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Background

Public Key Cryptography Public Key Encryption (PKE), Digital Signatures, and Key
Encapsulation Mechanism (KEM)

Current Deployment Diffie-Hellman key exchange, the RSA cryptosystem, and elliptic
curve cryptosystems
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PQC and NIST’s Standardization

Post-Quantum Cryptography (PQC) classical cryptosystems that remain secure in the
presence of a quantum adversary

NIST’s PQC Standardization PKE, Digital signatures and KEM

• Dec. 2016 – Call for Proposals

• Dec. 2017 – Round-1-submissions (35/69)

• Jan. 2019 – Round-2-submissions (17/26)

• Aug. 2020 – Round-3-submissions (Finalists: 4/7, Alternates: 5/8)
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KEM and IND-CCA security
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FO-like generic constructions

All currently known CPA ⇒ CCA PKE/KEMs are Fujisaki-Okamoto(FO)-like and can
be classified based on the underlying assumptions,

1. the variants of FO: FO�⊥, FO⊥, FO�⊥m, FO⊥m, QFO�⊥m and QFO⊥m
1

2. the variants of REACT/GEM: U�⊥, U⊥, U�⊥m, U⊥m, QU�⊥m and QU⊥m
2

Note: FO-like generic constructions are widely used in the NIST Round-3 KEM
Candidates.

1m (without m) means K = H(m) (K = H(m, c)), Q means an additional length-preserving
hash [TU16] is added into the ciphertext, and�⊥ (⊥) means implicit (explicit) rejection.

2The modular analysis in [HHK17] suggests that the FO implicitly contains the GEM/REACT at
least the proof technique.
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Quantum random oracle model

• FO-like generic constructions are based on an idealized model called Random
Oracle Model (ROM), where a hash function is idealized to be a publicly
accessible random oracle (RO).

• Generic constructions in the ROM have gathered renewed interest in
post-quantum setting, where adversaries are equipped with a quantum computer.

• In a real world, quantum adversary can execute hash functions (the instantiation
of RO) on an arbitrary superposition of inputs.

• Therefore, as argued by Boneh et al. [BDF+11], when proving post-quantum
security, one needs to prove security in the quantum random oracle model
(QROM), where the adversary can query the RO with quantum state.
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Quantum random oracle model

• In general, QROM is quite difficult to deal with, since many proof techniques in
the ROM will be incompatible with the QROM.

• In the ROM, the simulator naturally “learns” the queries to the RO. This is called
extractability, which is widely used in proving security for cryptosystem under
computational hard problems in the indistinguishability security model.

• In the QROM, the queries can be quantum states, and “learning” a quantum
state means a measurement, which allows to extract classical information from a
quantum state.

• Separations of ROM and QROM were given by [BDF+11, YZ21].
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Security reduction

When proving a security of a cryptographic scheme S under a hardness assumption of
a problem P, we usually construct a reduction algorithm R against P that uses an
adversary A against S as a subroutine.

R against P

� A against S

Query-based3 The reduction uses a RO-query from the adversary to break the
underlying hard problem.

Measurement-based The reduction measures a RO-query from the adversary and uses
the measurement outcome to break the underlying hard problem.

Note: The measurement-based reduction is the quantum version of the query-based
reduction.

3This name comes from [GCS+17].
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Tightness

• Let (TA, εA) and (TR , εR) denote the running times and advantages of A and R,
respectively.

• The reduction is said to be tight if TA ≈ TR and εA ≈ εR .

• Otherwise, if TR � TA or εR � εA, the reduction is non-tight.

• The tightness gap, (informally) defined by TRεA
TAεR

[Men12], is used to measure the
quality of a reduction.

• Tighter reductions with smaller tightness gap are desirable for practice
cryptography especially in large-scale scenarios, since the tightness of a reduction
determines the strength of the security guarantees provided by the security proof.
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Black-box V.S. Non-black-box

Black-Box (BB) The reduction merely uses the adversary’s input-output behavior, and
does not depend on the internals

Non-Black-Box (NBB) The reduction requires knowledge of the adversary’s internals
like the adversary’s code.

In general, black-box reductions are more pervasive than the non-black-box ones in
cryptography.
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Current proofs for FO-like KEM constructions

• Most QROM reductions (including black-box and non-black-box) for FO-like KEM
constructions from standard CPA assumptions are measurement-based, and have
the tightness4

1. TR is about TA;
2. εR ≈ 1

κε
τ
A.

κ: the factor of security loss τ : the degree of security loss

4When comparing the tightness of different reductions, we assume perfect correctness of
underlying scheme for brevity.
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Current proofs for FO-like KEM constructions

Table: The tightness of current QROM proofs from standard CPA assumptions.

(κ, τ) Variants of FO Variants of REACT/GEM Type

[HHK17] (q6, 4)5 (q2, 2) BB
[SXY18,JZC+18] (q2, 2) (q2, 2) BB

[JZM19a,JZM19b] (q, 2) (q, 2) BB
[BHH19] (q, 2) (1, 2) BB

[KSS+20] (q2, 1) (q, 1) NBB6

5q is the total number of adversary’s queries (including quantum and classical) to various oracles.
6The reduction in [KSS+20] relies on a newly introduced “Measure-Rewind-Measure” (MRM)

technique that can only apply to reversible adversaries. In post-quantum setting, most adversaries
are irreversible since most oracles (e.g., decap. oracle) in the security model can only be classically
queried.



17/40

Background Main Contribution Techniques Conclusion

Current proofs for FO-like KEM constructions

• As we can see, the existing black-box QROM reductions from standard CPA
assumptions, are far from desirable due to the quadratic security loss (at least).

• Although this quadratic loss can be avoided by non-black-box reductions
[KSS+20], the reductions in [KSS+20] can only apply to reversible adversaries.

• Note that the existing black-box reductions in the literature can cover arbitrary
adversaries.

• These results are quite different from the ROM counterpart, where a linear loss
can be achieved in a black-box manner [Den03, HHK17].
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One-way to Hiding (OW2H)

• The quadratic loss arises from the usage of the OW2H technique (an essential
technique to prove post-quantum security) [Unr15].

• The OW2H technique has a quadratic loss. Very recently, several works [AHU18,
BHH+19, KSS+20] tried to improve the tightness of OW2H.

• However, as in the case of FO-like KEMs, the tightness improvements are only
restricted to the factor of reduction loss, and the quadratic loss still exists (except
the non-black-box MRM-OW2H [KSS+20]).
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Motivation

A natural question is that

For FO-like KEMs and the OW2H technique, is the quadratic loss unavoidable for
measurement-based black-box reductions?
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Main Contribution

In this paper, we give an affirmative answer for the above question.

• For FO-like KEMs, we show a measurement-based black-box reduction from
breaking the standard OW-CPA (or IND-CPA) security of the underlying PKE to
breaking the IND-CCA security of the resulting KEM, will inevitably incur a
quadratic loss of the security.

• Such an impossibility result can also be extended to show that the quadratic loss
is also unavoidable when one turns a search problem into a decision problem via
the essential OW2H technique in a black-box manner. That is, the black-box
OW2H technique [Unr15, AHU18, BHH+19] is essentially optimal in terms of the
degree of reduction loss.
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Main techniques

Here, we just take KEM−U�⊥m as an example. But it’s not hard to extend the results
to other FO-like KEM constructions and the general one-way to hiding.

Gen

1 : (pk , sk)← Gen′

2 : k
$← Kprf

3 : sk ′ := (sk , k)

4 : return (pk , sk ′)

Encaps(pk)

1 : m
$←M

2 : c := Enc ′(pk,m)

3 : K := H(m)

4 : return (K , c)

Decaps(sk ′, c)

1 : Parse sk ′ = (sk , k)

2 : m′ := Dec ′(sk , c)

3 : if Enc ′(pk ,m′) = c

4 : return K := H(m′)

5 : else return

6 : K := f (k, c)

Figure: IND-CCA-secure KEM−U�⊥m = U�⊥m[DPKE,H,f ]
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Proof skeleton

1. We first construct a specific quantum adversary A that breaks the IND-CCA
security of the resulting KEM with advantage at least

√
p (p is a real in [0, 1]),

i.e., εA '
√

p.

2. Then, we show that any measurement-based black-box reduction RA that runs
this specific A as a subroutine to break the OW-CPA security of the underlying
DPKE will have advantage at most p, i.e., εR / p.
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Unbounded quantum adversary

• When attacking the IND-CCA security of KEM−U�⊥m, an adversary A(pk, c∗,
Kb) needs to distinguish K0 = H(m∗) from a uniformly random key K1, where
c∗ = Enc(pk,m∗) for a uniformly random m∗, the coin b ∈ {0, 1} is uniformly
random.

• We note that the random oracle H has a useful property that if m∗ has not been
queried to H by A, then the value H(m∗) is uniformly random in A’s view. Thus,
A’s distinguishing advantage is negligible when making no queries to H with m∗.

• Intuitively, to achieve a non-negligible distinguishing advantage, A has to query
m∗ to H.
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Unbounded quantum adversary

• In the ROM, A can only make classical queries to H.

• For any p (0 ≤ p ≤ 1), if A queries m∗ to H with probability p, he will learn
K0 = H(m∗) with probability p and break the IND-CCA security with advantage
approximately p by testing whether K0 = Kb.

• For a reduction RA against the OW-CPA security of the underlying DPKE, a
natural way is to take A’s query as a return.

• Then, with probability p, RA will return the m∗ and break the OW-CPA security
of the underlying DPKE.

• That is, the advantages of RA and A are approximately equal, which is consistent
with currently known tight reduction in [HHK17].



25/40

Background Main Contribution Techniques Conclusion

Unbounded quantum adversary

• In the QROM, a quantum adversary A can make a query to H with a quantum
state. Consider the following quantum state

|ψ−1〉 :=
√

p|m∗〉|0〉+
√

1− p|m′〉|Σ〉,

where m′ 6= m∗, |Σ〉 =
∑

k∈K
1√
|K|
|k〉 and K is the (session) key space.

• For a quantum query with |ψ−1〉, the random oracle H will return

|ψ0〉 : =
√

p|m∗〉|K0〉+
√

1− p|m′〉|Σ〉.

Remark: If the adversary A directly measures |ψ0〉 in standard computational basis, he
will obtain K0 with probability p and break the IND-CCA security with the advantage
(approximately) p by testing whether K0 = Kb as the adversary in the ROM.
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Unbounded quantum adversary

• A quantum adversary A can directly guess b by testing whether the quantum
state |ψ0〉 is equal to quantum state |ψb〉, where

|ψb〉 : =
√

p|m∗〉|Kb〉+
√

1− p|m′〉|Σ〉.

• Testing whether |ψ0〉 is equal to |ψb〉7 can be accomplished using the standard
quantum state discrimination method (known as Helstrom measurement) [Hel79]
with advantage (approximately) at least

√
p.

7Formally, we need to judge |ψ0〉〈ψ0| comes from |ψb〉〈ψb| or EK1−b |ψ1−b〉〈ψ1−b| (the the

expectation is taken over K1−b
$← K).
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Unbounded quantum adversary

The unbounded quantum adversary A(pk , c∗,Kb) is as follows.

A(pk, c∗,Kb)

1 : Search a m∗ ∈M such that Enc ′(pk ,m∗) = c∗

// If no one (or more than one) is found, output 1 and terminate the procedure.

2 : Sample a real p ∈ [0, 1] and a uniform m′ from {m′ ∈M : m′ 6= m∗}
3 : Query H with quantum state |ψ−1〉 :=

√
p|m∗〉|0〉+

√
1− p|m′〉|Σ〉

4 : Perform Helstrom measurement M on |ψ0〉 (the state returned by H)

5 : Return the measurement outcome.

Theorem 3.1 (The advantage of A in the QROM).

If the underlying DPKE is perfectly correct, the advantage of A against the IND-CCA
security of KEM−U�⊥m is at least

√
p(1− 1/|K|) ≈ √p.
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The advantage of a measurement-based reduction

Measurement-based (black-box) reduction

1. Reduction R receives a challenge inpt1 as input, runs a PPT preprocessing
(quantum) subalgorithm (inpt, rand , s)← R1(inpt1), and then launches
A(inpt; rand)8.

2. When A makes a query to the RO with quantum state φ, R measures φ in the
computational basis9, and gets the measurement outcome mest.

3. Reduction R runs a PPT postprocessing (quantum) subalgorithm
out ← R2(s,mest), and returns out.

8Here, inpt1, inpt and rand are classical, and s can be a quantum state.
9The reduction R just measures the query input registers.
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The advantage of a measurement-based black-box reduction

Measurement-based (black-box) reduction

Remark 1.
Performing an additional quantum (unitary) operation on adversary’s query before
measuring isn’t allowed. But, such an additional unitary operation cannot substantially
increase reduction’s advantage, otherwise there exists an algorithm breaking the
OW-CPA security of the underlying DPKE efficiently.

Remark 2.
Note that the considered reductions do not restrict the simulations of random oracles
and other oracles that adversary queries, and thus can cover the black-box reductions
in [HHK17, SXY18, JZC+18, JZM19a, JZM19b, BHH+19, HKSU20].
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The advantage of a measurement-based reduction

Meta-reduction methodology

• Meta-reduction methodology has proven to be a versatile tool in deriving
impossibility results and tightness bounds of security proofs.

• A meta-reduction MRR simulates the adversarial part A, runs the reduction R as
a subroutine, and break the underlying hard problem P directly.

• That is, a meta-reduction MRR treats the reduction R as an adversary itself and
reduce the existence of such a reduction R to a presumably hard problem.
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The advantage of a measurement-based reduction

Consider the advantage of RA in following three cases, where Ine (Exi, resp.) is the
event that the exhaustive search returns no (a, resp.) m∗ such that Enc(pk,m∗) = c∗,
and Good (Bad, resp.) is the event that the measurement outcome is (not, resp.)
m∗.

Case 1: Ine. In this case, A just outputs 1 without queries to H. Thus,
exhaustive search for m∗ in this case is vain, and A can be replaced by
an adversary A1 that always outputs 1 without the search for m∗ and the
query to the random oracle H. Therefore, we can easily construct a
meta-reduction MRR

1 that simulates A1 and takes RA1 as a subroutine to
break the OW-CPA security of the underlying DPKE such that the
running time of MRR

1 is about the running time of R, and under the
condition Ine the advantage of MRR

1 is about the advantage of R.

Case 2: Exi ∧Good. Since Pr[Good|Exi] = p, we can bound the advantage of
R in this case by p.
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The advantage of a measurement-based reduction

Consider the advantage of RA in following three cases, where Ine (Exi, resp.) is the
event that the exhaustive search returns no (a, resp.) m∗ such that Enc(pk,m∗) = c∗,
and Good (Bad, resp.) is the event that the measurement outcome is (not, resp.)
m∗.

Case 3: Exi ∧Bad. In this case, R gets m′ 6= m∗. Let A2 be an adversary that
queries a quantum state

∑
m,k

1√
|M|·|K|

|m〉|k〉 and outputs 1 without the

search for m∗. Thus, the advantage of R under the condition Exi ∧Bad
remains unchanged when A is replaced by A2. As in the case 1, we can
also construct a meta-reduction MRR

2 against the OW-CPA security of
the underlying DPKE that simulates A2 and takes RA2 as a subroutine
such that the running time of MRR

2 is about the running time of R, and
under the condition Exi ∧Bad the advantage of MRR

2 is about the
advantage of R.
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The advantage of a measurement-based reduction

Theorem 3.2.
If the underlying DPKE is perfectly correct, for any measurement-based reduction RA

that runs the adversary A once without rewinding, there exist two meta-reductions
MRR

1 and MRR
2 against the OW-CPA security of the underlying DPKE such that

εR ≤ p + εMR1 +
|M|
|M| − 1

εMR2 ,

and Time(R) ≈ Time(MR1) ≈ Time(MR2).
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Main theorem

Combing Theorems 3.1 and 3.2, we can directly obtain the following main Theorem.

Theorem 3.3.
If the underlying DPKE is perfectly correct, there exists a quantum adversary A
against the IND-CCA security of KEM−U�⊥m such that for any measurement-based
(black-box) reduction RA that runs A (once without rewinding), measures A’s query
and uses the measurement outcome to break the OW-CPA security of the underlying
DPKE, there exist two meta-reductions MRR

1 and MRR
2 which take R as a subroutine

to break the OW-CPA security of the underlying DPKE such that

εA ≥ (1− 1

|K|
)×

√
εR − εMR1 −

|M|
|M| − 1

· εMR2

and Time(R) ≈ Time(MRR
1 ) ≈ Time(MRR

2 ).
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Interpretation

• Under the assumption that the advantage of any efficient algorithm breaking the
OW-CPA security of the underlying DPKE is negligible, we have εMR1 and εMR2

are negligible.

Thus, we have
εR / ε

2
A.

For KEM−U�⊥m, a measurement-based black-box reduction in the QROM from
breaking standard OW-CPA security of the underlying DPKE to breaking the IND-CCA
security of the resulting KEM, will inevitably incur a quadratic loss of the security.
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Conclusion

• For FO-like KEMs, we first show the tightness limits of the black-box reductions,
and prove that a measurement-based reduction in the QROM from breaking the
standard CPA security of the underlying PKE to breaking the IND-CCA security of
the resulting KEM, will inevitably incur a quadratic loss of the security.

• In particular, most black-box reductions for these FO-like KEMs are of this type,
and our results suggest an explanation for the lack of progress in improving this
reduction tightness in terms of the degree of security loss.

• This impossibility results can also be extended to show the tightness limits of the
general (black-box) one-way to hiding.
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Thanks for your attention!

hdjiang13@gmail.com

hdjiang13@gmail.com
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Persichetti, Tighter proofs of CCA security in the quantum random oracle model

Den03 Alexander W. Dent, A designers guide to KEMs

GCS+17 Fuchun Guo et al., Optimal security reductions for unique signatures: bypassing
impossibilities with a counterexample



39/40

Background Main Contribution Techniques Conclusion

References
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