Lunar

a toolbox for more efficient universal and updatable zkSNARKs and commit-and-prove extensions

Succinct Non Interactive ARguments of Knowledge

zero knowledge SNARKs

only learn claim is true

trusted setup zk SNARKs

third party creates keys for each relation

universal zk SNARKs

one time setup for any bounded relation

universal and updatable zk SNARKs

- first universal and updatable zkSNARK
- quadratic size SRS

'18

SKM+18

- first linear SRS universal and updatable zkSNARKs
- constant size proof and quasilinear prover
- polylogarithmic proof and linear prover

- linear SRS universal and updatable zkSNARKs
- (shorter) constant size proof and (faster) quasilinear prover
- IOP-like + polynomial commitments

more efficiency, shorter proofs, efficient CP variants

more general IOP-like + CP-SNARKs

IOP-like information theoretic object

polynomial commitments

- point evaluation 1 F per polynomial
- lacks zero knowledge formalization
- optimizations deviate from abstraction

PHP

b – bounded ZK

PHP should still be ZK even after b_i evaluations of P_{PHP} oracle polynomial p_i

how?

increase degree of oracle polynomials

if $b_i = \infty$ then public

commit—and—prove zkSNARKs

$$R(x, -1) = 1 if$$

$$R(x,) = 1 \text{ and}$$

commit—and—prove zkSNARKs

CS: type-based polynomial commitment scheme in the exponent

• rel

• swh

 \prod .KeyGen(1 $^{\lambda}$, N) $\rightarrow srs$

CS.Setup(d) $\rightarrow ck$ monomials in exp

 $CP_{php}.KeyGen(ck) \rightarrow ek_{php}, vk_{php}$

 $CP_{opn}.KeyGen(ck) \rightarrow ek_{opn}, vk_{opn}$

 \prod . Derive $(ck, srs, R) \rightarrow srs_R$

CS.Commit(ck, R)

 $ek_R := ek \cup p_0, o_0$ CS₁ or CS₂

 $vk_R := vk \cup p_0 = [p_0(\$)]_{1 \vee 2}$

• rel non hiding commitments for relation polynomials

• SWh

somewhat hiding commitments for polynomials sent by the prover

committed polynomials leak at most 1 evaluation at a random point, scheme can be deterministic

• SWh

 \prod .KeyGen(1 $^{\lambda}$, N) $\rightarrow srs$

CS.Setup(d) $\rightarrow ck$ monomials in exp

 $CP_{php}.KeyGen(ck) \rightarrow ek_{php}, vk_{php}$

 $CP_{opn}.KeyGen(ck) \rightarrow ek_{opn}, vk_{opn}$

 \prod .Prove $(ek_R, x, w) \rightarrow \pi$

CS.Commit(ck, $\begin{vmatrix} P_{PHP} \\ i, \rho \end{vmatrix}$

 $CP_{opn}.Prove(ek_{opn}, p_i)$

 $\pi = (\{ p_i | p_i |, m_i, \pi_{\mathsf{opn}_i} \}, \pi_{\mathsf{php}})$

proof that a V_{PHP} would accept

 \prod . Derive $(ck, srs, R) \rightarrow srs_R$

CS.Commit(ck, R

 $ek_R := ek \cup p_0, o_0$

 $vk_R := vk \cup p_0 = [p_0(\$)]_{1 \vee 2}$

 \prod . Verify $(vk_R, x, \pi) \rightarrow ok / ko$

CS₁ or CS₂

checks

 $CP_{php}.Verify(vk_{php},deg,eqs,$

CPopn. Verify(vkopn, Pi

SNARK compiler

Blocks

novel batch
$$\ell$$
 com only 1 G

$$D(X) = A(X) \cdot B(X) \cdot C(X)$$

trivial empty proof Marlin, Plonk

novel batch ℓ com only 1 G

$$y = a \cdot B(x) \cdot C(x)$$

$$\Pi_{opn} (a = A(x))$$

trivial empty proof Marlin, Plonk

novel batch ℓ com only 1 G

$$y = a \cdot b \cdot C(x)$$

$$\Pi_{opn} (a = A(x))$$

$$\Pi_{opn} (b = B(x))$$

$$\Pi_{eval} (y = a \cdot b \cdot C(x))$$

$$(b_1...b_p)-leaky ZK$$

quadratic equation $C(X) = A(X) \cdot B(X)$ has empty proof if one polynomial (relation) is committed in G_2 $e(A_1, B_2)$ $= e(C_1, [1]_2)$

trivial empty proof Marlin, Plonk

novel batch ℓ com only 1 G

eval random point + Plonk lin tricks

novel empty proof

commit to shifted polynomial, batch

commit to shifted polynomial, batch

Blocks

(b₁.b_p)-leaky zero knowledge CP-SNARKs

somewhat hiding commitment schemes

$$(b_1+1...b_p+1)-bounded$$
 zero knowledge PHP

fully zero knowledge SNARKs

