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Motivation

Saber is (now) a round 3 finalist for the NIST PQC standardization process.

NIST [MAA+20] reported that
“SABER is one of the most promising KEM schemes to be considered for stan-
dardization at the end of the third round.”

Saber’s unique design choices

• Different implementation approaches from other lattice-based protocols

• Non-NTT based polynomial multipliers
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The Saber protocol [DKSRV18]
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Key Encapsulation Mechanism

Saber.KEM is obtained via the Fujisaki-Okamoto (FO) transform.
Implementation-wise, the FO consists mainly of SHA/SHAKE calls.
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Performance bottlenecks

The majority of computations involve

1. SHA/SHAKE

– 70/80% of computations in software
– Keccak is very fast in hardware
– High-speed implementation by the Keccak team
– Serialized SHA(KE) in Saber −→ one core

2. Computing polynomial multiplication

– The main focus of this work
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Polynomial multiplication in Saber
The main characteristics

• Module-LWR
– Different module ranks for different security levels
– All polynomials have degree 255

• Small secrets
– Secret polynomial coefficients in [−3, 3], [−4, 4] or [−5, 5]

• Power-of-2 moduli
– Multiplication modulo 213 or 210

– Free modular reduction
– No NTT
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Our polynomial multiplication approach
The alternatives to NTT

The Number Theoretic Transform (NTT) requires the modulus to be prime

In software: improved Toom-Cook ([BMKV20], also at CHES 2020)

In hardware:

• Toom-Cook/Karatsuba not
convenient because recursive

• High parallelism

• Ad-hoc solutions

⇒ Schoolbook algorithm
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The schoolbook algorithm
The alternatives to NTT

Algorithm: Schoolbook algorithm
acc(x)← 0
for i = 0; i < 256; i++ do

for j = 0; j < 256; j++ do
acc[ j] = acc[ j] + b[ j] · a[ i]

b = b · xmod 〈x256 + 1〉
return acc

Advantages

• Simple implementation

• High flexibility

• Great performance

negacyclic shift
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Multiply and ACcumulate (MAC) units
How to compute coefficient-wise operations

• Small secrets −→ bitshift & add multiplication

• Power-of-two moduli −→ no modular reduction

⇓
A MAC unit requires little area (50 LUTs)

We use 256 MACs in parallel

acc[i]

MAC

s[i] a[j]

1
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The polynomial multiplier
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A full polynomial multiplication can be computed in 256 cycles!
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The full architecture
An instruction-set coprocessor architecture

Advantages

• Modularity
⇓

• Generic framework
⇓

• Other protocols

• Programmability

Disadvantages

• No parallelism
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Design extendability

Unified architecture

• LightSaber

• Saber

• FireSaber

Performance/area trade-offs

• 512 multipliers

• ∼20% improvement in speed
acc[i]

MAC

s[i] a[j]

1 ⇒

acc[i]

s[i-1] a[j+1]s[i] a[j]

1

MAC
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Performance Results
Running on a Ultrascale+ XCZU9EG-2FFVB1156 FPGA

Polynomial
multiplication

Keccak
computations

Other
operations

Total cycles

Total time

Throughput

Key Generation

5,453
21.8 μμμs

45,872 op/s

Encapsulation

6,618
26.5 μμμs

37,776 op/s

Decapsulation

8,034
32.1 μμμs

31,118 op/s
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Area Results
Running on a Ultrascale+ XCZU9EG-2FFVB1156 FPGA

Total

%

LUTs

23,686
8.6 %

Flip flops

9,805
1.8 %

DSPs

0
0 %

BRAM Tiles

2
0.2 %

It is possible to fit 11 coprocessors, achieving a throughput of 504k / 416k / 342k op/s 12/15



Comparisons to other work

Implementation Platform Time in μs Frequency Area
Key Encps Decps (MHz) LUT FF DSP BRAM

Kyber [DFA+20] Virtex-7 - 17.1 23.3 245 14k 11k 8 14
NewHope [ZYC+20] Artix-7 40 62.5 24 200 6.8k 4.4k 2 8
FrodoKEM [HOKG18] Artix-7 45K 45K 47K 167 7.7K 3.5K 1 24
SIKE [MLRB20] Virtex-7∗ 8K 14K 15K 142 21K 14K 162 38

Saber [BMTK+20] Artix-7∗ 3K 4K 3K 125 7.4K 7.3K 28 2
Saber [DFAG19] UltraScale+∗ - 60 65 322 13K 12K 256 4
Saber [this work] UltraScale+ 21.8 26.5 32.1 250 24K 10K 0 2

∗: HW/SW codesign
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Future work

Other protocols

• Kyber and other lattice-based schemes

• Signature schemes?

Lightweight implementation

• Fewer multipliers

Side-channel resistance

• Masked implementation

• Handle small coefficients
14/15



Conclusion

A complete hardware architecture for Saber

• All three security levels: LightSaber, Saber and FireSaber

• Very high performance

• Still flexibile and with moderate area consumption

All code is available at https://github.com/sujoyetc/SABER_HW

Beyond Saber

• Generic framework for other protocols

• High performance from non-NTT multiplier

15/15
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