
High-speed Instruction-set Coprocessor for
Lattice-based Key Encapsulation Mechanisms:
Saber in Hardware

Sujoy Sinha Roy and Andrea Basso
CHES 2020

Motivation

Saber is (now) a round 3 finalist for the NIST PQC standardization process.

NIST [MAA+20] reported that
“SABER is one of the most promising KEM schemes to be considered for stan-
dardization at the end of the third round.”

Saber’s unique design choices

• Different implementation approaches from other lattice-based protocols

• Non-NTT based polynomial multipliers

1/15

The Saber protocol [DKSRV18]

Ke
y
Ge

ne
ra
tio

n
AAA = gen(seedA)
seedA← random()

s← small_vec()
bbb =

⌊︁
p
qAAA

T · s
⌉︁ seedA,b

Encryption

seedA,b
s′ ← small_vec()
AAA = gen(seedA)

b′b′b′ =
⌊︁
p
qAAA · s

′
⌉︁

cm =
⌊︁
T
pbbb

Ts′ + T
2m

⌉︁

De
cr
yp
tio

n b′, cm
v = b′b′b′Ts
m =

⌊︁
2
q(v −

p
T cm)

⌉︁

Key Encapsulation Mechanism

Saber.KEM is obtained via the Fujisaki-Okamoto (FO) transform.
Implementation-wise, the FO consists mainly of SHA/SHAKE calls.

2/15

The Saber protocol [DKSRV18]

Ke
y
Ge

ne
ra
tio

n
AAA = gen(seedA)
seedA← random()

s← small_vec()
bbb =

⌊︁
p
qAAA

T · s
⌉︁

Encryption

seedA,b
s′ ← small_vec()
AAA = gen(seedA)

b′b′b′ =
⌊︁
p
qAAA · s

′
⌉︁

cm =
⌊︁
T
pbbb

Ts′ + T
2m

⌉︁b′, cm

De
cr
yp
tio

n b′, cm
v = b′b′b′Ts
m =

⌊︁
2
q(v −

p
T cm)

⌉︁

Key Encapsulation Mechanism

Saber.KEM is obtained via the Fujisaki-Okamoto (FO) transform.
Implementation-wise, the FO consists mainly of SHA/SHAKE calls.

2/15

The Saber protocol [DKSRV18]

Ke
y
Ge

ne
ra
tio

n
AAA = gen(seedA)
seedA← random()

s← small_vec()
bbb =

⌊︁
p
qAAA

T · s
⌉︁

Encryption

seedA,b
s′ ← small_vec()
AAA = gen(seedA)

b′b′b′ =
⌊︁
p
qAAA · s

′
⌉︁

cm =
⌊︁
T
pbbb

Ts′ + T
2m

⌉︁

De
cr
yp
tio

n b′, cm
v = b′b′b′Ts
m =

⌊︁
2
q(v −

p
T cm)

⌉︁

Key Encapsulation Mechanism

Saber.KEM is obtained via the Fujisaki-Okamoto (FO) transform.
Implementation-wise, the FO consists mainly of SHA/SHAKE calls.

2/15

The Saber protocol [DKSRV18]

Ke
y
Ge

ne
ra
tio

n
AAA = gen(seedA)
seedA← random()

s← small_vec()
bbb =

⌊︁
p
qAAA

T · s
⌉︁

Encryption

seedA,b
s′ ← small_vec()
AAA = gen(seedA)

b′b′b′ =
⌊︁
p
qAAA · s

′
⌉︁

cm =
⌊︁
T
pbbb

Ts′ + T
2m

⌉︁

De
cr
yp
tio

n b′, cm
v = b′b′b′Ts
m =

⌊︁
2
q(v −

p
T cm)

⌉︁

Key Encapsulation Mechanism

Saber.KEM is obtained via the Fujisaki-Okamoto (FO) transform.
Implementation-wise, the FO consists mainly of SHA/SHAKE calls. 2/15

Performance bottlenecks

The majority of computations involve

1. SHA/SHAKE

– 70/80% of computations in software
– Keccak is very fast in hardware
– High-speed implementation by the Keccak team
– Serialized SHA(KE) in Saber −→ one core

2. Computing polynomial multiplication

– The main focus of this work

3/15

Performance bottlenecks

The majority of computations involve

1. SHA/SHAKE
– 70/80% of computations in software
– Keccak is very fast in hardware
– High-speed implementation by the Keccak team
– Serialized SHA(KE) in Saber −→ one core

2. Computing polynomial multiplication

– The main focus of this work

3/15

Performance bottlenecks

The majority of computations involve

1. SHA/SHAKE
– 70/80% of computations in software
– Keccak is very fast in hardware
– High-speed implementation by the Keccak team
– Serialized SHA(KE) in Saber −→ one core

2. Computing polynomial multiplication

– The main focus of this work

3/15

Performance bottlenecks

The majority of computations involve

1. SHA/SHAKE
– 70/80% of computations in software
– Keccak is very fast in hardware
– High-speed implementation by the Keccak team
– Serialized SHA(KE) in Saber −→ one core

2. Computing polynomial multiplication
– The main focus of this work

3/15

Polynomial multiplication in Saber
The main characteristics

• Module-LWR
– Different module ranks for different security levels
– All polynomials have degree 255

• Small secrets
– Secret polynomial coefficients in [−3, 3], [−4, 4] or [−5, 5]

• Power-of-2 moduli
– Multiplication modulo 213 or 210

– Free modular reduction
– No NTT

4/15

Our polynomial multiplication approach
The alternatives to NTT

The Number Theoretic Transform (NTT) requires the modulus to be prime

In software: improved Toom-Cook ([BMKV20], also at CHES 2020)

In hardware:

• Toom-Cook/Karatsuba not
convenient because recursive

• High parallelism

• Ad-hoc solutions

⇒ Schoolbook algorithm

5/15

Our polynomial multiplication approach
The alternatives to NTT

The Number Theoretic Transform (NTT) requires the modulus to be prime

In software: improved Toom-Cook ([BMKV20], also at CHES 2020)

In hardware:

• Toom-Cook/Karatsuba not
convenient because recursive

• High parallelism

• Ad-hoc solutions

⇒ Schoolbook algorithm

5/15

The schoolbook algorithm
The alternatives to NTT

Algorithm: Schoolbook algorithm
acc(x)← 0
for i = 0; i < 256; i++ do

for j = 0; j < 256; j++ do
acc[j] = acc[j] + b[j] · a[i]

b = b · xmod 〈x256 + 1〉
return acc

Advantages

• Simple implementation

• High flexibility

• Great performance

negacyclic shift

6/15

The schoolbook algorithm
The alternatives to NTT

Algorithm: Schoolbook algorithm
acc(x)← 0
for i = 0; i < 256; i++ do

for j = 0; j < 256; j++ do
acc[j] = acc[j] + b[j] · a[i]

b = b · xmod 〈x256 + 1〉
return acc

Advantages

• Simple implementation

• High flexibility

• Great performance

negacyclic shift

6/15

The schoolbook algorithm
The alternatives to NTT

Algorithm: Schoolbook algorithm
acc(x)← 0
for i = 0; i < 256; i++ do

for j = 0; j < 256; j++ do
acc[j] = acc[j] + b[j] · a[i]

b = b · xmod 〈x256 + 1〉
return acc

Advantages

• Simple implementation

• High flexibility

• Great performance

negacyclic shift

6/15

Multiply and ACcumulate (MAC) units
How to compute coefficient-wise operations

• Small secrets −→ bitshift & add multiplication

• Power-of-two moduli −→ no modular reduction

⇓
A MAC unit requires little area (50 LUTs)

We use 256 MACs in parallel

acc[i]

MAC

s[i] a[j]

1

7/15

Multiply and ACcumulate (MAC) units
How to compute coefficient-wise operations

• Small secrets −→ bitshift & add multiplication

• Power-of-two moduli −→ no modular reduction

⇓
A MAC unit requires little area (50 LUTs)

We use 256 MACs in parallel

acc[i]

MAC

s[i] a[j]

1

7/15

Multiply and ACcumulate (MAC) units
How to compute coefficient-wise operations

• Small secrets −→ bitshift & add multiplication

• Power-of-two moduli −→ no modular reduction

⇓
A MAC unit requires little area (50 LUTs)

We use 256 MACs in parallel

acc[i]

MAC

s[i] a[j]

1

7/15

The polynomial multiplier

polynomial
multiplier

secret polynomial

accumulator

 4

small polynomial bufferBRAM

...M
A
C

M
A
C

M
A
C

coeffcient
selector

Performance

A full polynomial multiplication can be computed in 256 cycles!

8/15

The polynomial multiplier

polynomial
multiplier

secret polynomial

accumulator

 4

small polynomial bufferBRAM

...M
A
C

M
A
C

M
A
C

coeffcient
selector

Performance

A full polynomial multiplication can be computed in 256 cycles!

8/15

The polynomial multiplier

polynomial
multiplier

secret polynomial

accumulator

 4

small polynomial bufferBRAM

...M
A
C

M
A
C

M
A
C

coeffcient
selector

Performance

A full polynomial multiplication can be computed in 256 cycles!

8/15

The polynomial multiplier

polynomial
multiplier

secret polynomial

accumulator

 4

small polynomial bufferBRAM

...M
A
C

M
A
C

M
A
C

coeffcient
selector

Performance

A full polynomial multiplication can be computed in 256 cycles!

8/15

The polynomial multiplier

polynomial
multiplier

secret polynomial

accumulator

 4

small polynomial bufferBRAM

...M
A
C

M
A
C

M
A
C

coeffcient
selector

Performance

A full polynomial multiplication can be computed in 256 cycles!

8/15

The polynomial multiplier

polynomial
multiplier

secret polynomial

accumulator

 4

small polynomial bufferBRAM

...M
A
C

M
A
C

M
A
C

coeffcient
selector

Performance

A full polynomial multiplication can be computed in 256 cycles! 8/15

The full architecture
An instruction-set coprocessor architecture

Advantages

• Modularity
⇓

• Generic framework
⇓

• Other protocols

• Programmability

Disadvantages

• No parallelism

Communication
Controller

Data Memory
(Block RAM)

Polynomial
Vector-Vector

Multiplier

SHA3-256/
SHA3-512/
SHAKE128

Binomial
Sampler

AddPack

AddRound

CopyWords

Verify

CMOV

B
u

s
M

an
ag

er

Program
Memory

D
at

a
in

p
u

t
an

d
 o

u
tp

u
t

Data bus

…

Data-path of a
primitive

Control signal

9/15

Design extendability

Unified architecture

• LightSaber

• Saber

• FireSaber

Performance/area trade-offs

• 512 multipliers

• ∼20% improvement in speed
acc[i]

MAC

s[i] a[j]

1 ⇒

acc[i]

s[i-1] a[j+1]s[i] a[j]

1

MAC

10/15

Design extendability

Unified architecture

• LightSaber

• Saber

• FireSaber

Performance/area trade-offs

• 512 multipliers

• ∼20% improvement in speed
acc[i]

MAC

s[i] a[j]

1 ⇒

acc[i]

s[i-1] a[j+1]s[i] a[j]

1

MAC

10/15

Performance Results
Running on a Ultrascale+ XCZU9EG-2FFVB1156 FPGA

Polynomial
multiplication

Keccak
computations

Other
operations

Total cycles

Total time

Throughput

Key Generation

5,453
21.8 μμμs

45,872 op/s

Encapsulation

6,618
26.5 μμμs

37,776 op/s

Decapsulation

8,034
32.1 μμμs

31,118 op/s
11/15

Area Results
Running on a Ultrascale+ XCZU9EG-2FFVB1156 FPGA

Total

%

LUTs

23,686
8.6 %

Flip flops

9,805
1.8 %

DSPs

0
0 %

BRAM Tiles

2
0.2 %

It is possible to fit 11 coprocessors, achieving a throughput of 504k / 416k / 342k op/s 12/15

Comparisons to other work

Implementation Platform Time in μs Frequency Area
Key Encps Decps (MHz) LUT FF DSP BRAM

Kyber [DFA+20] Virtex-7 - 17.1 23.3 245 14k 11k 8 14
NewHope [ZYC+20] Artix-7 40 62.5 24 200 6.8k 4.4k 2 8
FrodoKEM [HOKG18] Artix-7 45K 45K 47K 167 7.7K 3.5K 1 24
SIKE [MLRB20] Virtex-7∗ 8K 14K 15K 142 21K 14K 162 38

Saber [BMTK+20] Artix-7∗ 3K 4K 3K 125 7.4K 7.3K 28 2
Saber [DFAG19] UltraScale+∗ - 60 65 322 13K 12K 256 4
Saber [this work] UltraScale+ 21.8 26.5 32.1 250 24K 10K 0 2

∗: HW/SW codesign
13/15

Future work

Other protocols

• Kyber and other lattice-based schemes

• Signature schemes?

Lightweight implementation

• Fewer multipliers

Side-channel resistance

• Masked implementation

• Handle small coefficients
14/15

Conclusion

A complete hardware architecture for Saber

• All three security levels: LightSaber, Saber and FireSaber

• Very high performance

• Still flexibile and with moderate area consumption

All code is available at https://github.com/sujoyetc/SABER_HW

Beyond Saber

• Generic framework for other protocols

• High performance from non-NTT multiplier

15/15

https://github.com/sujoyetc/SABER_HW

References I

[BMKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.

Time-memory trade-off in Toom-Cook multiplication: an Application to Module-lattice based
Cryptography.

IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(2):222–244, Mar.
2020.

[BMTK+20] Jose Maria Bermudo Mera, Furkan Turan, Angshuman Karmakar, Sujoy Sinha Roy, and Ingrid
Verbauwhede.

Compact Domain-specific Co-processor for Accelerating Module Lattice-based Key
Encapsulation Mechanism.

Accepted in DAC, 2020:321, 2020.

16/15

References II

[DFA+20] Viet Ba Dang, Farnoud Farahmand, Michal Andrzejczak, Kamyar Mohajerani, Duc Tri Nguyen,
and Kris Gaj.

Implementation and benchmarking of round 2 candidates in the nist post-quantum cryptography
standardization process using hardware and software/hardware co-design approaches.

Cryptology ePrint Archive, Report 2020/795, 2020.

https://eprint.iacr.org/2020/795.

[DFAG19] Viet B. Dang, Farnoud Farahmand, Michal Andrzejczak, and Kris Gaj.

Implementing and Benchmarking Three Lattice-Based Post-Quantum Cryptography Algorithms
Using Software/Hardware Codesign.

In International Conference on Field-Programmable Technology, FPT 2019, Tianjin, China,
December 9-13, 2019, pages 206–214. IEEE, 2019.

17/15

https://eprint.iacr.org/2020/795

References III

[DKSRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren.

Saber: Module-LWR Based Key Exchange, CPA-Secure Encryption and CCA-Secure KEM, volume
10831, page 282–305.

Springer International Publishing, 2018.

[HOKG18] James Howe, Tobias Oder, Markus Krausz, and Tim Güneysu.

Standard Lattice-Based Key Encapsulation on Embedded Devices.

IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):372–393, 2018.

[MAA+20] Dustin Moody, Gorjan Alagic, Daniel C Apon, David A Cooper, Quynh H Dang, John M Kelsey,
Yi-Kai Liu, Carl A Miller, Rene C Peralta, Ray A Perlner, et al.

Status report on the second round of the nist post-quantum cryptography standardization
process.

NISTIR 8309, July 2020.
18/15

References IV

[MLRB20] Pedro Maat C. Massolino, Patrick Longa, Joost Renes, and Lejla Batina.

A Compact and Scalable Hardware/Software Co-design of SIKE.

IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):245–271, 2020.

[ZYC+20] Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei, and Leibo Liu.

Highly efficient architecture of newhope-nist on fpga using low-complexity ntt/intt.

IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(2):49–72, Mar.
2020.

19/15

