Rejection Sampling Schemes for Extracting Uniform Distribution from Biased PUFs

<u>Rei Ueno</u>, Kohei Kazumori, and Naofumi Homma Tohoku University

Background

- Physically unclonable functions (PUFs) play essential role for constructing secure and trustable systems
 - Generate hardware-intrinsic random number like fingerprint
 - Exploit process variations for physical unclonability and tamper evidence
- Major applications of PUF
 - Entity authentication (Strong PUF)
 - Cryptographic key generation (Weak PUF)

Even for <u>same input</u> and <u>same circuit construction</u>, PUF responses vary due to process variation (i.e., $R_1 \neq R_2 \neq \cdots$)

PUF-based key generation

 Fuzzy extractor (FE) is commonly used for reconstructing enrolled key from noisy PUF response

- Helper data is stored in common nonvolatile memory (NVM)
 - NVM is usually non-tamper resistant, and helper data is considered public
 - We should consider conditional entropy for key generation
 - A $\sigma\text{-bit}$ key generation is realized only if $\,\mathbb{H}(S|W) > \sigma\,$

Problem of PUF bias: Entropy leakage

- If PUF response is unbiased, $\mathbb{H}(S|W) = \mathbb{H}(S)$ (i.e., seed length)
- But $\mathbb{H}(S|W)$ significantly decreases with PUF bias increase
 - $\mathbb{H}(S|W) = \mathbb{H}(S) \mathbb{I}(S;W)$ Entropy leakage
 - If PUF is biased, random seed should be set longer than σ such that $\mathbb{H}(S|W) > \sigma$
 - But required PUF size rapidly grows with PUF bias, especially when $p_1 > 0.58$

Channel diagram of FE [HO17]

PUF size required for reliable 128-bit key generation (Values are from [DGV+16])

PUF bias p ₁	0.54	0.58	0.62	0.66
Bit-error rate	0.100	0.098	0.096	0.092
PUF size	1,530	2,550	5,100	13,005

Debiasing

- Extract unbiased bit string from biased PUF response
 - Realize secure key generation even from PUFs with nonnegligible biases
 - Efficiency has been evaluated through PUF size required for reliable 128-bit key gen.

- Example of debiasing: von Neumann corrector (VNC)
 - Values of 1 and 0 are extracted with an identical probability of p_1p_0
 - Debiasing data d is used for reproducing z at reconstruction

Conventional debiasing-based FEs

- Various debiasing-based FEs have been developed for improving efficiency
 - Efficient FE reduces PUF and NVM sizes
 - How far can we go?

[HO17] Coset coding (CC)-based FE, FE is modeled as wire-tap channel

This work

- Acceptance-or-Rejection (AR)-based FE: New debiasing scheme based on rejection sampling and FE construction
 - Extract uniform distribution with highest efficiency among conventional FEs
 - Implemented with solely an RNG at enrollment, and no critical additional operation is required at reconstruction performed on client device
 - First FE which can tolerate local biases depending on cell addresses (for example, found in some SRAM PUFs)
 - Extended to ternary PUF response for improved efficiency (see our paper)
- Performance of proposed FE is evaluated through simulation of 128-bit key generation in comparison with conventional FEs
 - AR-based FE achieves smallest PUF and/or NVM sizes (i.e., hardware cost) for various PUFs
 - At most 55% and 72% smaller PUF and/or NVM sizes than counterparts

Bias models

- Global bias model
 - All bits in PUF response have an identical bias of p_1 (with corresponding p_0)
 - All conventional debiasing scheme employed global bias model
- Cell-wise bias model (or local bias model)
 - Each bit has unique bias depending on cell address *i*
 - Expected value of biases are considered equal to global bias (i.e., $\mathbb{E}_i[p_{1,i}] = p_1$)

Typical example of cell-wise-based PUF

Rejection sampling

- Method for deriving target distribution from proposal one
 - Target distribution: Distribution which is needed, but not directly available
 - Proposal distribution: Easily available distribution

Step (1): Obtain sample *a* from $p_{prop}(x)$

Step (2): Draw random number bfrom $[0, p_{prop}(a)]$

Step (3): Accept the sample if $b < p_{tar}(a)$; otherwise, reject it

Overview of rejection sampling

- Application to PUF debiasing
 - Target distribution: Uniform distribution
 - Proposal distribution: PUF response (i.e., $p_{1,i}$ -biased Bernoulli distribution) $_{9}$

Extraction of uniform distribution from biased PUFs

- Key idea: Bit-wise rejection sampling
 - Rejection sampling is applied to *i*-th cell with biases $p_{1,i}$, $p_{0,i}$ for all *i*
 - Expected length of debiased bit string is longer than conventional schemes

Proposed scheme: AR-based FE

• Reproducible rejection sampling (RRS) and accepted cell extraction (ACE) operations are applied to PUF response

Enrollment of AR-based FE

Reconstruction of AR-based FE

- RRS operation generates debiased bit string and accepted cell location (ACL) data d
 - Naïve rejection sampling is not reproducible
 - ACL data enables us to reproduce debiased bits at ACL at reconstruction
 - We proved there is no entropy leakage from pair of helper and ACL data

RRS and ACE operations—Implementation

- RRS operation performs rejection sampling with reproducibility
 - First generate ACL data *d*, and then extract debiased bit string
 - Implemented using an RNG and bit-parallel operations in enrollment server

- ACE operation extracts bit value of cells indicated by ACL data
 - No additional computation is required in reconstruction

AR-based FE—Features

- Security
 - No entropy leakage, and σ -bit random seed realizes σ -bit key generation
- Efficiency
 - Retained entropy via debiasing is given by $2mp_0$ (for $p_1 \ge p_0$) from *m*-bit PUF VNC [MLSW15]: $2mp_1p_0$, (Simplest one), MD [AWS017]: m/μ ($\mu \ge 3$ for most cases), and TD [S17]: $2mp_0 2$
- Reliability
 - AR-based FE may fail enrollment if length of extracted bit string is insufficient
 - PUF size should be determined such that enrollment failure rate is smaller than threshold
 - Enrollment failure rate is feasibly calculated similarly to VNC-based FEs
 - RRS and ACE operations have no impact on bit-error rate of extracted bits
 - ECC can be designed in the same way as conventional FEs
- Implementation aspects
 - RNG and bit-parallel operation at enrollment are required as main overhead
 - Reconstruction require no additional computationally-critical operations

Performance evaluation

- Simulate 128-bit key generation to evaluate PUF and NVM sizes (i.e., hardware cost) for various biases and bit-error rates
 - PUF bias: 0.58—0.90
 - Bit-error rate: 0.025-0.100
 - ECC: BCH-repetition concatenate code
 - BCH codes with length of 7, 15, 31, 63, 127, and 255 are considered
 - Enrollment and reconstruction failure rates are set less than 10⁻⁶
 - Compared to VNC-, MD-, and BM-based FEs herein [MLSW15, AWSO17, USH19]
 - See our paper for comparison with other conventional FEs

[MLSW15] R. Maes et al., Secure key generation from biased PUFs, *CHES 2015*.

[AWSO17] A. Aysu et al., A new maskless debiasing method for lightweight physical unclonable function, *HOST 2017*. [USH19] R. Ueno et al., Tackling biased PUFs through biased masking: A debiasing method for efficient fuzzy extractor, *IEEE TC*, 2019.

Evaluation result

- AR-based FE achieves highest efficiency for most biases and bit-error rates
 - At most 55% smaller PUF size
 - NVM size is basically consistent with PUF size

Concluding remarks

- We present AR-based FE which extracts uniform distribution from biased PUFs based on rejection sampling
 - Implemented using RNG and bit-parallel operations on enrollment server
 - Client device with PUF requires no computational overhead
 - First debiasing scheme applicable to PUFs with local biases
 - Simulation of 128-bit key generation shows that AR-based FE has higher efficiency for most biases and bit-error rates than conventional FEs, and achieves at most 55% and/or 72% smaller PUF and NVM sizes respectively
 - Extended to ternary PUF response for improved efficiency (see our paper)
 - More efficient for many PUFs than counterparts (i.e., ternary VNC-based FEs and C-IBS)
- Future works
 - Real-world implementation and evaluation of key generation system based on AR-based FE
 - Extension of AR-based FE for secure reuse of PUF