On the spectral features of robust probing security

Maria Chiara Molteni¹ Vittorio Zaccaria²

¹Dipartimento di Informatica "Giovanni Degli Antoni" Università degli Studi di Milano

²Department of Electronics, Information and Bioengineering Politecnico di Milano

Cryptographic Hardware and Embedded Systems (CHES) September 2020 Context

THEORETICAL CONTRIBUTION

APPLICATIONS

Complexity

CONCLUSION

•000000

•000000

•000000

d-PROBING SECURITY

PROBING ATTACK

The attacker places a *probe* on a wire of interest and recover some information about the value carried along that wire during computation.

d-PROBING SECURITY

DEFINITION

A gadget is d-probing secure if, given at most d probes, it is impossible to derive information about the secret values, also encoded in the masks/shares.

EXAMPLE

x secret, x_0 and x_1 shares such that $x = x_0 + x_1$

d-Non Interference security

DEFINITION

A gadget is d-**NI** if, given at most d probes, it is possible to derive information about at most d masks/shares of any secret value.

EXAMPLE

x secret, x_0 and x_1 shares such that $x = x_0 + x_1$

d-Strong Non Interference security

DEFINITION

A gadget is d-SNI if, given at most d_1 internal probes and d_2 output probes such that $d_1 + d_2 = d$, it is possible to derive information about at most d_1 masks/shares of any secret value.

EXAMPLE

x secret, x_0 and x_1 shares such that $x = x_0 + x_1$

NOT 1-SNI

d-Strong Non Interference security

DEFINITION

A gadget is d-SNI if, given at most d_1 internal probes and d_2 output probes such that $d_1 + d_2 = d$, it is possible to derive information about at most d_1 secret values, also encoded in the masks/shares.

EXAMPLE

x secret, x_0 and x_1 shares such that $x = x_0 + x_1$

1-SNI

Internal probe x₀ x₁ r₀ r₁

ROBUST PROBING SECURITY

EXTENDED PROBES

Probes that model the leakage situation in presence of some physical defaults.

Types od Extended probes¹

- Modelling glitches, i.e. combinatorial recombination
- Modelling transitions, i.e. memory recombinations
- ▶ Modelling couplings, i.e.routing recombinations

¹S. Faust et Al., Composable Masking Schemes in the Presence of Physical Defaults and the Robust Probing Model

MOTIVATION: MATHEMATICAL IMPROVEMENT

RESEARCH STANDPOINT

- Previous works: instance-by-instance approaches or tools (maskVerif²)
- Our work: new conceptual tools to derive general solutions and rules

DEVELOPMENT STANDPOINT

- Previous works: efficient approaches might need validation
- Our work: further verification approach based on the exact theory of Boolean Functions

²G. Barthe et Al., maskVerif: automated analysis of software and hardware higher-order masked implementations. ← □ ▶

OUR CONTRIBUTION

EXPLOITED TOOLS

- ► Boolean Function Theory
 - Walsh Matrices
 - Tensor Product
 - String Diagrams

NEW CONTRIBUTIONS

- Vulnerability Profile
- Composition Rules
- Classification of Extended Probes

Our method

Walsh Matrix

► Given a Boolean function *f* , with *m* inputs and *n* outputs, any element of its Walsh matrix is:

$$\hat{f}_{\omega,\alpha} = \sum_{x \in \mathbb{F}_2^n} (-1)^{\omega^T f(x) \oplus \alpha^T x}$$

- ▶ Matrix that describes the results profile of a Boolean Function
- To any matrix corresponds only one function and viceversa
- ▶ Its dimension is $2^n \times 2^m$

CORRELATION MATRIX

Matrix computed from the Walsh matrix:

$$\widetilde{W}_f(\omega,lpha):=(\hat{f}_{\omega,lpha}
eq0)$$
 , and the second second

EXAMPLE

$$f(a_0, a_1, r_0, r_1) = \begin{bmatrix} o_0 \\ o_1 \\ p_0 \end{bmatrix} = \begin{bmatrix} a_0 + r_0 + r_1 \\ a_1 + r_0 + r_1 \\ a_1 + r_0 \end{bmatrix}$$

Correlation matrix W_f :

γ_{P0}	γ_{o_1}	γ_{o_0}									
Ô	0	o	1								
0	0	1								1	
0	1	0									1
0	1	1		1							
1	0	0				1					
1	0	1							1		
1	1	0					1				
1	1	1			1						

Our method

Compact representation of \widetilde{W}_f

Reshaping of the Correlation matrix W_f , by compacting the spectral coefficients, taking into account only the number of shares of each original variable.

EXAMPLE

 $\alpha, \rho, \ \omega$ and ϕ are called the *compact spectral indexes* of the input, randoms, output and probe respectively

VULNERABILITY PROFILE

VULNERABILITY PROFILE OF A FUNCTION

Tensor product of the regular Walsh transform of a function f and of its probes f_{π} , multiplied by W_{δ}

Function f $\mathbb{O}_f \longleftarrow W_f$ \mathbb{I}_f W_{δ}

Composition $h \bullet k$

CLASSIFICATION

1. Pure Probe (\circ): placed on a wire computing w(x), it gives information about all the inputs of the function:

$$w_{\pi}(x) = \bigwedge_{x_i \in \text{support}(w)} x_i$$

CLASSIFICATION OF THE EXTENDED PROBES

CLASSIFICATION

2. Composed Probe (∞): placed on a wire computing $w(x) = w^a \cdot w^b$, it gives information about the values:

$$w_k(x) = (w_\pi^a \bullet w^b)(x)$$

where $w^b(x)$ is different from the identity.

CLASSIFICATION OF THE EXTENDED PROBES

CLASSIFICATION

3. Output Probe (\epsilon): placed on an actual output of the function; during composition of functions, it could produce new probes

CLASSIFICATION OF THE EXTENDED PROBES

CLASSIFICATION

4. *Internal Probe*: placed on an internal wire; it couldn't produce new probes when composing functions

APPLICATIONS

APPLICATIONS TO MULTIPLICATION GADGETS

- ► CMS: analysis and improvement
- ► DOM-indep: analysis

Consolidating Masking Scheme

CMS³ MULTIPLICATION SCHEME

- ► Evolution of the ISW scheme, meant to provide *d*-probing security and protection against glitches
- ▶ s = d + 1 is the number of shares, a_i and b_i are the inputs' shares and c_i are the output's shares
- Every c_i is computed in a *logic cone*, which involves s pairs (a_i, b_h)
- Adjacent cones share only a random bit
- ▶ Internal bits within a cone preserve uniformity
- Three layers: non-linear (\mathcal{N}) , refresh (\mathcal{R}) and compression (\mathcal{C}) , the latter two separated by a register

CMS AND PROBING SECURITY

PROBLEM

This scheme is not robust-d-probing secure for $d \ge 3^4$

⁴T. Moos et Al., Glitch-Resistant Masking Revisited Al., Glitch-Resistant Masking Revisited

Analysis of the CMS probing security

THROUGH OUR CLASSIFICATION OF EXTENDED PROBES

Types of probes

- ▶ **Pure internal probes** at the output of \mathcal{R} : information about $\{a_i, b_i, r_{h_1}, r_{h_2}\}$
- ▶ **Composed output probes** at the output of C: information about d values computed as $a_i \cdot b_j + r_{h_1} + r_{h_2}$

Fail of CMS, for $d \ge 3$

	<i>b</i> ₀	b_1	<i>b</i> ₂	 b_d
a ₀	<i>c</i> ₀	<i>c</i> 0	c ₀	 <i>c</i> 0
a ₁	c_1	c ₁	c ₁	 c ₁
a ₂	c ₂	c ₂	c ₂	 c ₂
:				
a _d	c _d	c _d	c _d	 c _d

Secret *b* placing only one composed probe and two pure probes

Analysis of the CMS probing security

THROUGH OUR CLASSIFICATION OF EXTENDED PROBES

EXAMPLE

	b_0	b_1	b_2	<i>b</i> ₃
<i>a</i> ₀	<i>c</i> ₀	<i>c</i> ₀	<i>c</i> ₀	<i>c</i> ₀
a_1	c_1	c_1	c_1	<i>c</i> ₁
a ₂	<i>c</i> ₂	<i>c</i> ₂	<i>c</i> ₂	<i>c</i> ₂
a ₃	<i>c</i> ₃	<i>c</i> ₃	<i>c</i> ₃	<i>c</i> ₃

- ► Output composed probe *c*₀
- ► Internal pure probes to recover r_0 and r_4

1ST SOLUTION: CMS ROBUST-d-PROBING SECURE

Non-completeness

	b_0	b_1	b_2	<i>b</i> ₃
a_0	<i>c</i> ₂	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₃
a_1	<i>c</i> ₀	<i>c</i> ₁	<i>c</i> ₀	<i>c</i> ₁
-a ₂	<i>c</i> ₂	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₃
a_3	<i>c</i> ₀	<i>c</i> ₁	<i>c</i> ₀	<i>c</i> ₁

► No information from any combination of 3 probes

1ST SOLUTION: CMS ROBUST-d-PROBING SECURE

Non-completeness

EXAMPLE

The Compact correlation matrix highlights that, in our first solution, the scheme with s=4 is robust-3-probing secure but not robust-3-SNI

2ND SOLUTION: CMS ROBUST-d-SNI

Non-completeness + more randoms

EXAMPLE

2ND SOLUTION: CMS ROBUST-d-SNI

Non-completeness + more randoms

EXAMPLE

The Compact correlation matrix highlights that, in our second solution, the scheme with s=4 is robust-3-SNI

Non-completeness + more randoms

GENERALIZATION FOR ANY d

Let s be the number of shares $(s \ge 4)$; any generalized CMS scheme can become robust-(s-1)-SNI by adding $s \cdot (\lfloor \frac{s}{2} \rfloor - 1)$ randoms to the refresh layer such that each pair of adjacent cones shares $\lfloor \frac{s}{2} \rfloor - 1$ of them

Domain Oriented Masking

DOM⁵ MULTIPLICATION SCHEME

- ▶ d-probing security by using $\frac{d(d+1)}{2}$ random bits
- ▶ s = d + 1 is the number of shares, a_i and b_i are the inputs' shares and c_i are the output's shares
- DOM with independent shares is called DOM-indep
- ▶ Terms in the DOM-indep equations are inner-domain terms (a_ib_i) and cross-domain (a_ib_j) ; cross-domain are masked by random bits
- Before the compression phase, partial solutions are saved in registers

⁵H. Gross et Al., *Domain-Oriented Masking: Compact Masked Hardware Implementations with Arbitrary Protection Order.*

DOM-INDEP AND PROBING SECURITY

PROBLEM

This scheme is not robust-d-SNI, for any d^{6}

EXAMPLE

DOM-INDEP AND PROBING SECURITY

EXAMPLE

The Compact correlation matrix highlights that the scheme with s=2 is robust-1-probing secure but not robust-1-SNI

DOM-INDEP ROBUST-d-SNI

OUTPUT REGISTERS⁷

EXAMPLE

The Compact correlation matrix highlights that, with an output register, the scheme with s=2 is robust-1-SNI

TRADE OFF RANDOMNESS / REGISTERS

To ensure the robust-*d*-SNI:

- CMS: addition of random bits
- DOM-indep: addition of output registers

To ensure the robust-*d*-SNI:

- CMS: addition of random bits
- DOM-indep: addition of output registers

EXAMPLE

With d = 3:

vvicii a	_ J.	register
	random	(per bit)
CMS	+4	+0
DOM	+0	+4

000000000000000

TRADE OFF RANDOMNESS / REGISTERS

To ensure the robust-*d*-SNI:

- CMS: addition of random bits
- ▶ DOM-indep: addition of output registers

EXAMPLE

With d = 3:

vvicii a	_ J.	register
	random	(per bit)
CMS	+4	+0
DOM	+0	+4

RATIO OF RANDOM USAGE

$$\frac{2\left(\frac{s^2}{2} + \left(\frac{s}{2} + 1\right) s\right)}{(s-1) s}$$

Complexity of the proposed approach

COMPLEXITY PROBLEM

With the increasing of the variables, the number of elements in the Walsh matrices becomes too large \rightarrow its complete computation becomes impracticable

Complexity of the proposed approach

COMPLEXITY PROBLEM

With the increasing of the variables, the number of elements in the Walsh matrices becomes too large \rightarrow its complete computation becomes impracticable

SOLUTION

▶ Store only the rows that refer to single outputs and probes

Complexity of the proposed approach

COMPLEXITY PROBLEM

With the increasing of the variables, the number of elements in the Walsh matrices becomes too large \rightarrow its complete computation becomes impracticable

SOLUTION

- Store only the rows that refer to single outputs and probes
- Compute on-demand the remaining rows by using convolution

COMPLEXITY PROBLEM

With the increasing of the variables, the number of elements in the Walsh matrices becomes too large \rightarrow its complete computation becomes impracticable

SOLUTION

- ▶ Store only the rows that refer to single outputs and probes
- ► Compute on-demand the remaining rows by using convolution
- Exploit the sparsity of the correlation matrices

SCALABILITY OF THE PROPOSED APPROACH

Security verification of χ of Keccak with DOM-indep

SCALABILITY OF THE PROPOSED APPROACH

ESTIMATED TIME TO COMPUTE THE COMPACT CORRELATION MATRIX FOR GADGETS

CONCLUSION

► Alternative view of robust probing security

- ► Alternative view of robust probing security
- New mathematical framework and approach, based on the Walsh matrices

- ► Alternative view of robust probing security
- New mathematical framework and approach, based on the Walsh matrices
- Classification of extended probes, to deal with gadget composability

- ► Alternative view of robust probing security
- New mathematical framework and approach, based on the Walsh matrices
- Classification of extended probes, to deal with gadget composability
- Applications to multiplication gadgets:
 - improvement of CMS
 - analysis of DOM-indep

More efficient computations, with the use of sparse matrices properties

- ► More efficient computations, with the use of sparse matrices properties
- Inquire the minimum number of randoms to achieve robust-d-SNI

- More efficient computations, with the use of sparse matrices properties
- Inquire the minimum number of randoms to achieve robust-d-SNI
- Investigate the ring structure of multiplication gadgets: more efficient refresh layers?

THANK YOU FOR THE ATTENTION

Any question?

You can also write to me at the address maria molteni@unimi.it