Plaintext: A Missing Feature for Enhancing the Power of Deep Learning in Side-Channel Analysis?
Breaking multiple layers of side-channel countermeasures

Anh-Tuan Hoang, Neil Hanley and Máire O’Neill

CHES 2020: 14-18 September 2020
Outline

• Background and ASCAD database
• Attack model
• Plaintext feature in SCA
• Proposed CNNP models: hyperparameter and models
• Experimental conditions and reference models
• CNNP models evaluation
• Discussion
Side-channel Analysis (SCA)

• When an electronic device operates, it can leak data through side-channels, such as via power consumption, EM fields, timing.
• Even though the cryptographic algorithm is secure in theory, secret information can be revealed from side-channel information.
• SCA-based attacks like DPA and CPA are well known since 1996.
• More recently, shown that machine learning can learn from side-channel information to reveal the secret key of a cryptographic device.
Convolutional Neural Network (CNN)

• Can learn from unaligned data
• Includes a number of layers:
 ➢ **Convolutional layers** based on a number of filters to detect features of the data
 ➢ **Pooling layer** is used to reduce size of the parameters to be learned
 ➢ **Fully connected layer** combines all previous features (nodes) together
 ➢ **Dropout layer** is used to prevent over fitting by randomly removing a number of detected features (nodes)
• Activation functions
 ➢ **Rectified Linear units** introduce non-linear computation into the output of a neuron
 ➢ **Softmax** is used to handle the final classification
Evaluated AES implementation with SCA countermeasure (from ASCAD Database)

https://www.data.gouv.fr/en/datasets/ascad/

- Software implementation on 8-bit AVR ATmega 8515 microprocessor
- Two masks are used for
 - Plaintext
 \[\overline{p_i} = p_i \oplus m_i \]
 - SBox
 \[\text{SBox}(x) = \text{SBox}(x \oplus m_{i,in}) \oplus m_{i,out} \]
ASCAD database

- Targeted the third sub-key, which is protected by two kinds of masking
- Fixed key dataset
 - Same key used for learning and testing
 - Trace length: 700 points
 - Training group: 50,000 traces
 - Testing group: 10,000 traces
- Variable key dataset
 - Random keys used in training data group and fixed key used in testing data group
 - Trace length: 1,400 points
 - Training group: 200,000 traces
 - Testing group: 100,000 traces
- Synchronized, desynchronized datasets are available
Attack model

- Attack on the output of the 3rd SBox in the 1st round of AES
- Classification uses the output value of SBox (256 classes)

 $\text{SBox}(p_2 \oplus k_2)$
Plaintext feature in SCA

• Inputs that effect a power trace:
 ➢ Plaintext (or ciphertext)
 ➢ Masks
 ➢ Key
• Providing plaintext or ciphertext reduces the number of unknown factors
• Plaintext feature is added using two methods: integer and one-hot encoding, where the feature is shown by a single number or a sparse vector
Proposed CNN model and hyperparameter selection

• Convolutional filter kernel sizes range from 3 to 19

• MaxPooling is used for local point of interest selection

• Convolutional layers have 64, 128, 256 and 512 filters

• Five fully connected layers of 1024 and 512 neurons each

• Activation function: ReLu
CNN with Plaintext extension (CNNP) – Model 1

- Three convolutional layers
- The number of convolutional filters reduces from 512 to 128
- Maxpooling is used for feature finding
- Finding features are extended with Plaintext
- Five fully-connected layers are used to compile the features extracted from the previous layers
- Over-fitting is prevented by using dropout
CNN with Plaintext extension (CNNP) – Model 2

- Four convolutional layers used
- The number of convolutional filters increases from 64 to 512
- Plaintext feature is extended by connecting to the detected features
- Five fully-connected layers are used
CNNP model extension

• Combination of CNNP models 1 and 2 using transfer learning
• Two fully-connected layers are used to compile the features extracted from each CNNP model before combination
• Three other fully-connected layers are used to combine the combination features
• Feature combination layer must be located after the fully-connected layers of the two CNNP sub-models
Attackers knowledge & experimental conditions

• Assumption about attacker:
 ➢ Knows plaintext / ciphertext
 ➢ Aware of SCA countermeasure but not aware of the detailed design and random mask value
 ➢ Can profile keys on the implementation

• Hypothesis keys are ranked using Maximum likelihood score

• Training is performed on VMware hosted Ubuntu with access to virtual NVIDIA GRID M60-8Q and M40-4Q GPUs.
SCA reference models

We compare our profiling results with 4 publicly available models (ASCAD database)

• Template attack

• Multilayer perceptron model with 5 hidden layers, 50 neurons each

• Multilayer perceptron model with 5 hidden layer - 700 neurons in first layer & 200 neurons in subsequent layers

• VGG-16 based CNN model
VGG16 Vs CNNP Models

In comparison to the VGG-16 based model, the CNNP model:

• is deeper but narrower
• has less convolutional layers
• utilizes smaller convolutional filter kernel size
• uses MaxPooling instead of AveragePooling
• includes plaintext as an additional feature
Evaluation of CNNP models on ASCAD fixed key dataset

- CNNP model can reveal the secret key within 2 traces
- CNNP models relies on the bijection $S[(.) \oplus K]$ to reveal K without using traces
- Plaintext feature encoded by one-hot encoding achieves better result than with integer encoding
Evaluation of CNN models on ASCAD variable key synchronized dataset

- An additional reference model which refers to plaintext as a feature is included
- Proposed deep but narrow CNN model is better than all other models in revealing the secret key
- CNNP model on variable key relies on both plaintext and traces to learn
Comparison of CNNP models on ASCAD synchronized dataset with variable key

- Both CNNP model 1 and 2 are better than VGG16 and can achieve rank 3 and 5 for the 3rd subkey with 40 traces.
- Smaller convolutional filter kernel size (e.g. size 3) is more efficient than larger one (e.g. size 5).
- Combination of the 2 models with transfer learning achieves the best result.
Discussion

• Effect of convolutional layers and filter sizes
 ➢ Help to find the feature regardless of misalignment in the traces.
 ➢ Small convolutional kernel size works better than larger kernel sizes

• Effect of Plaintext feature extension and location
 ➢ Plaintext feature extension reduces the number of unknown factors that contribute to features in the traces
 ➢ Location of plaintext feature has less effect on the result

• Effect of network structure
 ➢ Deep but narrow network shows better attacking result than wide but shallow ones
Thank you