Luby-Rackoff Backwards with More Users and More Security

Srimanta Bhattacharya1 Mridul Nandi2

1 SIAS, Krea University
2 Indian Statistical Institute, Kolkata

December 1, 2021
1 Motivation: PRF and Its Multi-user Security

2 Technical Background and Our Results (Statements)

3 Multi-user PRF-Security of XORP[3]: Proof Outline

4 References
Presentation Outline

1 Motivation: PRF and Its Multi-user Security

2 Technical Background and Our Results (Statements)

3 Multi-user PRF-Security of XORP[3]: Proof Outline

4 References
Pseudorandom function (PRF): Important cryptographic primitive.

Encryption, Authentication, …
Pseudorandom function (PRF): Important cryptographic primitive.

Encryption, Authentication, …

How do we get them?
Pseudorandom function (PRF): Important cryptographic primitive.

Encryption, Authentication, …

How do we get them?

Good block ciphers (pseudorandom permutations (PRPs)) are available.
Pseudorandom function (PRF): Important cryptographic primitive.

Encryption, Authentication, …

How do we get them?

Good block ciphers (pseudorandom permutations (PRPs)) are available.

Can we use them as PRFs?
Pseudorandom function (PRF): Important cryptographic primitive.

Encryption, Authentication, …

How do we get them?

Good block ciphers (pseudorandom permutations (PRPs)) are available.

Can we use them as PRFs?

\(n \)-bit PRF can be distinguished from \(n \)-bit PRP with \(O(2^{n/2}) \) queries.
Pseudorandom function (PRF): Important cryptographic primitive.

Encryption, Authentication, …

How do we get them?

Good block ciphers (pseudorandom permutations (PRPs)) are available.

Can we use them as PRFs? Birthday Bound

n-bit PRF can be distinguished from n-bit PRP with $O(2^{n/2})$ queries.
Pseudorandom function (PRF): Important cryptographic primitive.

Encryption, Authentication, …

How do we get them?

Good block ciphers (*pseudorandom permutations* (PRPs)) are available.

Can we use them as PRFs? *Birthday Bound*

\(n\)-bit PRF can be distinguished from \(n\)-bit PRP with \(O(2^{\frac{n}{2}})\) queries.

Can we go past the birthday barrier?
Pseudorandom function (PRF): Important cryptographic primitive.

Encryption, Authentication, …

How do we get them?

Good block ciphers (pseudorandom permutations (PRPs)) are available.

Can we use them as PRFs? Birthday Bound

n-bit PRF can be distinguished from n-bit PRP with $O(2^{n/2})$ queries.

Can we go past the birthday barrier?

PRP to PRF Conversion: [Bellare et al., 1998] Luby-Rackoff backwards.
Pseudorandom function (PRF): Important cryptographic primitive.

Encryption, Authentication, ...

How do we get them?

Good block ciphers (pseudorandom permutations (PRPs)) are available.

Can we use them as PRFs? *Birthday Bound*

n-bit PRF can be distinguished from n-bit PRP with $O(2^{n/2})$ queries.

Can we go past the birthday barrier?

PRP to PRF Conversion: [Bellare et al., 1998] Luby-Rackoff backwards.

[Luby and Rackoff, 1988]: PRF to PRP
Construction: Sum of Permutations

Setting

RP: Random permutation on $\{0, 1\}^n$
Setting

RP: Random permutation on \(\{0, 1\}^n\)

Constructions

\[
\text{XORP}(x) = \text{RP}(0\|x) \oplus \text{RP}(1\|x).
\]
Setting
RP: Random permutation on \(\{0, 1\}^n\)

Constructions
\[\text{XORP} : \{0, 1\}^{n-1} \rightarrow \{0, 1\}^n\]
\[\text{XORP}(x) = \text{RP}(0\|x) \oplus \text{RP}(1\|x).\]
Setting

RP: Random permutation on \(\{0, 1\}^n \)

Constructions

\[
\text{XORP : } \{0, 1\}^{n-1} \rightarrow \{0, 1\}^n \\
\text{XORP}(x) = \text{RP}(0\|x) \oplus \text{RP}(1\|x).
\]

[Bellare and Impagliazzo, 1999, Cogliati et al., 2014, Patarin, 2010, Patarin, 2008, Dai et al., 2017]: XORP is secure up to \(O(2^n) \) queries
Construction: Sum of Permutations

Setting

RP: Random permutation on \(\{0, 1\}^n \)

Constructions

\[
\text{XORP} : \{0, 1\}^{n-1} \rightarrow \{0, 1\}^n
\]

\[
\text{XORP}(x) = \text{RP}(0||x) \oplus \text{RP}(1||x).
\]

Generalizations

\[
\text{XORP}[3](x) = \text{RP}(x||00) \oplus \text{RP}(x||01) \oplus \text{RP}(x||10)
\]
Setting

RP: Random permutation on $\{0, 1\}^n$

Constructions

$\text{XORP}: \{0, 1\}^{n-1} \rightarrow \{0, 1\}^n$

$\text{XORP}(x) = \text{RP}(0|x) \oplus \text{RP}(1|x)$.

[Bellare and Impagliazzo, 1999, Cogliati et al., 2014, Patarin, 2010, Patarin, 2008, Dai et al., 2017]: XORP is secure up to $O(2^n)$ queries

Generalizations

$\text{XORP}[3]: \{0, 1\}^{n-2} \rightarrow \{0, 1\}^n$

$\text{XORP}[3](x) = \text{RP}(x|00) \oplus \text{RP}(x|01) \oplus \text{RP}(x|10)$
Construction: Sum of Permutations

Setting

RP: Random permutation on \(\{0, 1\}^n\)

Constructions

\[
\text{XORP} : \{0, 1\}^{n-1} \rightarrow \{0, 1\}^n
\]

\[
\text{XORP}(x) = \text{RP}(0\|x) \oplus \text{RP}(1\|x).
\]

[Bellare and Impagliazzo, 1999, Cogliati et al., 2014, Patarin, 2010, Patarin, 2008, Dai et al., 2017]: XORP is secure up to \(O(2^n)\) queries

Generalizations

\[
\text{XORP}[3] : \{0, 1\}^{n-2} \rightarrow \{0, 1\}^n
\]

\[
\text{XORP}[3](x) = \text{RP}(x\|00) \oplus \text{RP}(x\|01) \oplus \text{RP}(x\|10)
\]

[Lucks, 2000, Mennink and Preneel, 2015]: Security same as XORP \(\Rightarrow\) Secure up to \(O(2^n)\) queries
Sum of Permutations (Contd.)

\[\text{XORP}'[3](x) = \text{RP}(x || 000) \oplus \text{RP}(x || 001) \oplus \text{RP}(x || 010) \oplus \text{RP}(x || 000) \oplus \text{RP}(x || 101) \oplus \text{RP}(x || 110) \]
Sum of Permutations (Contd.)

\[\text{XORP'[3]}(x) = \text{RP}(x||000) \oplus \text{RP}(x||001) \oplus \text{RP}(x||010) \parallel \text{RP}(x||000) \oplus \text{RP}(x||101) \oplus \text{RP}(x||110) \]

XORP'[3] : \{0, 1\}^{n-3} \rightarrow \{0, 1\}^n
Efficient than XORP[3] - requires 5 block cipher calls for $2n$-bit output
\textbf{Sum of Permutations (Contd.)}

\[
\text{XORP}'[3](x) = \text{RP}(x\|000) \oplus \text{RP}(x\|001) \oplus \text{RP}(x\|010) \parallel \text{RP}(x\|000) \oplus \text{RP}(x\|101) \oplus \text{RP}(x\|110)
\]

- Efficient than \text{XORP}[3] - requires 5 block cipher calls for $2n$-bit output
XORP[3]': $\{0, 1\}^{n-3} \rightarrow \{0, 1\}^n$

$\text{XORP}'[3](x) = \text{RP}(x\|000) \oplus \text{RP}(x\|001) \oplus \text{RP}(x\|010) \parallel \text{RP}(x\|000) \oplus \text{RP}(x\|101) \oplus \text{RP}(x\|110)$

Efficient than XORP[3] - requires 5 block cipher calls for $2n$-bit output

[Patarin, 2010, Cogliati et al., 2014, Bhattacharya and Nandi, 2018b]: Secure up to $O(2^n)$ queries
XORP\([3]' : \{0, 1\}^{n-3} \rightarrow \{0, 1\}^n\]

\[
\text{XORP}'[3](x) = \text{RP}(x\|000) \oplus \text{RP}(x\|001) \oplus \text{RP}(x\|010) \oplus \text{RP}(x\|000) \oplus \text{RP}(x\|101) \oplus \text{RP}(x\|110)
\]

Efficient than XORP\([3]\) - requires 5 block cipher calls for \(2n\)-bit output

[Patarin, 2010, Cogliati et al., 2014, Bhattacharya and Nandi, 2018b]: Secure up to \(O(2^n)\) queries

Can be generalized to XORP\([k]\) and XORP\('[k]\) (XORP = XORP\([2]\)).
Sum of Permutations (Contd.)

\[\text{XORP}'[3](x) = \text{RP}(x||000) \oplus \text{RP}(x||001) \oplus \text{RP}(x||010) \parallel \text{RP}(x||000) \oplus \text{RP}(x||101) \oplus \text{RP}(x||110) \]

- Efficient than XORP[3] - requires 5 block cipher calls for \(2^n\)-bit output

[Pa\text{tarin}, 2010, Cogliati et al., 2014, Bhattacharya and Nandi, 2018b]: Secure up to \(O(2^n)\) queries

Can be generalized to XORP\([k]\) and XORP\('[k]\) (XORP = XORP[2]).

Our focus \(k = 3\).

Application

CENC [Iwata, 2006, Bhattacharya and Nandi, 2018b], PMAC_Plus [Yasuda, 2011], ZMAC [Iwata et al., 2017].
Multi-user PRF-Security of XORP[k]: A Concern

XORP[k], XORP[k], ..., XORP[k], XORP[k]

independent
Multi-user PRF-Security of XORP[^k]: A Concern

XORP[^k], XORP[^k],…, XORP[^k], XORP[^k]

independent
Multi-user PRF-Security of XORP[\(k\)]: A Concern

- XORP[\(k\)], XORP[\(k\)], ..., XORP[\(k\)], XORP[\(k\)]

independent
Multi-user PRF-Security of XORP[k]: A Concern

u users

Q_{max} queries per user

$\text{XORP}[k], \text{XORP}[k], \ldots, \text{XORP}[k], \text{XORP}[k]$ independent

(ABy hybrid reduction) Secure up to $u \sim O(2^n^2)$ and $Q_{max} \sim O(2^n^2)$

AES: Secure for $uq_{max} < O(2^{96})$ (for an advantage $1/2^{32}$)

Scale and growth of internet and other technologies is a concern
Multi-user PRF-Security of XORP\([k]\): A Concern

\[u \text{ users} \]

\[q_{max} \text{ queries per user} \]

(By hybrid reduction) Secure up to \(u \sim O(2^{\frac{n}{2}}) \) and \(q_{max} \sim O(2^{\frac{n}{2}}) \)
Multi-user PRF-Security of XORP[^k^]: A Concern

\(u\) users

\(q_{max}\) queries per user

(By hybrid reduction) Secure up to \(u \sim O\left(2^{\frac{n}{2}}\right)\) and \(q_{max} \sim O\left(2^{\frac{n}{2}}\right)\)

AES: Secure for \(uq_{max} < O\left(2^{96}\right)\) (for an advantage \(\frac{1}{2^{32}}\))
Multi-user PRF-Security of XORP[κ]: A Concern

\[\text{XORP}[k], \text{XORP}[k], \ldots, \text{XORP}[k], \text{XORP}[k] \]

\(u \) users

\(q_{\text{max}} \) queries per user

(By hybrid reduction) Secure up to \(u \sim O(2^{n/2}) \) and \(q_{\text{max}} \sim O(2^{n/2}) \)

AES: Secure for \(uq_{\text{max}} < O(2^{96}) \) (for an advantage \(\frac{1}{2^{32}} \))

Scale and growth of internet and other technologies is a concern
Multi-user PRF-Security of XORP\([k]\): A Concern

\(u\) users

\(q_{\text{max}}\) queries per user

(By hybrid reduction) Secure up to \(u \sim O(2^{\frac{n}{2}})\) and \(q_{\text{max}} \sim O(2^{\frac{n}{2}})\)

AES: Secure for \(u q_{\text{max}} < O(2^{96})\) (for an advantage \(\frac{1}{2^{32}}\))

Scale and growth of internet and other technologies is a concern

Possible fix: Increase the block length of the cipher

Block ciphers like AES come with fixed block length
Our Contribution (Informal)

- XORP[3] is secure up to $u \sim O(2^n)$ and $q_{max} \sim O(2^n)$
Our Contribution (Informal)

- XORP\([3]\) is secure up to \(u \sim O(2^n)\) and \(q_{\text{max}} \sim O(2^n)\)
 - Substantial improvement over \(u \sim O(2^{\frac{n}{2}})\) and \(q_{\text{max}} \sim O(2^{\frac{n}{2}})\)
Our Contribution (Informal)

- XORP[3] is secure up to $u \sim O(2^n)$ and $q_{max} \sim O(2^n)$
 - Substantial improvement over $u \sim O(2^\frac{n}{2})$ and $q_{max} \sim O(2^\frac{n}{2})$
- Single-user XORP[3]: Adversary’s advantage is negligible even after $O(2^n)$ queries
Our Contribution (Informal)

- XORP[3] is secure up to $u \sim O(2^n)$ and $q_{max} \sim O(2^n)$
 - Substantial improvement over $u \sim O(2^{\frac{n}{2}})$ and $q_{max} \sim O(2^{\frac{n}{2}})$
- Single-user XORP[3]: Adversary’s advantage is negligible even after $O(2^n)$ queries
 - Seems novel in the literature
Our Contribution (Informal)

- XORP[3] is secure up to $u \sim O(2^n)$ and $q_{\text{max}} \sim O(2^n)$
 - Substantial improvement over $u \sim O(2^{\frac{n}{2}})$ and $q_{\text{max}} \sim O(2^{\frac{n}{2}})$

- Single-user XORP[3]: Adversary’s advantage is negligible even after $O(2^n)$ queries
 - Seems novel in the literature

- XORP'[3] provides same level of security
1 Motivation: PRF and Its Multi-user Security

2 Technical Background and Our Results (Statements)

3 Multi-user PRF-Security of XORP[3]: Proof Outline

4 References
Security Notion: Indistinguishability

Setting

Func_n: All functions from $\{0, 1\}^{n-2}$ to $\{0, 1\}^n$.
Perm_n: All permutations from $\{0, 1\}^n$ to $\{0, 1\}^n$.
Security Notion: Indistinguishability

Setting

Func_n: All functions from $\{0, 1\}^{n-2}$ to $\{0, 1\}^n$.

Perm_n: All permutations from $\{0, 1\}^n$ to $\{0, 1\}^n$.

Security Game

\[\text{XORP}[3]: \text{RP} \leftarrow \text{Perm}_n \]

\[\text{RF}: \text{RF} \leftarrow \text{Func}_n \]
Security Notion: Indistinguishability

Setting

Func$_n$: All functions from $\{0, 1\}^{n-2}$ to $\{0, 1\}^n$.

Perm$_n$: All permutations from $\{0, 1\}^n$ to $\{0, 1\}^n$.

Security Game

Security Game XORP$[3]$: RP \leftarrow Perm$_n$

Reply: $P = \text{XORP}[3](x)$

Query: $x \in \{0, 1\}^{n-2}$

RF : RF \leftarrow Func$_n$

Reply: $R \leftarrow \{0, 1\}^n$
Security Notion: Indistinguishability

Setting

Func$_n$: All functions from $\{0, 1\}^{n-2}$ to $\{0, 1\}^n$.
Perm$_n$: All permutations from $\{0, 1\}^n$ to $\{0, 1\}^n$.

Security Game

$XORP[3]: \text{RP} \leftarrow \$ \text{Perm}_n$

Reply: $P = XORP[3](x)$

$RF: \text{RF} \leftarrow \$ \text{Func}_n$

Reply: $R \leftarrow \$ \{0, 1\}^n$

Query: $x \in \{0, 1\}^{n-2}$

A

$b \in \{0, 1\}$
Security Notion: Indistinguishability

Setting

\(\text{Func}_n \): All functions from \(\{0, 1\}^{n-2} \) to \(\{0, 1\}^n \).

\(\text{Perm}_n \): All permutations from \(\{0, 1\}^n \) to \(\{0, 1\}^n \).

Security Game

\[\text{XORP}[3] : \text{RP} \leftarrow \$ \text{Perm}_n \]

Reply: \(P = \text{XORP}[3](x) \)

Query: \(x \in \{0, 1\}^{n-2} \)

\[\text{RF} : \text{RF} \leftarrow \$ \text{Func}_n \]

Reply: \(R \leftarrow \{0, 1\}^n \)

\(\mathcal{A} \)

\(b \in \{0, 1\} \)

Quantifying Security: Advantage

\[\text{Adv}^{\text{prf}}_{\text{XORP}[3]}(\mathcal{A}) := |\Pr[\mathcal{A}^{\text{XORP}[3]} \rightarrow 1] - \Pr[\mathcal{A}^{\text{RF}} \rightarrow 1]| \]
Focus on information theoretic security of XORP[3].

- \mathcal{A} computationally unbounded \Rightarrow \mathcal{A} is deterministic (runs with best coins)

Restrict \mathcal{A} to q queries.

- W.l.o.g. \mathcal{A} does not repeat queries.
Focus on information theoretic security of XORP[3].

- \mathcal{A} computationally unbounded \Rightarrow \mathcal{A} is deterministic (runs with best coins)

Restrict \mathcal{A} to q queries.

- W.l.o.g. \mathcal{A} does not repeat queries.

XORP[3] transcript $P := (P_1, P_2, \ldots, P_q)$; RF transcript $R := (R_1, R_2, \ldots, R_q)$

$$Adv_{XORP[3]}^{\text{prf}}(\mathcal{A}) \leq \| \Pr_P - \Pr_R \|$$
Security Notion: Multi-user Indistinguishability

Setting

\[\text{Func}^u_n := \{ f \mid f : [u] \times \{0, 1\}^{n-2} \mapsto \{0, 1\}^n \}, \text{RF} \leftarrow \text{Func}^u_n \]

\[\text{RP}_1, \text{RP}_2, \ldots, \text{RP}_u \leftarrow \text{Perm}_n \]
Security Notion: Multi-user Indistinguishability

Setting

\[\text{Func}_n^u := \{ f | f : [u] \times \{0, 1\}^{n-2} \rightarrow \{0, 1\}^n \}, \ RF \leftarrow \text{Func}_n^u \]

\[\text{RP}_1, \text{RP}_2, \ldots, \text{RP}_u \leftarrow \text{Perm}_n \]

Security Game

A diagram illustrating the security game with nodes labeled:

- XORP[3]^u
- RF
- A

The diagram shows the interaction between these nodes, with arrows indicating the flow of the game.
Security Notion: Multi-user Indistinguishability

Setting

\[\text{Func}^u_n := \{ f \mid f : [u] \times \{0, 1\}^{n-2} \rightarrow \{0, 1\}^n \}, \ RF \leftarrow \text{Func}^u_n \]

\[\text{RP}_1, \text{RP}_2, \ldots, \text{RP}_u \leftarrow \text{Perm}_n \]

Security Game

\[= \text{RP}_i(x||00) \oplus \text{RP}_i(x||01) \oplus \text{RP}_i(x||10) \]

\[\text{Query: } (i, x) \in [u] \times \{0, 1\}^{n-2} \]

\[\text{Reply: } P = \text{XORP}_{\text{RP}_i[3]}(x) \]

\[\text{Reply: } R \leftarrow \{0, 1\}^n \]
Security Notion: Multi-user Indistinguishability

Setting

\[\text{Func}_n^u := \{ f | f : [u] \times \{0, 1\}^{n-2} \mapsto \{0, 1\}^n \}, \text{RF} \leftarrow $ Func_n^u \]

\[\text{RP}_1, \text{RP}_2, \ldots, \text{RP}_u \leftarrow $ \text{Perm}_n \]

Security Game

\[= \text{RP}_i(x||00) \oplus \text{RP}_i(x||01) \oplus \text{RP}_i(x||10) \]

Query: \((i, x) \in [u] \times \{0, 1\}^{n-2}\)

Reply: \(P = \text{XORP}_{\text{RP}_i}[3](x)\)

Reply: \(R \leftarrow \{0, 1\}^n\)
Setting

\[\text{Func}_n^u := \{ f \mid f : [u] \times \{0, 1\}^{n-2} \rightarrow \{0, 1\}^n \}, \text{RF} \leftarrow \text{Func}_n^u \]

\[\text{RP}_1, \text{RP}_2, \ldots, \text{RP}_u \leftarrow \text{Perm}_n \]

Security Game

Query: \((i, x) \in [u] \times \{0, 1\}^{n-2} \)

Reply: \(P = \text{XORP}_{\text{RP}_i}[3](x) \)

Reply: \(R \leftarrow \{0, 1\}^n \)

\[= \text{RP}_i(x\|00) \oplus \text{RP}_i(x\|01) \oplus \text{RP}_i(x\|10) \]

\[\text{Adv}_{\text{mu}_{\text{prf}}}^{XORP[3]^u}(\mathcal{A}) := |\Pr[\mathcal{A} \text{ XORP}[3]^u \rightarrow 1] - \Pr[\mathcal{A} \text{ RF} \rightarrow 1]| \]
Security Notion: Multi-user Indistinguishability

Setting

\[\text{Func}_n^u := \{ f \mid f : [u] \times \{0, 1\}^{n-2} \rightarrow \{0, 1\}^n \}, \text{RF} \leftarrow \$ \text{Func}_n^u \]
\[\text{RP}_1, \text{RP}_2, \ldots, \text{RP}_u \leftarrow \$ \text{Perm}_n \]

Security Game

\[= \text{RP}_i(x||00) \oplus \text{RP}_i(x||01) \oplus \text{RP}_i(x||10) \]

Quantifying Security: Advantage

\[\text{Adv}^{\text{mu-prf}}_{\text{XORP}[3]}(\mathcal{A}) := |\text{Pr}[\mathcal{A}^{\text{XORP}[3]} \rightarrow 1] - \text{Pr}[\mathcal{A}^{\text{RF}} \rightarrow 1]| \]
Allow \mathcal{A} to make q_{max} queries to each user (more advantage to \mathcal{A}) $\Rightarrow q = q_{\text{max}} \times u$.

- \mathcal{A}'s queries to the same user are distinct.
- Each user holds independent copy of $\text{RP} \Rightarrow$ Reply of each user independent.
Allow \mathcal{A} to make q_{max} queries to each user (more advantage to \mathcal{A}) $\Rightarrow q = q_{max} \times u$.

- \mathcal{A}’s queries to the same user are distinct.
- Each user holds independent copy of $RP \Rightarrow$ Reply of each user independent.

$XORP[3]^u$ transcript $P := (P_1, P_2, \ldots, P_q)$; RF transcript $R := (R_1, R_2, \ldots, R_q)$

$$Adv_{XORP[3]}^{\mu_{prf}}(\mathcal{A}) \leq \|Pr_P - Pr_R\|$$
• \(\text{Adv}^{\text{mu-prf}}_{\text{XORP}[3]}(\mathcal{A}) \leq 20\sqrt{uq_{\text{max}}}/2^n \) \((q_{\text{max}} \leq 2^n/12)\)
Our Contribution (Formal) and Application

\[\text{Adv}^{\text{mu-prf}}_{\text{XORP}[3]}(\mathcal{A}) \leq 20\sqrt{uq_{\text{max}}/2^n} \quad (q_{\text{max}} \leq 2^n/12) \]

- Can be used by \(O(2^n) \) users and adversary is allowed to make \(O(2^n) \) queries per user.
Our Contribution (Formal) and Application

\[\text{Adv}_{\text{mu}_{\text{prf}}}^{\text{XORP}[3]}(\mathcal{A}) \leq 20\sqrt{uq_{\text{max}}}/2^n \quad (q_{\text{max}} \leq 2^n/12) \]

- Can be used by \(O(2^n) \) users and adversary is allowed to make \(O(2^n) \) queries per user.
- For single user, adversary’s advantage is \(O \left(\frac{1}{\sqrt{2^n}} \right) \) even after making \(O(2^n) \) queries.
Our Contribution (Formal) and Application

- \(\text{Adv}_{\text{XORP}[3]}^{\mu_{\text{prf}}} (\mathcal{A}) \leq 20\sqrt{uq_{\text{max}}}/2^n \) \((q_{\text{max}} \leq 2^n/12)\)

 - Can be used by \(O(2^n)\) users and adversary is allowed to make \(O(2^n)\) queries per user.
 - For single user, adversary’s advantage is \(O\left(\frac{1}{\sqrt{2^n}}\right)\) even after making \(O(2^n)\) queries.

- \(\text{Adv}_{\text{XORP'}[3]}^{\text{prf}} (\mathcal{A}) \leq \frac{5\sqrt{q}}{N} + \frac{256q}{N^2} + \frac{8192q}{N^{3/2}} \)

Application

- Counter-mode encryption using XORP\([3]\)
- Multi-user security similar to XORP\([3]\) (when instantiated with a good block cipher)

[Bellare et al., 1999]: Parity-method encryption
- similar security, but requires additional randomness
Our Contribution (Formal) and Application

- $\text{Adv}_{\text{XORP[3]}}^{\mu\text{-prf}}(\mathcal{A}) \leq 20\sqrt{uq_{\text{max}}}/2^n$ ($q_{\text{max}} \leq 2^n/12$)

 - Can be used by $O(2^n)$ users and adversary is allowed to make $O(2^n)$ queries per user.
 - For single user, adversary’s advantage is $O\left(\frac{1}{\sqrt{2^n}}\right)$ even after making $O(2^n)$ queries.

- $\text{Adv}_{\text{XORP'[3]}}^{\text{prf}}(\mathcal{A}) \leq \frac{5\sqrt{q}}{N} + \frac{256q}{N^2} + \frac{8192q}{N^{3/2}}$

 - Multi-user analysis (not given) will produce similar type of bound as XORP[3].
Our Contribution (Formal) and Application

- \(\text{Adv}^{\text{mu-prf}}_{\text{XORP}[3]}(A) \leq 20\sqrt{uq_{\text{max}}}/2^n \ (q_{\text{max}} \leq 2^n/12) \)

 [Hoang and Shen, 2020]: \(\text{Adv}^{\text{mu-prf}}_{\text{XORP}[2]}(A) = O\left(\frac{\sqrt{nq}}{2^n}\right) \)

 - Can be used by \(O(2^n) \) users and adversary is allowed to make \(O(2^n) \) queries per user.
 - For single user, adversary’s advantage is \(O\left(\frac{1}{\sqrt{2^n}}\right) \) even after making \(O(2^n) \) queries.

- \(\text{Adv}^{\text{prf}}_{\text{XORP'}[3]}(A) \leq \frac{5\sqrt{q}}{N} + \frac{256q}{N^2} + \frac{8192q}{N^3} \)

 - Multi-user analysis (not given) will produce similar type of bound as XORP[3].

Application

Our Contribution (Formal) and Application

- $\text{Adv}_{\text{XORP}[3]}^{\mu_{\text{prf}}} (A) \leq 20\sqrt{uq_{\text{max}}}/2^n \ (q_{\text{max}} \leq 2^n/12)$

 [Hoang and Shen, 2020]: $\text{Adv}_{\text{XORP}[2]}^{\mu_{\text{prf}}} (A) = O \left(\frac{\sqrt{nq}}{2^n} \right)$

 ▶ Can be used by $O(2^n)$ users and adversary is allowed to make $O(2^n)$ queries per user.

 ▶ For single user, adversary’s advantage is $O \left(\frac{1}{\sqrt{2^n}} \right)$ even after making $O(2^n)$ queries.

- $\text{Adv}_{\text{XORP'}[3]}^{\text{prf}} (A) \leq \frac{5\sqrt{q}}{N} + \frac{256q}{N^2} + \frac{8192q}{N^{3/2}}$

 ▶ Multi-user analysis (not given) will produce similar type of bound as XORP[3].

 [Cogliati, 2018]: $\text{Adv}_{\text{XORP'}[2]}^{\mu_{\text{prf}}} (A) = O \left(\frac{q}{2^n} \right)$
Our Contribution (Formal) and Application

- \(\text{Adv}_{\text{XORP}^{[3]}}^\text{mu-prf}(\mathcal{A}) \leq 20\sqrt{uq_{\text{max}}}/2^n \) \((q_{\text{max}} \leq 2^n/12) \)

[Hoang and Shen, 2020]: \(\text{Adv}_{\text{XORP}^{[2]}}^\text{mu-prf}(\mathcal{A}) = O\left(\frac{\sqrt{nq}}{2^n} \right) \)

- Can be used by \(O(2^n) \) users and adversary is allowed to make \(O(2^n) \) queries per user.
- For single user, adversary’s advantage is \(O\left(\frac{1}{\sqrt{2^n}} \right) \) even after making \(O(2^n) \) queries.

- \(\text{Adv}_{\text{XORP'}^{[3]}}^\text{prf}(\mathcal{A}) \leq \frac{5\sqrt{q}}{N} + \frac{256q}{N^2} + \frac{8192q}{N^3} \)

- Multi-user analysis (not given) will produce similar type of bound as XORP\([3]\).

[Cogliati, 2018]: \(\text{Adv}_{\text{XORP'}^{[2]}}^\text{mu-prf}(\mathcal{A}) = O\left(\frac{q}{2^n} \right) \)

Application

Counter-mode encryption using XORP\([3]\)
Our Contribution (Formal) and Application

- $\text{Adv}_{\text{XORP}[3]}^{\mu_{\text{prf}}}(\mathcal{A}) \leq 20\sqrt{uq_{\max}/2^n} \quad (q_{\max} \leq 2^n/12)$

 [Hoang and Shen, 2020]: $\text{Adv}_{\text{XORP}[2]}^{\mu_{\text{prf}}}(\mathcal{A}) = O \left(\frac{\sqrt{nq}}{2^n} \right)$

 ▶ Can be used by $O(2^n)$ users and adversary is allowed to make $O(2^n)$ queries per user.
 ▶ For single user, adversary’s advantage is $O \left(\frac{1}{\sqrt{2^n}} \right)$ even after making $O(2^n)$ queries.

- $\text{Adv}_{\text{XORP'}[3]}^{\text{prf}}(\mathcal{A}) \leq \frac{5\sqrt{q}}{N} + \frac{256q}{N^2} + \frac{8192q}{N^{3/2}}$

 ▶ Multi-user analysis (not given) will produce similar type of bound as XORP[3].

 [Cogliati, 2018]: $\text{Adv}_{\text{XORP'}[2]}^{\mu_{\text{prf}}}(\mathcal{A}) = O \left(\frac{q}{2^n} \right)$

Application

Counter-mode encryption using XORP[3]

- Multi-user security similar to XORP[3] (when instantiated with a good block cipher)

 [Bellare et al., 1999]: Parity-method encryption

 ▶ similar security, but requires additional randomness
Our Technique: χ^2-method

- $X^q := (X_1, \ldots, X_q) \sim \Pr_X$, and $Z^q := (Z_1, \ldots, Z_q) \sim \Pr_Z$ over $\Omega \times \cdots \times \Omega$.
- $\Pr_{X|_{X_{i-1}}}(x_i) := \Pr[X_i = x_i \mid X_1 = x_1, \ldots, X_{i-1} = x_{i-1}]$,
 $\Pr_{Z|_{Z_{i-1}}}(x_i) := \Pr[Z_i = x_i \mid Z_1 = x_1, \ldots, Z_{i-1} = x_{i-1}]$.

Theorem ([Dai et al., 2017])

If $\Pr_{X|_{X_{i-1}}}$ is contained within the support of the distribution $\Pr_{Z|_{Z_{i-1}}}$ for all x_{i-1}, then

$\|\Pr_X - \Pr_Z\| \leq \frac{1}{2} q \sum_{i=1}^{\infty} \mathbb{E}_{X_i} [\chi^2(X_i - 1)]$.

(1)

Effectively applied in [Bhattacharya and Nandi, 2018b, Bhattacharya and Nandi, 2018a, Choi et al., 2019, Mennink, 2019, Gunsing and Mennink, 2020].
Our Technique: χ^2-method

- $X^q := (X_1, \ldots, X_q) \sim \text{Pr}_X$, and $Z^q := (Z_1, \ldots, Z_q) \sim \text{Pr}_Z$ over $\Omega \times \cdots \times \Omega$.
- $\text{Pr}_{X|x_{i-1}}(x_i) := \text{Pr}[X_i = x_i \mid X_1 = x_1, \ldots, X_{i-1} = x_{i-1}]$,
 $\text{Pr}_{Z|x_{i-1}}(x_i) := \text{Pr}[Z_i = x_i \mid Z_1 = x_1, \ldots, Z_{i-1} = x_{i-1}]$.
- $\chi^2(x_i) := \chi^2(\text{Pr}_{X|x_{i-1}}, \text{Pr}_{Z|x_{i-1}}) = \sum_{x_i \in \Omega} \frac{(\text{Pr}_{X|x_{i-1}}(x_i) - \text{Pr}_{Z|x_{i-1}}(x_i))^2}{\text{Pr}_{Z|x_{i-1}}(x_i)}$
Our Technique: χ^2-method

- $X^q := (X_1, \ldots, X_q) \sim \Pr_X$, and $Z^q := (Z_1, \ldots, Z_q) \sim \Pr_Z$ over $\Omega \times \cdots \times \Omega$.
- $\Pr_{X|x_{i-1}}(x_i) := \Pr[X_i = x_i | X_1 = x_1, \ldots, X_{i-1} = x_{i-1}]$, $\Pr_{Z|x_{i-1}}(x_i) := \Pr[Z_i = x_i | Z_1 = x_1, \ldots, Z_{i-1} = x_{i-1}]$.
- $\chi^2(x_i) := \chi^2(\Pr_{X|x_{i-1}}, \Pr_{Z|x_{i-1}}) = \sum_{x_i \in \Omega} \frac{(\Pr_{X|x_{i-1}}(x_i) - \Pr_{Z|x_{i-1}}(x_i))^2}{\Pr_{Z|x_{i-1}}(x_i)}$

Theorem ([Dai et al., 2017])

If $\Pr_{X|x_{i-1}}$ is contained within the support of the distribution $\Pr_{Z|x_{i-1}}$ for all x_{i-1}, then

$$\|\Pr_X - \Pr_Z\| \leq \left(\frac{1}{2} \sum_{i=1}^{q} \text{Ex}[\chi^2(X^{i-1})] \right)^{\frac{1}{2}} \tag{1}$$
Our Technique: χ^2-method

- $X^q := (X_1, \ldots, X_q) \sim \Pr_X$, and $Z^q := (Z_1, \ldots, Z_q) \sim \Pr_Z$ over $\Omega \times \cdots \times \Omega$.
- $\Pr_{X|\mathbf{x}^{i-1}}(x_i) := \Pr[X_i = x_i \mid X_1 = x_1, \ldots, X_{i-1} = x_{i-1}]$, $\Pr_{Z|\mathbf{x}^{i-1}}(x_i) := \Pr[Z_i = x_i \mid Z_1 = x_1, \ldots, Z_{i-1} = x_{i-1}]$.
- $\chi^2(x_i) := \chi^2(\Pr_{X|\mathbf{x}^{i-1}}, \Pr_{Z|\mathbf{x}^{i-1}}) = \sum_{x_i \in \Omega} \frac{(\Pr_{X|\mathbf{x}^{i-1}}(x_i) - \Pr_{Z|\mathbf{x}^{i-1}}(x_i))^2}{\Pr_{Z|\mathbf{x}^{i-1}}(x_i)}$.

Theorem ([Dai et al., 2017])

If $\Pr_{X|\mathbf{x}^{i-1}}$ is contained within the support of the distribution $\Pr_{Z|\mathbf{x}^{i-1}}$ for all \mathbf{x}^{i-1}, then

$$\|\Pr_X - \Pr_Z\| \leq \left(\frac{1}{2} \sum_{i=1}^{q} \mathbb{E}[\chi^2(X^{i-1})]\right)^{\frac{1}{2}}.$$ (1)

Effectively applied in [Bhattacharya and Nandi, 2018b, Bhattacharya and Nandi, 2018a, Choi et al., 2019, Mennink, 2019, Gunsing and Mennink, 2020].
1 Motivation: PRF and Its Multi-user Security

2 Technical Background and Our Results (Statements)

3 Multi-user PRF-Security of XORP[3]: Proof Outline

4 References
Applying the χ^2-method: Problem Due to Adaptive Choice

$$\text{Adv}_{\text{XORP}[3]}^{\text{mu-prf}}(\mathcal{A}) \leq \|\text{Pr}_P - \text{Pr}_R\|$$
Applying the χ^2-method: Problem Due to Adaptive Choice

\[
\text{Adv}_{\text{XORP}[3]}^{\mu_{\text{prf}}} (\mathcal{A}) \leq \| \Pr_P - \Pr_R \| \leq ?
\]
Applying the χ^2-method: Problem Due to Adaptive Choice

$$\text{Adv}_{\text{XORP}[3]}^{\text{mu-prf}}(\mathcal{A}) \leq \|\Pr_P - \Pr_R\| \leq ?$$

Can we apply the χ^2-method to upper bound $\|\Pr_P - \Pr_R\|$?
Applying the χ^2-method: Problem Due to Adaptive Choice

\[\text{Adv}^\mu_{\text{prf}}_{\text{XORP}[3]}(\mathcal{A}) \leq \| \text{Pr}_P - \text{Pr}_R \| \leq ? \]

Can we apply the χ^2-method to upper bound $\| \text{Pr}_P - \text{Pr}_R \|$?

\mathcal{A} chooses user U_i adaptively \Rightarrow U_i potentially depends on all the previous replies (from all the users)

Can not apply the χ^2-method directly
Applying the χ^2-method: Problem Due to Adaptive Choice

$$\text{Adv}^{\text{mu_prf}}_{\text{XORP}[3]}(\mathcal{A}) \leq \|\text{Pr}_P - \text{Pr}_R\| \leq ?$$

Can we apply the χ^2-method to upper bound $\|\text{Pr}_P - \text{Pr}_R\|$?

\mathcal{A} chooses user U_i adaptively \Rightarrow U_i potentially depends on all the previous replies (from all the users)

Can not apply the χ^2-method directly

Is there a way round?
Applying the χ^2-method: Problem Due to Adaptive Choice

$$\text{Adv}_{\text{XORP}[3]}^{\mu_{\text{prf}}}(\mathcal{A}) \leq \| \text{Pr}_P - \text{Pr}_R \| \leq ?$$

Can we apply the χ^2-method to upper bound $\| \text{Pr}_P - \text{Pr}_R \|$?

\(\mathcal{A}\) chooses user \(U_i\) adaptively \(\Rightarrow\) \(U_i\) potentially depends on all the previous replies (from all the users)

Can not apply the χ^2-method directly

Is there a way round?

Reorder (permute) the transcript (P to S and R to U)

Club the replies from the same user together

More precisely ...
Random Experiment for U

\begin{align*}
1 & : \quad U := (U_i : i \in [q]) \leftarrow \text{wr } G \\
2 & : \quad \text{return } U
\end{align*}

Random Experiment for S

\begin{align*}
1 & : \quad \text{for } 1 \leq i \leq u \\
2 & : \quad \hat{T}_i := (T_{j,k} : j \in [I_i], k \in [3]) \leftarrow \text{wor } G \\
& \quad / \hat{T}_i \text{ is sampled independent of } \hat{T}_j, \ 1 \leq j \leq i - 1 \\
3 & : \quad \text{for } 1 \leq \ell \leq q \\
4 & : \quad S_\ell = T_{\ell,1} + T_{\ell,2} + T_{\ell,3} \\
5 & : \quad \text{return } S := (S_\ell : \ell \in [q])
\end{align*}
A Solution: Reordering the Transcript

Random Experiment for U

1: \(U := (U_i : i \in [q]) \leftarrow \text{wr} \, \mathcal{G} \)
2: \text{return } U

Random Experiment for S

1: \text{for } 1 \leq i \leq u
2: \(\hat{T}_i := (T_{j,k} : j \in [I_i], k \in [3]) \leftarrow \text{wor} \, \mathcal{G} \)
 \(/ \hat{T}_i \text{ is sampled independent of } \hat{T}_j, \ 1 \leq j \leq i - 1 \)
3: \text{for } 1 \leq \ell \leq q
4: \(S_\ell = T_{\ell,1} + T_{\ell,2} + T_{\ell,3} \)
5: \text{return } S := (S_\ell : \ell \in [q])

Reordering R (random WR sample) to U (random WR sample): they are same.
A Solution: Reordering the Transcript

Random Experiment for U

1: $U := (U_i : i \in [q]) \leftarrow \text{wr } \mathcal{G}$
2: return U

Random Experiment for S

1: for $1 \leq i \leq u$
2: $\hat{T}_i := (T_{j,k} : j \in [I_i], k \in [3]) \leftarrow \text{wor } \mathcal{G}$
 / \hat{T}_i is sampled independent of \hat{T}_j, $1 \leq j \leq i - 1$
3: for $1 \leq \ell \leq q$
4: $S_\ell = T_{\ell,1} + T_{\ell,2} + T_{\ell,3}$
5: return $S := (S_\ell : \ell \in [q])$

Reordering R (random WR sample) to U (random WR sample): they are same.

Reordering P to S:

$S = S_1, S_2, \ldots, S_{q_{\max}}, S_{q_{\max}}+1 \ldots, S_{2q_{\max}}, \ldots, S_{(u-1)q_{\max}}+1 \ldots, S_{q=ug_{\max}}$
Two Observations

- Distribution of output is independent of input in both worlds.
- \(A \) makes same number (\(= q_{max} \)) of queries to each user.

Reordering (Contd.)
Two Observations

- Distribution of output is independent of input in both worlds.
- \(\mathcal{A} \) makes same number \((= q_{max}) \) of queries to each user.

Makes reordering possible
Two Observations

- Distribution of output is independent of input in both worlds.
- A makes same number ($= q_{max}$) of queries to each user.

Makes reordering possible

(In S) U_i is uniquely determined by i

$$U_i = j \in [u] \text{ such that } i = (j - 1)q_{max} + k, k \in [q_{max}]$$
Two Observations

- Distribution of output is independent of input in both worlds.
- \mathcal{A} makes same number ($= q_{max}$) of queries to each user.

Makes reordering possible

U_i is uniquely determined by i

$U_i = j \in [u]$ such that $i = (j - 1)q_{max} + k$, $k \in [q_{max}]$

So, in particular

$\Pr\{S_i = (j-1)q_{max} + k | U=1\}$

$U=1$

$S_1, \ldots, S_{q_{max}}$ \quad $\quad S_{q_{max}+1} \ldots, S_{2q_{max}}$ \quad $\ldots, S_{(j-1)q_{max}+1} \ldots, S_{i-1}$

$U=2$

$U=j$

$\Pr\{S_{(j-1)q_{max}+1} \ldots, S_{i-1} | U=2\}$

$U=j$

$\Pr\{S_i | U=2\}$

$\Pr\{S_{(j-1)q_{max}+1} \ldots, S_{i-1}\}$ (RP$_j$ is independent of RP$_1$, RP$_2$, ...)

Reordering (Contd.)
Two Observations

- Distribution of output is independent of input in both worlds.
- \(\mathcal{A} \) makes same number (\(= q_{\text{max}} \)) of queries to each user.

Makes reordering possible

(In S) \(U_i \) is uniquely determined by \(i \)

\[U_i = j \in [u] \text{ such that } i = (j - 1)q_{\text{max}} + k, \ k \in [q_{\text{max}}] \]

So, in particular

\[
\Pr \{ S_{(j-1)q_{\text{max}}+1} \ldots , S_{i-1} \mid U=1 \} = \Pr \{ S_{i} \mid S_{(j-1)q_{\text{max}}+1} \ldots , S_{i-1} \} \quad (\text{RP}_j \text{ is independent of } \text{RP}_1, \ \text{RP}_2, \ldots)
\]

This is needed for the application of the \(\chi^2 \)-method
Two Observations

- Distribution of output is independent of input in both worlds.
- \(\mathcal{A} \) makes same number (= \(q_{\text{max}} \)) of queries to each user.

Makes reordering possible

\(\text{(In S)} \) \(U_i \) is uniquely determined by \(i \)

\[U_i = j \in [u] \text{ such that } i = (j - 1)q_{\text{max}} + k, k \in [q_{\text{max}}] \]

So, in particular

\[\Pr\{ S_i = (j - 1)q_{\text{max}} + k \mid U = 1 \} = \Pr\{ S_j = (j - 1)q_{\text{max}} + k \mid U = 1 \} \]

\[= \Pr\{ S_i \mid S_{(j-1)q_{\text{max}} + 1}, \ldots, S_{i-1} \} \quad (\text{RP}_j \text{ is independent of } \text{RP}_1, \text{RP}_2, \ldots) \]

This is needed for the application of the \(\chi^2 \)-method

Reordering preserves statistical distance:

\[\| \Pr_S - \Pr_U \| = \| \Pr_P - \Pr_R \| \]
Enough to upper bound $\|\Pr_S - \Pr_U\|$
Enough to upper bound $\|\Pr_S - \Pr_U\|$?

Can χ^2-method be applied to upper bound $\|\Pr_S - \Pr_U\|$?

Support of $S \subseteq$ Support of U?

How to ensure?
Extending the Transcripts: Ensuring the Support Condition

Enough to upper bound \(\| \text{Pr}_S - \text{Pr}_U \| \)

Can \(\chi^2 \)-method be applied to upper bound \(\| \text{Pr}_S - \text{Pr}_U \| \)?

Support of \(S \subseteq \) Support of \(U \)?

How to ensure?

Extend \(S \) and \(U \) (to \(X \) and \(Y \) resp.)
Extending the Transcripts: Ensuring the Support Condition

Enough to upper bound $\|\text{Pr}_S - \text{Pr}_U\|$

Can χ^2-method be applied to upper bound $\|\text{Pr}_S - \text{Pr}_U\|$?

Support of $S \subseteq$ Support of U?

How to ensure?

Extend S and U (to X and Y resp.)

S and U are marginals of X and Y resp.
Enough to upper bound $\|\text{Pr}_S - \text{Pr}_U\|$.

Can χ^2-method be applied to upper bound $\|\text{Pr}_S - \text{Pr}_U\|$?

Support of $S \subseteq$ Support of U?

How to ensure?

Extend S and U (to X and Y resp.)

How to extend?

S and U are marginals of X and Y resp.

S and U are marginals of X and Y resp.
Enough to upper bound $\|\text{Pr}_S - \text{Pr}_U\|$.

Can χ^2-method be applied to upper bound $\|\text{Pr}_S - \text{Pr}_U\|$?

Support of $S \subseteq$ Support of U?

How to ensure?

Extend S and U (to X and Y resp.)

How to extend?

$X_i = (T_{i,1}, T_{i,2}, S_i)$

$Y_i = (V_{i,1}, V_{i,2}, U_i)$

for all $i \in [q]$
Extending the Transcripts: Ensuring the Support Condition

Enough to upper bound $\|\Pr_S - \Pr_U\|$.

Can χ^2-method be applied to upper bound $\|\Pr_S - \Pr_U\|$?

Support of $S \subseteq$ Support of U?

How to ensure?

Extend S and U (to X and Y resp.)

How to extend?

\[
X_i = (T_{i,1}, T_{i,2}, S_i) \\
Y_i = (V_{i,1}, V_{i,2}, U_i)
\]

for all $i \in [q]$.

S and U are marginals of X and Y resp.
Extending the Transcripts: Ensuring the Support Condition

Enough to upper bound $\|\Pr_S - \Pr_U\|$.

Can χ^2-method be applied to upper bound $\|\Pr_S - \Pr_U\|$?

Support of $S \subseteq$ Support of U?

How to ensure?

Extend S and U (to X and Y resp.)

How to extend?

$X_i = (T_{i,1}, T_{i,2}, S_i)$

$Y_i = (V_{i,1}, V_{i,2}, U_i)$ for all $i \in [q]$

$(V_{i,1}, V_{i,2}, V_{i,3}), \ i \in [q]$ behaves like a WOR sample
Extending the Transcripts: Ensuring the Support Condition

Enough to upper bound $\|\text{Pr}_S - \text{Pr}_U\|

Can χ^2-method be applied to upper bound $\|\text{Pr}_S - \text{Pr}_U\|$?

Support of $S \subseteq$ Support of U?

How to ensure?

Extend S and U (to X and Y resp.)

How to extend?

$X_i = (T_{i,1}, T_{i,2}, S_i)$

$Y_i = (V_{i,1}, V_{i,2}, U_i)$

for all $i \in [q]

$S_i = T_{i,1} + T_{i,2} + T_{i,3}$

$V_{i,3} = V_{i,1} + V_{i,2} + U_i$

$(V_{i,1}, V_{i,2}, V_{i,3}), i \in [q]$ behaves like a WOR sample

S and U are marginals of X and Y resp.
Enough to upper bound $\|\Pr_S - \Pr_U\|$

Can χ^2-method be applied to upper bound $\|\Pr_S - \Pr_U\|$?

Support of $S \subseteq$ Support of U?

How to ensure?

Extend S and U (to X and Y resp.)

How to extend?

$X_i = (T_{i,1}, T_{i,2}, S_i)$

$Y_i = (V_{i,1}, V_{i,2}, U_i)$

$V_{i,3} = V_{i,1} + V_{i,2} + U_i$

$(V_{i,1}, V_{i,2}, V_{i,3}), \ i \in [q] \ behaves \ like \ a \ WOR \ sample$

What are $V_{i,1}, V_{i,2}$?
Extending the Transcripts: Details

\[i = (j - 1)q_{\text{max}} + k \quad \Rightarrow \quad i\text{-th query} = j\text{-th user’s} \ k\text{-th query} \]
Extending the Transcripts: Details

\[U_i = j \]

\[i = (j - 1)q_{max} + k \quad \Rightarrow \quad i\text{-th query} = j\text{-th user’s } k\text{-th query} \]
Extending the Transcripts: Details

\[i = (j - 1)q_{max} + k \Rightarrow i\text{-th query} = j\text{-th user’s } k\text{-th query} \]

\[\mathcal{N}_i = \left\{ (v_1, v_2) \mid v_1, v_2, U_i + v_1 + v_2 \in \mathcal{G} \setminus \bigcup_{i=(j-1)q_{max}+1}^{(j-1)q_{max}+k-1} \{ V_{i,1}, V_{i,2}, V_{i,3} \}, \right. \]

\[U_i + v_1 + v_2, v_1, v_2 \text{ distinct} \} \]
$U_i = j \quad i = (j - 1)q_{max} + k \quad \Rightarrow \quad i$-th query = j-th user’s k-th query

$$N_i = \left\{ (v_1, v_2) \mid \right.$$

$\forall v_1, v_2, U_i + v_1 + v_2 \in G \setminus \bigcup_{i=(j-1)q_{max}+1}^{(j-1)q_{max}+k-1} \{ V_i,1, V_i,2, V_i,3 \}$,

$U_i + v_1 + v_2, v_1, v_2$ distinct

$$\left\} \right.$$

All previous samples of the j-th user
$U_i = j$

$i = (j - 1)q_{max} + k \Rightarrow i$-th query = j-th user’s k-th query

$$\mathcal{N}_i = \left\{ (v_1, v_2) \mid v_1, v_2, U_i + v_1 + v_2 \in G \setminus \bigcup_{i=(j-1)q_{max}+1}^{(j-1)q_{max}+k-1} \{V_{i,1}, V_{i,2}, V_{i,3}\}, U_i + v_1 + v_2, v_1, v_2 \text{ distinct} \right\}$$

$\text{(V}_{i,1}, \text{V}_{i,2}) \leftarrow \mathcal{N}_i$
 Extending the Transcripts: Details

\[U_i = j \]

\[i = (j - 1)q_{\text{max}} + k \quad \Rightarrow \quad \text{i-th query} = \text{j-th user’s k-th query} \]

\[\mathcal{N}_i = \left\{ (v_1, v_2) | \begin{array}{c}
(v_1, v_2, U_i + v_1 + v_2 \in \mathcal{G} \setminus \bigcup_{i=(j-1)q_{\text{max}}+1}^{(j-1)q_{\text{max}}+k-1} \{V_{i,1}, V_{i,2}, V_{i,3}\}, \\
U_i + v_1 + v_2, v_1, v_2 \text{ distinct} \end{array} \right\} \]

All previous samples of the j-th user

After Extension

- Support of X = Support of Y
$U_i = j$

\[i = (j - 1)q_{max} + k \implies i\text{-th query} = j\text{-th user's } k\text{-th query} \]

\[N_i = \left\{ (v_1, v_2) \mid \begin{array}{l} v_1, v_2, U_i + v_1 + v_2 \in \mathcal{G} \setminus \bigcup_{i=(j-1)q_{max}+1}^{(j-1)q_{max}+k-1} \{V_{i,1}, V_{i,2}, V_{i,3}\}, \\ U_i + v_1 + v_2, v_1, v_2 \text{ distinct} \end{array} \right\} \]

\[(V_{i,1}, V_{i,2}) \leftarrow N_i \]

\textbf{After Extension}

- Support of $X = \text{Support of } Y$
- S and U are marginals of X and Y (resp.) \implies \|Pr_S - Pr_U\| \leq \|Pr_X - Pr_Y\|
Extending the Transcripts: Details

\[U_i = j \]

\[i = (j - 1)q_{\text{max}} + k \quad \Rightarrow \quad i\text{-th query} = j\text{-th user’s} \ k\text{-th query} \]

\[\mathcal{N}_i = \left\{ (v_1, v_2) \mid \begin{array}{c}
v_1, v_2, U_i + v_1 + v_2 \in \mathcal{C} \setminus \\
(j-1)q_{\text{max}} + k - 1 \\
\bigcup_{i=(j-1)q_{\text{max}}+1} \{V_{i,1}, V_{i,2}, V_{i,3}\}, \\
U_i + v_1 + v_2, v_1, v_2 \text{ distinct} \end{array} \right\} \]

\[(V_{i,1}, V_{i,2}) \leftarrow \mathcal{N}_i \]

All previous samples of the \(j \)-th user

After Extension

- Support of \(X = \) Support of \(Y \)
- \(S \) and \(U \) are marginals of \(X \) and \(Y \) (resp.) \(\Rightarrow \quad \|\Pr_S - \Pr_U\| \leq \|\Pr_X - \Pr_Y\| \)
Extending the Transcripts: Details

\(U_i = j \quad \Rightarrow \quad i = (j - 1)q_{max} + k \)

\(i \)-th query = \(j \)-th user’s \(k \)-th query

\(\mathcal{N}_i = \left\{ (v_1, v_2) \mid v_1, v_2, U_i + v_1 + v_2 \in G \setminus \bigcup_{i = (j - 1)q_{max} + 1}^{(j - 1)q_{max} + k - 1} \{ V_{i,1}, V_{i,2}, V_{i,3} \}, U_i + v_1 + v_2, v_1, v_2 \text{ distinct} \right\} \)

\((V_{i,1}, V_{i,2}) \leftarrow \mathcal{N}_i \)

After Extension

- Support of X = Support of Y
- S and U are marginals of X and Y (resp.) \(\Rightarrow \) \(||\text{Pr}_S - \text{Pr}_U|| \leq ||\text{Pr}_X - \text{Pr}_Y|| \)

Apply \(\chi^2 \)-method to upper bound \(||\text{Pr}_X - \text{Pr}_Y|| \)
\(\chi^2 \)-Method: Steps

Setting

\[X_1, \ldots, X_q \sim \text{Pr}_X \]
\[Y_1, \ldots, Y_q \sim \text{Pr}_Y \]

\[i = (j - 1)q_{max} + k \Rightarrow \text{\(i \)-th query = \(j \)-th user’s \(k \)-th query} \]
\[X_i = \hat{X}_{j,k}, \quad \hat{X}_j = \text{block of} \ X_i \text{’s for the} \ j \text{-th user} \]
\[\hat{X}_{j}^{k-1} = \text{block of first} \ k - 1 \ X_i \text{’s for the} \ j \text{-th user}. \]
Setting

\[
X_1, \ldots, X_q \sim \Pr_X \\
Y_1, \ldots, Y_q \sim \Pr_Y
\]

\(i = (j - 1) q_{max} + k \Rightarrow \) \(i \)-th query = \(j \)-th user’s \(k \)-th query

\(X_i = \hat{X}_{j,k}, \quad \hat{X}_j = \) block of \(X_i \)'s for the \(j \)-th user

\(\hat{X}_{j}^{k-1} = \) block of first \(k - 1 \) \(X_i \)'s for the \(j \)-th user.

Conditional Probabilities Under \(\Pr_X \) and \(\Pr_Y \)

\[
\Pr_X(x_i | x_i^{i-1}) \overset{\text{def}}{=} \Pr[X_i = x_i | \hat{X}_j^{k-1} = \hat{x}_j^{k-1}, (X^{i-1} \setminus \hat{X}_j) = (x^{i-1} \setminus \hat{x}_j^{k-1})]
\]

\[
= \Pr[\hat{X}_{j,k} = \hat{x}_{j,k} | \hat{X}_j^{k-1} = \hat{x}_j^{k-1}],
\]

since \((X^{i-1} \setminus \hat{X}_j) \) is independent of \(\hat{X}_j^{k-1} \) and \(\hat{X}_{j,k} \)

\[
= \frac{1}{(N - 3(k - 1))^3}
\]
χ²-Method: Steps

Setting
\[X_1, \ldots, X_q \sim \Pr_X \]
\[Y_1, \ldots, Y_q \sim \Pr_Y \]

\[i = (j - 1)q_{max} + k \Rightarrow \text{ } i\text{-th query} = j\text{-th user’s } k\text{-th query} \]

\[X_i = \hat{X}_{j,k}, \quad \hat{X}_j = \text{block of } X_i\text{'s for the } j\text{-th user} \]

\[\hat{X}_{j}^{k-1} = \text{block of first } k - 1 \text{ } X_i\text{'s for the } j\text{-th user.} \]

Conditional Probabilities Under \(\Pr_X \) and \(\Pr_Y \)

\[
\Pr_X(x_i \mid x_i^{i-1}) \overset{\text{def}}{=} \Pr[X_i = x_i \mid \hat{X}_j^{k-1} = \hat{x}_j^{k-1}, (X_i^{i-1} \setminus \hat{X}_j) = (x_i^{i-1} \setminus \hat{x}_j^{k-1})]
\]

\[
= \Pr[\hat{X}_{j,k} = \hat{x}_{j,k} \mid \hat{X}_j^{k-1} = \hat{x}_j^{k-1}],
\]

since \((X_i^{i-1} \setminus \hat{X}_j)\) is independent of \(\hat{X}_j^{k-1}\) and \(\hat{X}_{j,k}\)

\[
= \frac{1}{(N - 3(k - 1))^3}
\]

Due to reordering.
\[\chi^2 \text{-Method: Steps} \]

Setting
\[X_1, \ldots, X_q \sim \Pr_X \]
\[Y_1, \ldots, Y_q \sim \Pr_Y \]
i = (j - 1)q_{max} + k \Rightarrow \ i\text{-th query} = j\text{-th user’s} k\text{-th query}
\[X_i = \hat{X}_{j,k}, \quad \hat{X}_j = \text{block of} \ X_i\text{’s for the} j\text{-th user} \]
\[\hat{X}_{j}^{k-1} = \text{block of first} k - 1 \ X_i\text{’s for the} j\text{-th user}. \]

Conditional Probabilities Under \(\Pr_X \) and \(\Pr_Y \)

\[\Pr_X(x_i \mid x_i^{i-1}) \overset{\text{def}}{=} \Pr[X_i = x_i \mid \hat{X}_{j}^{k-1} = \hat{x}_{j}^{k-1}, (X_i^{i-1} \setminus \hat{X}_j) = (x_i^{i-1} \setminus \hat{x}_{j}^{k-1})] \]

\[= \Pr[\hat{X}_{j,k} = \hat{x}_{j,k} \mid \hat{X}_{j}^{k-1} = \hat{x}_{j}^{k-1}], \]

since \((X_i^{i-1} \setminus \hat{X}_j)\) is independent of \(\hat{X}_{j}^{k-1}\) and \(\hat{X}_{j,k}\)

\[= \frac{1}{(N - 3(k - 1))^3} \quad \text{Falling factorial} \]
χ²-Method: Steps

Setting

\[
X_1, \ldots, X_q \sim \Pr_X, \quad Y_1, \ldots, Y_q \sim \Pr_Y
\]

\[i = (j - 1)q_{\text{max}} + k \Rightarrow i\text{-th query} = j\text{-th user’s } k\text{-th query}
\]

\[X_i = \hat{X}_{j,k}, \quad \hat{X}_j = \text{block of } X_i\text{'s for the } j\text{-th user}
\]

\[\hat{X}_{j}^{k-1} = \text{block of first } k - 1 \text{ } X_i\text{'s for the } j\text{-th user.}
\]

Conditional Probabilities Under \(\Pr_X\) and \(\Pr_Y\)

\[
\Pr_X(x_i | x_i^{i-1}) \overset{\text{def}}{=} \Pr[X_i = x_i | \hat{X}_j^{k-1} = \hat{x}_j^{k-1}, (X_{i-1} \setminus \hat{X}_j) = (x_{i-1} \setminus \hat{x}_j^{k-1})]
\]

\[= \Pr[\hat{X}_{j,k} = \hat{x}_{j,k} | \hat{X}_j^{k-1} = \hat{x}_j^{k-1}], \quad \text{Due to reordering.}
\]

since \((X_i \setminus \hat{X}_j)\) is independent of \(\hat{X}_j^{k-1}\) and \(\hat{X}_{j,k}\)

\[= \frac{1}{(N - 3(k - 1))^3} \quad \text{Falling factorial}
\]

Similarly for \(\Pr_Y\)

\[
\Pr_Y(x_i | x_i^{i-1}) = \frac{1}{N} \times \frac{1}{|N_{ui}(\hat{x}_j^{k-1})|}
\]
\(\chi^2 \)-Method: Steps

Setting

\[X_1, \ldots, X_q \sim \Pr_X \]
\[Y_1, \ldots, Y_q \sim \Pr_Y \]

\(i = (j - 1)q_{\text{max}} + k \Rightarrow \) \(i \)-th query = \(j \)-th user’s \(k \)-th query

\(X_i = \hat{X}_{j,k}, \quad \hat{X}_j = \text{block of } X_i \text{'s for the } j \text{-th user} \)

\(\hat{X}_{j}^{k-1} = \text{block of first } k - 1 \text{ } X_i \text{'s for the } j \text{-th user}. \)

Conditional Probabilities Under \(\Pr_X \) and \(\Pr_Y \)

\[
\Pr_X(x_i \mid x_{i-1}) \overset{\text{def}}{=} \Pr[X_i = x_i \mid \hat{X}_j^{k-1} = \hat{x}_j^{k-1}, (X_{i-1} \setminus \hat{X}_j) = (x_{i-1} \setminus \hat{x}_j^{k-1})]
= \Pr[\hat{X}_{j,k} = \hat{x}_{j,k} \mid \hat{X}_j^{k-1} = \hat{x}_j^{k-1}],
\]

since \((X_{i-1} \setminus \hat{X}_j)\) is independent of \(\hat{X}_j^{k-1}\) and \(\hat{X}_{j,k}\)

\[= \frac{1}{(N - 3(k - 1))^3} \quad \text{Falling factorial} \]

Similarly for \(\Pr_Y \)

\[
\Pr_Y(x_i \mid x_{i-1}) = \frac{1}{N} \times \frac{1}{|\mathcal{N}_u_i(\hat{x}_j^{k-1})|} \quad \text{Same as } n_i
\]
\(\chi^2\)-Method: The Expectation to Compute

\(\chi^2\) distance and its expectation

\[
\chi^2(x^{i-1}) := \sum_{x_i = (v_{i,1}, v_{i,2}, u_i)} \frac{(\Pr_X(x_i|\hat{x}^{k-1}_j) - \Pr_Y(x_i|\hat{x}^{k-1}_j))^2}{\Pr_Y(x_i|\hat{x}^{k-1}_j)}\]

\[
= C \times \sum_{u_i \in \{0,1\}^n} (|n_{u_i}(\hat{x}^{k-1}_j)| - D)
\]
\(\chi^2 \)-Method: The Expectation to Compute

\(\chi^2 \) distance and its expectation

\[
\chi^2(x_{i-1}) := \sum_{x_i = (v_{i,1}, v_{i,2}, u_i)} \frac{(\Pr_X(x_i | \hat{x}_{j}^{k-1}) - \Pr_Y(x_i | \hat{x}_{j}^{k-1}))^2}{\Pr_Y(x_i | \hat{x}_{j}^{k-1})}
\]

\[
= C \times \sum_{u_i \in \{0,1\}^n} (|N^u_i(\hat{x}_{j}^{k-1})| - D)
\]

\[
C = \frac{N}{((N-3(k-1))^2)^2}
\]

\[
D = \frac{(N-3(k-1))^3}{N}
\]
\(\chi^2 \)-Method: The Expectation to Compute

\(\chi^2 \) distance and its expectation

\[\chi^2(x^{i-1}) := \sum_{x_i = (v_{i,1}, v_{i,2}, u_i)} \frac{(\Pr_X(x_i|\hat{x}_j^{k-1}) - \Pr_Y(x_i|\hat{x}_j^{k-1}))^2}{\Pr_Y(x_i|\hat{x}_j^{k-1})} \]

\[= C \times \sum_{u_i \in \{0,1\}^n} (|N^u_i(\hat{x}_j^{k-1})| - D)^2 \]

\[C = \frac{N}{((N-3(k-1))^2)^2} \]
\[D = \frac{(N-3(k-1))^3}{N} \]

\[\Rightarrow \]

\[\mathbb{E}_X[\chi^2(X^{i-1})] = C \times \sum_{u_i} \mathbb{E}_X[(|N^u_i(\hat{x}_j^{k-1})| - D)^2] \]
\(\chi^2 \)-Method: The Expectation to Compute

\(\chi^2 \) distance and its expectation

\[
\chi^2(x^{i-1}) := \sum_{x_i=(v_{i,1},v_{i,2},u_i)} \frac{(\Pr_X(x_i|\hat{x}^{k-1}_j) - \Pr_Y(x_i|\hat{x}^{k-1}_j))^2}{\Pr_Y(x_i|\hat{x}^{k-1}_j)}
\]

\[
= C \times \sum_{u_i \in \{0,1\}^n} \left(|\mathcal{N}^u_i(\hat{x}^{k-1}_j)| - D \right)^2
\]

\[
\text{Ex}[\chi^2(X^{i-1})] = C \times \sum_{u_i} \text{Ex}[\left(|\mathcal{N}^u_i(\hat{x}^{k-1}_j)| - D \right)^2].
\]

Goal is to compute \(\text{Ex}[\left(|\mathcal{N}^u_i(\hat{x}^{k-1}_j)| - D \right)^2] \)
Setting: $\mathcal{G} := \mathbb{F}_{2^n}$ \quad $|\mathcal{G}| = N$ \quad \mathcal{V}_r: a random r-set in \mathcal{G}

For $u \in \mathcal{G}$

$$\{(g_1, g_2) \in \mathcal{V}_r \times \mathcal{V}_r : u + g_1 + g_2 \in \mathcal{V}_r; u, g_1, g_2$ distinct$\}$$
Finishing the Proof: An Important Lemma

Setting: \(\mathcal{G} := \mathbb{F}_{2^n} \) \(|\mathcal{G}| = N \) \(\mathcal{V}_r \): a random \(r \)-set in \(\mathcal{G} \)

For \(u \in \mathcal{G} \)

\[\{(g_1, g_2) \in \mathcal{V}_r \times \mathcal{V}_r : u + g_1 + g_2 \in \mathcal{V}_r; u, g_1, g_2 \text{ distinct}\} \]
Setting: \(\mathcal{G} := \mathbb{F}_{2^n} \) \(|\mathcal{G}| = N \) \(\mathcal{V}_r: \) a random \(r \)-set in \(\mathcal{G} \)

For \(u \in \mathcal{G} \)

\[\{ (\mathcal{V}_r \times \mathcal{V}_r : u + g_1 + g_2 \in \mathcal{V}_r; u, g_1, g_2 \text{ distinct} \} \]
Setting: \(\mathcal{G} := \mathbb{F}_{2^n} \) \quad |\mathcal{G}| = N \quad \mathcal{V}_r: a \text{ random } r\text{-set in } \mathcal{G} \\

For \(u \in \mathcal{G} \), \(N^u_r := |\{(g_1, g_2) \in \mathcal{V}_r \times \mathcal{V}_r : u + g_1 + g_2 \in \mathcal{V}_r; u, g_1, g_2 \text{ distinct}\}| \)
Finishing the Proof: An Important Lemma

Setting: \(\mathcal{G} := \mathbb{F}_{2^n} \) \[|\mathcal{G}| = N \] \(\mathcal{V}_r \): a random \(r \)-set in \(\mathcal{G} \)

For \(u \in \mathcal{G} \)

\[N^u_r := |\{(g_1, g_2) \in \mathcal{V}_r \times \mathcal{V}_r : u + g_1 + g_2 \in \mathcal{V}_r; u, g_1, g_2 \text{ distinct}\}| \]

To compute \(\mathbb{E}[N^u_r - D]^2] \)
Finishing the Proof: An Important Lemma

Setting: \(\mathcal{G} := \mathbb{F}_{2^n} \), \(|\mathcal{G}| = N \), \(\mathcal{V}_r \): a random \(r \)-set in \(\mathcal{G} \)

For \(u \in \mathcal{G} \)

\(N^u_r := |\{(g_1, g_2) \in \mathcal{V}_r \times \mathcal{V}_r : u + g_1 + g_2 \in \mathcal{V}_r; u, g_1, g_2 \text{ distinct}\}| \)

To compute \(\mathbb{E}[(N^u_r - D)^2] \)

Computation of \(\mathbb{E}[N^u_r] \):

\(\mathcal{G}_u = \{g := (g_1, g_2) | g_1 \neq g_2 \in \mathcal{G} \setminus \{u\}\}. \)

\(I_g = \begin{cases}
1 & \text{if } g_1, g_2, u + g_1 + g_2 \in \mathcal{V}_r, \text{ and } g_1 \neq u \neq g_2 \\
0 & \text{otherwise.}
\end{cases} \)

\[\mathbb{E}[N^u_r] = \mathbb{E}[\sum_{g \in \mathcal{G}_u} I_g] = \sum_{g \in \mathcal{G}_u} \mathbb{E}[I_g] = \Pr[\{g_1, g_2, u + g_1 + g_2 \subseteq \mathcal{V}_r\} = \frac{r^3}{N} = D. \]
From expectation to variance:

\[\text{Ex}[(N_r^u - D)^2] = \text{Ex}[(N_r^u - \text{Ex}[N_r^u])^2] = \text{Var}[N_r^u] \]
From expectation to variance:

\[
\begin{align*}
\mathbb{E}[(N^u_r - D)^2] &= \mathbb{E}[(N^u_r - \mathbb{E}[N^u_r])^2] = \text{Var}[N^u_r]
\end{align*}
\]

To compute \(\mathbb{E}[(N^u_r - D)^2] \) \(\Rightarrow \) To compute \(\text{Var}[N^u_r] \)

How to compute \(\text{Var}[N^u_r] \)?
From expectation to variance:

\[\text{Ex}[(N_r^u - D)^2] = \text{Ex}[(N_r^u - \text{Ex}[N_r^u])^2] = \text{Var}[N_r^u] \]

To compute \(\text{Ex}[(N_r^u - D)^2] \) implies To compute \(\text{Var}[N_r^u] \)

How to compute \(\text{Var}[N_r^u] \)?

Setting:

For \(g = (g_1, g_2) \), \(S_u^g = \{g_1, g_2, u + g_1 + g_2\} \)

Observation:

\[w = |S_u^g \cup S_u^{g'}| \in \{3, 5, 6\} \]
An Important Lemma (Contd.)

Technicalities:

\[
\text{Var}[N^u_r] = \sum_{g \in G_u} \text{Var}[I_g] + \sum_{g \neq g' \in G_u} \text{Cov}(I_g, I_{g'})
\]

\[
\text{Var}[I_g] = \text{Ex}[I_g](1 - \text{Ex}[I_g])
\]

\[
\text{Cov}(I_g, I_{g'}) = \text{Ex}[I_g I_{g'}] - \text{Ex}[I_g] \text{Ex}[I_{g'}]
\]

\[
\text{Ex}[\chi^2(X^i - 1)] \leq \frac{576}{N^2} + \frac{4^8 (r')^3}{27CN^6} \Rightarrow \|\text{Pr}_P - \text{Pr}_R\| \leq \frac{20\sqrt{uq_{\text{max}}}}{N}
\]
Strong PRF security of XORP[3]

▶ Multi-user:
- Can be used simultaneously and independently by $O(2^n)$ users
- Adversary can make $O(2^n)$ queries per user

▶ Single-user: Adversary’s advantage is $O\left(\frac{1}{\sqrt{2^n}}\right)$ even after $O(2^n)$ queries
Strong PRF security of XORP\([3]\]

- **Multi-user:**
 - Can be used simultaneously and independently by \(O(2^n)\) users
 - Adversary can make \(O(2^n)\) queries per user

- **Single-user:** Adversary’s advantage is \(O\left(\frac{1}{\sqrt{2^n}}\right)\) even after \(O(2^n)\) queries

Strong PRF security of XORP'\([3]\]

- **Multi-user:** Same level of security. Analysis (not shown) similar to XORP\([3]\]

- **Single-user:** Adversary’s advantage is \(O\left(\frac{1}{\sqrt{2^n}}\right)\) even after \(O(2^n)\) queries
Thank You!
Acknowledgement for Slide Template

Rafael Vieira Westenberger, IMPA, Brazil

Available at: https://www.overleaf.com/latex/templates/impa-beamer-template/jbkhtxsdnqtb
1 Motivation: PRF and Its Multi-user Security
2 Technical Background and Our Results (Statements)
3 Multi-user PRF-Security of XORP[3]: Proof Outline
4 References

References

Bhattacharya, S. and Nandi, M. (2018a).

Full indifferentiable security of the xor of two or more random permutations using the χ^2-method.

Bhattacharya, S. and Nandi, M. (2018b).

Revisiting variable output length xor pseudorandom function.

Choi, W., Lee, B., and Lee, J. (2019).

Indifferentiability of truncated random permutations.

Cogliati, B. (2018).

Tweaking a block cipher: multi-user beyond-birthday-bound security in the standard model.

The indistinguishability of the XOR of k permutations.

Information-theoretic indistinguishability via the chi-squared method.

The summation-truncation hybrid: Reusing discarded bits for free.

Hoang, V. T. and Shen, Y. (2020).
Security of streaming encryption in Google's Tink library.
References

New blockcipher modes of operation with beyond the birthday bound security.

ZMAC: A fast tweakable block cipher mode for highly secure message authentication.

How to construct pseudorandom permutations from pseudorandom functions.

The sum of prps is a secure PRF.
References

Mennink, B. (2019).
Linking Stam’s bounds with generalized truncation.

Mennink, B. and Preneel, B. (2015).
On the xor of multiple random permutations.

Patarin, J. (2008).
A proof of security in o(2^n) for the xor of two random permutations.

Patarin, J. (2010).
Introduction to mirror theory: Analysis of systems of linear equalities and linear non equalities for cryptography.