a0, a1, r0, r1) =

 o0

o1

p0

 =

 a0 + r0 + r1
a1 + r0 + r1
a1 + r0


Correlation matrix W̃f :

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 γr1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 γr0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 γa1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 γa0

γp0
γo1

γo0
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
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Our method

Compact representation of W̃f

Reshaping of the Correlation matrix W̃f , by compacting the
spectral coefficients, taking into account only the number of shares
of each original variable.

Example
0 0 0 1 1 1 2 2 2 ρ
0 1 2 0 1 2 0 1 2 α

π ω
0 0 1
0 1 1
0 2 1
1 0 1
1 1 1 1
1 2 1

α,ρ, ω and φ are called the compact spectral indexes of the input,
randoms, output and probe respectively
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Vulnerability Profile

Vulnerability Profile of a function
Tensor product of the regular Walsh transform of a function f and
of its probes fπ, multiplied by Wδ

Function f

Wδ

f∆

If

Wfπ

Wf

Ofπ

Of

Composition h • k

I ⊗ k∆

k∆ h∆

Ih

Whπ

Wh

Wkπ

Wk

Ohπ

Okπh

Okh
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Classification of the Extended Probes

Classification

1. Pure Probe (◦): placed on a wire computing w(x), it gives
information about all the inputs of the function:

wπ(x) =
∧

xi∈support(w)

xi
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Classification of the Extended Probes

Classification

2. Composed Probe (m): placed on a wire computing
w(x) = wa • wb, it gives information about the values:

wk(x) = (wa
π • wb)(x)

where wb(x) is different from the identity.
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Classification of the Extended Probes

Classification

3. Output Probe (↑): placed on an actual output of the function;
during composition of functions, it could produce new probes
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Classification of the Extended Probes

Classification

4. Internal Probe: placed on an internal wire; it couldn’t produce
new probes when composing functions
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Applications

Applications to multiplication gadgets

I CMS: analysis and improvement

I DOM-indep: analysis
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Consolidating Masking Scheme

CMS3 multiplication scheme

I Evolution of the ISW scheme, meant to provide d-probing
security and protection against glitches

I s = d + 1 is the number of shares, ai and bi are the inputs’
shares and ci are the output’s shares

I Every ci is computed in a logic cone, which involves s pairs
(ai , bh)

I Adjacent cones share only a random bit

I Internal bits within a cone preserve uniformity

I Three layers: non-linear (N ), refresh (R) and compression
(C), the latter two separated by a register

3O. Reparaz et Al., Consolidating Masking Schemes
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CMS and probing security

Problem
This scheme is not robust-d-probing secure for d ≥ 3 4

⊕

r1

a0
b0

⊕

r2 a0
b1⊕

r3

a0
b2

⊕

r4

a0b3

⊕
r5

a1b0

⊕
r6

a1b1

⊕r7

a1
b2

⊕
r8

a1
b3

⊕

r9

a2
b0

⊕

r10a2
b1

⊕

r11

a2
b2

⊕

r12

a2 b3

⊕
r13

a3 b0

⊕
r14

a3 b1

⊕ r15

a3
b2

⊕
r0

a3
b3

⊕
c0

⊕
c1

⊕
c2

⊕

c3

compression layer C
refresh layer R
non-linear layer N

4T. Moos et Al., Glitch-Resistant Masking Revisited
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Analysis of the CMS probing security
through our classification of extended probes

Types of probes

I Pure internal probes at the output of R: information about
{ai , bj , rh1 , rh2}

I Composed output probes at the output of C: information
about d values computed as ai · bj + rh1 + rh2

Fail of CMS, for d ≥ 3

b0 b1 b2 . . . bd
a0 c0 c0 c0 . . . c0
a1 c1 c1 c1 . . . c1
a2 c2 c2 c2 . . . c2

.

.

.
ad cd cd cd . . . cd

Secret b placing only one
composed probe and two pure
probes
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Analysis of the CMS probing security
through our classification of extended probes

Example

⊕

r1

a0
b0

⊕

r2 a0
b1⊕

r3

a0
b2

⊕

r4

a0b3

⊕
r5

a1b0

⊕
r6

a1b1

⊕r7

a1
b2

⊕
r8

a1
b3

⊕

r9

a2
b0

⊕

r10a2
b1

⊕

r11

a2
b2

⊕

r12

a2 b3

⊕
r13

a3 b0

⊕
r14

a3 b1

⊕ r15

a3
b2

⊕
r0

a3
b3

⊕
c0

⊕
c1

⊕
c2

⊕

c3

compression layer C
refresh layer R
non-linear layer N

b0 b1 b2 b3

a0 c0 c0 c0 c0

a1 c1 c1 c1 c1

a2 c2 c2 c2 c2

a3 c3 c3 c3 c3

I Output composed
probe c0

I Internal pure probes
to recover r0 and r4
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1st solution: CMS robust-d-probing secure
Non-completeness

Example

⊕

r1

a1
b2

⊕

r2 a1
b0⊕

r3

a3
b0

⊕

r4

a3b2

⊕
r5

a1b3

⊕
r6

a1b1

⊕r7

a3
b1

⊕
r8

a3
b3

⊕

r9

a0
b1

⊕

r10a0
b0

⊕

r11

a2
b0

⊕

r12

a2 b1

⊕
r13

a0 b3

⊕
r14

a0 b2

⊕ r15

a2
b2

⊕
r0

a2
b3

⊕
c0

⊕
c1

⊕
c2

⊕

c3

b0 b1 b2 b3

a0 c2 c2 c3 c3

a1 c0 c1 c0 c1

a2 c2 c2 c3 c3

a3 c0 c1 c0 c1

I No information from any
combination of 3 probes
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1st solution: CMS robust-d-probing secure
Non-completeness

Example
The Compact correlation matrix highlights that, in our first
solution, the scheme with s = 4 is robust-3-probing secure but not
robust-3-SNI

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .ρ
0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 . . .β
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 . . .α

ωfπ ωgπ f
. . . . . .
0 3

. . . . . .
1 2

. . . . . .
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . . . . .
3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . . . . .
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2nd solution: CMS robust-d-SNI
Non-completeness + more randoms

Example

⊕

r1

a1
b2

⊕

r2 a1
b0

q0
⊕

r3

a3
b0

q1⊕

r4

a3b2

⊕
r5

a1b3

⊕
r6

a1b1

q1

⊕r7

a3
b1

q2

⊕
r8

a3
b3

⊕

r9

a0
b1

⊕

r10a0
b0

q2 ⊕

r11

a2
b0

q3 ⊕

r12

a2 b1

⊕
r13

a0 b3

⊕
r14

a0 b2

q3

⊕ r15

a2
b2

q0

⊕
r0

a2
b3

⊕
c0

⊕
c1

⊕
c2

⊕

c3
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2nd solution: CMS robust-d-SNI
Non-completeness + more randoms

Example
The Compact correlation matrix highlights that, in our second
solution, the scheme with s = 4 is robust-3-SNI

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .ρ
0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 . . .β
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 . . .α

ωfπ ωgπ f
. . . . . .
0 3

. . . . . .
1 2

. . . . . .
2 1

. . . . . .
3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . . . . .
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2nd solution: CMS robust-d-SNI
Non-completeness + more randoms

Generalization for any d
Let s be the number of shares (s ≥ 4); any generalized CMS
scheme can become robust-(s − 1)-SNI by adding s · (b s2c − 1)
randoms to the refresh layer such that each pair of adjacent cones
shares b s2c − 1 of them
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Domain Oriented Masking

DOM5 multiplication scheme

I d-probing security by using d(d+1)
2 random bits

I s = d + 1 is the number of shares, ai and bi are the inputs’
shares and ci are the output’s shares

I DOM with independent shares is called DOM-indep

I Terms in the DOM-indep equations are inner-domain terms
(aibi ) and cross-domain (aibj); cross-domain are masked by
random bits

I Before the compression phase, partial solutions are saved in
registers

5H. Gross et Al., Domain-Oriented Masking: Compact Masked Hardware
Implementations with Arbitrary Protection Order.
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DOM-indep and probing security

Problem
This scheme is not robust-d-SNI, for any d 6

Example

⊕ a1
b0

a1b1

a0
b0

⊕
r0

a0 b1

⊕
c0

⊕

c1

6T. Moos et Al., Glitch-Resistant Masking Revisited
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DOM-indep and probing security

Example
The Compact correlation matrix highlights that the scheme with
s = 2 is robust-1-probing secure but not robust-1-SNI

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ρ
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 β
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 α

ωi ωo
0 0 1
0 1 1 1 1 1 1 1 1 1 1 1

. . . . . .
4 4 1 1 1 1 1
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DOM-indep robust-d-SNI
Output registers7

Example
The Compact correlation matrix highlights that, with an output
register, the scheme with s = 2 is robust-1-SNI

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ρ
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 β
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 α

ωi ωo
0 0 1
0 1 1 1 1 1
0 2 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1

. . . . . .
6 2 1 1 1 1 1

7S. Faust et Al., Composable Masking Schemes in the Presence of Physical
Defaults and the Robust Probing Model
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Trade off randomness / registers

To ensure the robust-d-SNI:

I CMS: addition of random bits

I DOM-indep: addition of output
registers

Example
With d = 3:

register
random (per bit)

CMS +4 +0

DOM +0 +4

Ratio of random usage

2
(
s2

2 +
(
s
2 + 1

)
s
)

(s − 1) s
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Complexity of the proposed approach

Complexity problem
With the increasing of the variables, the number of elements in the
Walsh matrices becomes too large → its complete computation
becomes impracticable

Solution

I Store only the rows that refer to single outputs and probes

I Compute on-demand the remaining rows by using convolution

I Exploit the sparsity of the correlation matrices

34 / 39
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Scalability of the proposed approach
Security verification of χ of Keccak with DOM-indep

1 2 3 4 5
d

1 ms

1 sec

1 hour

1 day

1 week
1 month

tim
e

DOM for Keccak
DOM for Kecak, maskVerif
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Scalability of the proposed approach
Estimated time to compute the compact correlation matrix for gadgets

1 2 3 4 5
d

1 ms

1 sec

1 hour

1 day

1 week
1 month

tim
e

ISW
CMS
modified CMS
DOM
DOM for Keccak
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Conclusion

I Alternative view of robust probing security

I New mathematical framework and approach, based on the
Walsh matrices

I Classification of extended probes, to deal with gadget
composability

I Applications to multiplication gadgets:
I improvement of CMS
I analysis of DOM-indep
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Future Works

I More efficient computations, with the use of sparse matrices
properties

I Inquire the minimum number of randoms to achieve
robust-d-SNI

I Investigate the ring structure of multiplication gadgets: more
efficient refresh layers?
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THANK YOU FOR THE
ATTENTION

Any question?

You can also write to me at the address
maria.molteni@unimi.it
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