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Migration to PQC has begun

NIST and Department of Homeland Security (DHS): a migration
roadmap to PQC.
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Third Round PQC Standardization

Encryption/KEMs Signatures Overall
Lattice-based 5 2 7
Code-based 3 0 3

Isogeny-based 1 0 1
Multivariate-based 0 2 2
Symmetric-based 0 2 2

Total 9 6 15

Lattice-based KEM finalists: KYBER, SABER, NTRU
Lattice-based KEM alternates: FrodoKEM, NTRUprime
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Security Assumption of Lattice-based KEMs
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Third PQC Standardization Conference/Key-reuse

Two flavours: IND-CPA and IND-CCA PKC.
IND-CPA FO transform−−−−−−−−→ IND-CCA
The IND-CPA version does not allow key-reuse but simpler or more
efficient.

ó What will happen if a key is reused in the IND-CPA version?
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Motivations

1 For cryptographic assessment, it is important to evaluate key-reuse
resilience of these candidates in misuse situation.

2 In many authentication key exchange protocols that use CPA version
to improve efficiency, key reuse is essential.

3 Side-channel assisted chosen ciphertexts attacks can successfully
attack against CCA-secure ones.
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Key Mismatch Attacks: A Brief History
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An Open Problem

Can we find a unified method to evaluate the key reuse resilience︸ ︷︷ ︸
number of queries

of

NIST candidates against key mismatch attacks?

Xiaohan Zhang Key Mismatch Attacks against NIST Candidate KEMs 9 / 48



Overview

1 Background

2 Attacking Model

3 Our Basic Idea

4 Our Improved Practical Attacks

5 Improved side-channel attacks against IND-CCA KEMs

6 Experiments

Xiaohan Zhang Key Mismatch Attacks against NIST Candidate KEMs 10 / 48



Diffie-Hellman Key Exchange
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Lattice-based Diffie-Hellman-like Key exchange

The biggest challenge: How to make the approximate KA and KB equal?
Solution: send additional information
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The Meta CPA-secure KEM

Generate Shared Key:  

(     ,    )  ¬¬  Encaps(     ,     )

(      ,     )

Request

(     ,     )  ¬¬  KeyGen()

¬  Decaps(     ,     ,    ) 

Alice Bob
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Model of Key Mismatch Attack – Part 1

Request

(     ,     )  ¬¬  KeyGen()

Alice Adversary
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Model of Key Mismatch Attack – Part 2

Generate Shared Key: 
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Model of Key Mismatch Attack – Part 3

Generate Shared Key: 

Deliberately  set (       ,     )  ¬¬ Encaps(         ,     )

(       ,     ,   )

Request

(       ,      )  ¬¬  KeyGen()

      ¬¬  Decaps(      ,      ,    ) 
if        = 
   return 1
else

 return 0

Alice Adversary

Reuse

Oracle
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Key Mismatch Attacks: A Summary

Alice’s public-secret key pair is reused.
The adversary A can recover Alice’s secret key by knowing whether
the shared two keys match or not.

the shared two keys KA = KB −→ Match
the shared two keys KA ̸= KB −→ Mismatch
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A Response to the Open Problem

• Can we find a unified method to evaluate the key reuse resilience of
NIST candidates against key mismatch attacks?

4 YES!

Xiaohan Zhang Key Mismatch Attacks against NIST Candidate KEMs 19 / 48



A Response to the Open Problem

• Can we find a unified method to evaluate the key reuse resilience of
NIST candidates against key mismatch attacks?

4 YES!

Xiaohan Zhang Key Mismatch Attacks against NIST Candidate KEMs 19 / 48



Notations

A recovers Alice’s secret key SA one coefficient block by one
coefficient block.
Let S = {S0,S1, · · · ,Sn−1} be the set of all possible values for one
coefficient block.
{P0,P1, · · · ,Pn−1} is the corresponding probability set, where
P0 ≥ P1 ≥ · · · ≥ Pn−1,

∑n−1
i=0 Pi = 1.
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Our Key Observation

Average #queries: E(S) =
∑n−1

i=0 Pi · depthT(Si).

• How to recover SA with the fewest number of queries?
⇒ Transfer it into a binary variable-length coding problem

Basic idea: Using Huffman Coding to get min E(S).

01001...1000011

Oracle

coding

Binary Recovery Tree Huffman Coding
lower bound
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Huffman Coding

• Rule: Combine two symbols with the lowest probabilities in each step.
• S = {0,±1,±2}, the probability = {0.375, 0.25, 0.0625}.

-2: 0.06252: 0.0625

0: 0.375 1: 0.25 -1: 0.25 0.125

0.3750.625

1
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Proof of Lower Bound

Theorem 1
Let S = {S0,S1, · · · ,Sn−1}, its corresponding probabilities {P0,P1, · · · ,
Pn−1}. And set H(S) the Shannon entropy for S, then we have

H(S) ≤ min E(S) < H(S) + 1.
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Example: Lower Bound for Kyber1024

In Kyber1024, SA is sampled from centered binomial distribution, and
SA[i] ∈ [−2, 2].
min E(S) = 2.125, H(S) = 2.03, consistent with Theorem 1.
Lower bound: 2176
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Lower bounds for key mismatch attacks on lattice-based NIST KEMs

Schemes sA & e Encode Comp Unknowns E(#Queries)
Ranges Decode Decomp Bounds

Newhope512 [-8,8] ✓ ✓ 512 1568
Newhope1024 1024 3127
Kyber512 [-3,3]

/ ✓
512 1216

Kyber768 [-2,2] 768 1632
Kyber1024 1024 2176
LightSaber [-5,5]

/ ✓
512 1412

Saber [-4,4] 768 1986
FireSaber [-3,3] 1024 2432
Frodo640 [-12,12]

/ ✓
5120 18,227

Frodo976 [-10,10] 7808 25,796
Frodo1344 [-6,6] 10,752 27,973
NTRU hps4096821

[-1,1] / /
821 1369

NTRU hrss701 701 1183
NTRU Prime sntrup857 857 1574
NTRU Prime ntrulpr857 857 1553
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Theory-Practice Gaps

Huguenin-Dumittan et al.’s Lower Bounds Gap
LightSaber 2048 1412 31.05%
Frodo640 65536 18227 72.19%

A huge gap in terms of # queries between existing attacks and lower
bounds
Huffman Tree guides us to improve these attacks
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Our Improved Practical Attacks

On the basis of Huffman Tree
1 Pre-computation phase: A selects proper parameters and

constructs a corresponding Binary Recovery Tree (BRT) T in
consistent with the Huffman tree.

2 Recovery phase: A determines the secret key according to the
precomputed binary tree T.
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Description of Pre-computation phase

How to construct the BRT T ?

secret key leaf node

attacking parameters  non-leaf node
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Description of Pre-computation phase

1 Use all possible secret keys as leaf nodes.
2 Non-leaf nodes store the parameters that the adversary use to access

Oracle.
3 For each non-leaf node, if the Oracle returns 1, it corresponds to the

left subtree of the current node, otherwise it corresponds to its right
subtree.
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Description of Recovery phase
How to use the BRT T to recover the secret key?

root

set parameters

query O

left subtree right subtree

1 0

Is the node a leaf?

recover

No

Yes
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Description of Recovery phase

1 The adversary A starts from the root of T, and selects the parameter
in this node to access Oracle.

2 If Oracle returns 1, A will continue to access the left subtree of the
current node, otherwise he will access the right subtree.

3 If the current node is a leaf node, A can determine the secret key.

Xiaohan Zhang Key Mismatch Attacks against NIST Candidate KEMs 32 / 48



Example 1: Improved key mismatch attack on Kyber1024

1. The pre-computation phase
1 A sets m as (1,0, · · · , 0).
2 Then he sets PB = 0 and PB[0] =

⌈ q
32
⌋
.

3 After that, A sets c2 = 0 and c2[0] = h.
State 1 State 2 State 3 State 4

h 8 9 10 7
O → 0 State 2 State 3 SA[0] = 2 SA[0] = −1
O → 1 State 4 SA[0] = 0 SA[0] = 1 SA[0] = −2
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Improved key mismatch attacks on Kyber KEM

Existing Attacks Improved Attacks Lower bounds Success rate
Kyber1024 2475 2368 2176 100%
Kyber768 1855 1777 1632 100%
Kyber512 1401 (Round 2) 1311 1216 100%
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Example 2: Improved key mismatch attack on NewHope1024

Main idea: Construct a Nearly Optimal Binary Search Tree T′.
T′ should satisfy:

1 For each non-leaf node, the probability of left subtree and right subtree
should be as equal as possible.

2 If the Oracle returns 1, it corresponds to its left subtree, otherwise it
corresponds to its right subtree.
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Improved key mismatch attacks on NewHope

Okada et. al’s Vacek et. al’s Our improved attacks Lower bounds
NewHope1024 233,803 3197 3180 3127
NewHope512 \ \ 1660 1568
Success rate 97.4% 100% 100% \

The gap between our improved attacks and the lower bounds is 1.69% and 5.86%,
respectively
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Ravi et al.’s work

At CHES 2020, Ravi et al. proposed a generic side-channel attack on
CCA-secure KEMs.
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Ravi et al.’s work

Their side-channel attack mainly consists of two stages:
1 pre-processing stage: generate template for each class

Γ0 ⇔ failure of KEM.CCA.Dec()
Γ1 ⇔ success of KEM.CCA.Dec()

2 template-matching stage: collect wave W and distinguish which
class W belongs to.

The same as our proposed key mismatch attack aforementioned
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Improved side-channel attacks on Kyber512

E.g. TVLA analyzer for Kyber512 (Template Matching)
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Improved side-channel attacks against IND-CCA KEMs

Ravi et. al’s Our improved attacks
Kyber512 2560 1311

NewHope512 6945 1660
NewHope1024 26624 3180

On Kyber512, we reduce E(#Queries) by 48.79%.
Similarly, we reduce E(#Queries) for NewHope512 and NewHope1024 by 76.1%
and 88.06%, respectively.
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Experimental Setup

Environment: A computer with two 3 GHz Intel Xeon E5-2620 CPUs
and a 64 GB RAM.
Our code is available at https://github.com/AHaQY/Key-Mismatch-
Attack-on-NIST-KEMs.
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Experimental Results

E(#Queries)
Schemes Lower Our improved attacks ExistingBounds Theory Experiments
Kyber512 1216 1312 1311 1401 (Round 2)
Kyber768 1632 1774 1777 1855
Kyber1024 2176 2365 2368 2475
LightSaber 1412 1460 1476 2048
Saber 1986 2091 2095 -
FireSaber 2432 2642 2622 -
Frodo640 18,227 18,329 18,360 65, 536
Frodo976 25,796 26,000 26,078 -
Frodo1344 27,973 29,353 29,378 -
NewHope512 1568 1660 1660 -
NewHope1024 3127 3180 3180 3197
NTRU hps2048509 846 - 1012 -
NTRU hps2048761 1125 - 1348 -
NTRU hps4096821 1365 - 1634 -
NTRU hrss701 1183 - 1844 -

For Frodo640 and LightSaber, E(#Queries) is reduced by 71.99% and 27.93%.
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Conclusion

1 Lower bounds for all the lattice-based KEMs
2 Our BRT method to further optimize the key mismatch attacks
3 Optimizing side-channel attacks against IND-CCA secure KEMs.
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Thanks & Questions?
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