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Background
• Physically unclonable functions (PUFs) play essential role for 
constructing secure and trustable systems
• Generate hardware-intrinsic random number like fingerprint
• Exploit process variations for physical unclonability and tamper evidence

• Major applications of PUF
• Entity authentication (Strong PUF)
• Cryptographic key generation (Weak PUF)
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PUF-based key generation
• Fuzzy extractor (FE) is commonly used for reconstructing 
enrolled key from noisy PUF response

• Helper data is stored in common nonvolatile memory (NVM)
• NVM is usually non-tamper resistant, and helper data is considered public
• We should consider conditional entropy for key generation

• A s-bit key generation is realized only if 
3

x

PUF

KDF

RNG

key

Helper data
s wc

k

ECC
encode

PUF

KDF keyHelper data
(Noisy)

ECC
decode

x

w c s k

́

́

Enrollment Reconstruction
(key derivation function)



Problem of PUF bias: Entropy leakage
• If PUF response is unbiased,                       (i.e., seed length)
• But             significantly decreases with PUF bias increase

• Entropy leakage
• If PUF is biased, random seed should be set longer than s such that

• But required PUF size rapidly grows with PUF bias, especially when p1 > 0.58
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Debiasing
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• Extract unbiased bit string from
biased PUF response
• Realize secure key generation even from

PUFs with nonnegligible biases
• Efficiency has been evaluated through PUF

size required for reliable 128-bit key gen.
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• Example of debiasing: von Neumann corrector (VNC)
• Values of 1 and 0 are extracted with an identical probability of p1p0
• Debiasing data d is used for reproducing z at reconstruction



Conventional debiasing-based FEs

• Various debiasing-based FEs have been
developed for improving efficiency
• Efficient FE reduces PUF and NVM sizes
• How far can we go?
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This work
• Acceptance-or-Rejection (AR)-based FE: New debiasing 
scheme based on rejection sampling and FE construction
• Extract uniform distribution with highest efficiency among conventional FEs
• Implemented with solely an RNG at enrollment, and no critical additional 

operation is required at reconstruction performed on client device
• First FE which can tolerate local biases depending on cell addresses

(for example, found in some SRAM PUFs)
• Extended to ternary PUF response for improved efficiency (see our paper)

• Performance of proposed FE is evaluated through simulation 
of 128-bit key generation in comparison with conventional FEs
• AR-based FE achieves smallest PUF and/or NVM sizes (i.e., hardware cost) 

for various PUFs
• At most 55% and 72% smaller PUF and/or NVM sizes than counterparts
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Bias models
• Global bias model
• All bits in PUF response have an identical bias of p1 (with corresponding p0)
• All conventional debiasing scheme employed global bias model

• Cell-wise bias model (or local bias model)
• Each bit has unique bias depending on cell address i
• Expected value of biases are considered equal to global bias (i.e.,                 )
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Rejection sampling
• Method for deriving target distribution from proposal one

• Target distribution: Distribution which is needed, but not directly available
• Proposal distribution: Easily available distribution

• Application to PUF debiasing
• Target distribution: Uniform distribution
• Proposal distribution: PUF response (i.e., p1,i-biased Bernoulli distribution) 9
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• Key idea: Bit-wise rejection sampling
• Rejection sampling is applied to i-th cell with biases p1,i, p0,i for all i
• Expected length of debiased bit string is longer than conventional schemes

Extraction of uniform distribution from biased PUFs
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Proposed scheme: AR-based FE
• Reproducible rejection sampling (RRS) and accepted cell 
extraction (ACE) operations are applied to PUF response

• RRS operation generates debiased bit string and accepted 
cell location (ACL) data d
• Naïve rejection sampling is not reproducible
• ACL data enables us to reproduce debiased bits at ACL at reconstruction
• We proved there is no entropy leakage from pair of helper and ACL data  11
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RRS and ACE operations̶Implementation
• RRS operation performs rejection sampling with reproducibility

• First generate ACL data d, and then extract debiased bit string
• Implemented using an RNG and bit-parallel operations in enrollment server

• ACE operation extracts bit value of cells indicated by ACL data
• No additional computation is required in reconstruction 12
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AR-based FE̶Features
• Security
• No entropy leakage, and s-bit random seed realizes s-bit key generation

• Efficiency
• Retained entropy via debiasing is given by 2mp0 (for p1 ≥ p0) from m-bit PUF

VNC [MLSW15]: 2mp1p0, (Simplest one), MD [AWSO17]: m/µ (µ ≥ 3 for most cases), and TD [S17]: 2mp0 – 2

• Reliability
• AR-based FE may fail enrollment if length of extracted bit string is insufficient

• PUF size should be determined such that enrollment failure rate is smaller than threshold
• Enrollment failure rate is feasibly calculated similarly to VNC-based FEs

• RRS and ACE operations have no impact on bit-error rate of extracted bits
• ECC can be designed in the same way as conventional FEs

• Implementation aspects
• RNG and bit-parallel operation at enrollment are required as main overhead
• Reconstruction require no additional computationally-critical operations 13



Performance evaluation
• Simulate 128-bit key generation to evaluate PUF and NVM 
sizes (i.e., hardware cost) for various biases and bit-error rates
• PUF bias: 0.58̶0.90
• Bit-error rate: 0.025̶0.100
• ECC: BCH-repetition concatenate code

• BCH codes with length of 7, 15, 31, 63, 127, and 255 are considered
• Enrollment and reconstruction failure rates are set less than 10-6

• Compared to VNC-, MD-, and BM-based FEs herein [MLSW15, AWSO17, USH19]
• See our paper for comparison with other conventional FEs
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Evaluation result

• AR-based FE achieves highest efficiency for most biases and 
bit-error rates
• At most 55% smaller PUF size
• NVM size is basically consistent with PUF size
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Concluding remarks
•We present AR-based FE which extracts uniform distribution 
from biased PUFs based on rejection sampling
• Implemented using RNG and bit-parallel operations on enrollment server

• Client device with PUF requires no computational overhead

• First debiasing scheme applicable to PUFs with local biases

• Simulation of 128-bit key generation shows that AR-based FE has higher 

efficiency for most biases and bit-error rates than conventional FEs, and 

achieves at most 55% and/or 72% smaller PUF and NVM sizes respectively

• Extended to ternary PUF response for improved efficiency (see our paper)

• More efficient for many PUFs than counterparts (i.e., ternary VNC-based FEs and C-IBS)

• Future works
• Real-world implementation and evaluation of key generation system

based on AR-based FE

• Extension of AR-based FE for secure reuse of PUF
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