Dynamic Random Probing Expansion with Quasi Linear Asymptotic Complexity

Sonia Belaïd \(^1\), Matthieu Rivain \(^1\),
Abdul Rahman Taleb \(^{1,2}\) and Damien Vergnaud \(^{2,3}\)

\(^1\) CryptoExperts, France
\(^2\) Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
\(^3\) Institut Universitaire de France, France

December 7, 2021
Side-Channel Attacks & Masking

Security against **side-channel attacks**
Side-Channel Attacks & Masking

Security against side-channel attacks

Masking countermeasure (sensitive variable x over field \mathbb{K})
Side-Channel Attacks & Masking

Security against **side-channel attacks**

Masking countermeasure (sensitive variable x over field \mathbb{K})

\[
x \longrightarrow (x_1, \ldots, x_n) \in \mathbb{K}^n
\]
Side-Channel Attacks & Masking

Security against side-channel attacks

Masking countermeasure (sensitive variable x over field \mathbb{K})

$$x \rightarrow (x_1, \ldots, x_n) \in \mathbb{K}^n$$

shares of x

$$x_1 + \ldots + x_n = x$$
Security against **side-channel attacks**

Masking countermeasure (sensitive variable x over field \mathbb{K})

$$x \longrightarrow (x_1, \ldots, x_n) \in \mathbb{K}^n$$

shares of x

$x_1 + \ldots + x_n = x$

$(+, \times, ||)$ operations over \mathbb{K}
Security against side-channel attacks

Masking countermeasure (sensitive variable x over field \mathbb{K})

$$
\begin{align*}
x & \rightarrow \left(x_1, \ldots, x_n \right) \in \mathbb{K}^n \\
\text{shares of } x \\
x_1 + \ldots + x_n & = x
\end{align*}
$$

$(+, \times, ||)$ operations over \mathbb{K} $\rightarrow (G_{\text{add}}, G_{\text{mult}}, G_{\text{copy}}, G_{\text{refresh}})$ n-share circuits over \mathbb{K}
Side-Channel Attacks & Masking

Security against side-channel attacks

Masking countermeasure (sensitive variable x over field \mathbb{K})

$$x \longrightarrow (x_1, \ldots, x_n) \in \mathbb{K}^n$$

shares of x

$$x_1 + \ldots + x_n = x$$

$(+, \times, ||)$ operations over $\mathbb{K} \longrightarrow (G_{\text{add}}, G_{\text{mult}}, G_{\text{copy}}, G_{\text{refresh}})$ n-share circuits over \mathbb{K}

Example $G_{\text{add}}(a, b) = c$ with $n = 2$
Side-Channel Attacks & Masking

Security against **side-channel attacks**

Masking countermeasure (sensitive variable x over field \mathbb{K})

$$
 x \longrightarrow (x_1, \ldots, x_n) \in \mathbb{K}^n
$$

shares of x

$$
 x_1 + \ldots + x_n = x
$$

$(+, \times, ||)$ operations over \mathbb{K}

$$
 \longrightarrow (G_{\text{add}}, G_{\text{mult}}, G_{\text{copy}}, G_{\text{refresh}}) \ n\text{-share circuits over } \mathbb{K}
$$

Example $G_{\text{add}}(a, b) = c$ with $n = 2$
Leakage Models

- Realistic
- Convenient
- Random probing model
 each variable leaks with proba. p
- Noisy Leakage model
 noisy leakage of all the variables
Leakage Models

Convenient

t-probing model
t leaking variables

Realistic
Leakage Models

Convenient

Realistic

Random probing model

\[\text{each variable leaks with proba. } p \]

t-probing model

\[t \text{ leaking variables} \]
Leakage Models

- **t-probing model**
 - t leaking variables

- Random probing model
 - each variable leaks with proba. p

- Noisy Leakage model
 - noisy leakage of all the variables
Leakage Models

Convenient

t-probing model
t leaking variables

Random probing model
each variable leaks with proba. p

Noisy Leakage model
noisy leakage of all the variables

Realistic
Leakage Models

- **t-probing model**
 - t leaking variables

- **Random probing model**
 - each variable leaks with proba. p

- **Noisy Leakage model**
 - noisy leakage of all the variables

Convenient → Realistic
Prior Works

Prior Works

- Security of masking in the Random Probing (RP) Model
Prior Works

- Security of masking in the Random Probing (RP) Model
- RP-secure gadgets composition (RP composition)
Prior Works

- Security of masking in the Random Probing (RP) Model
- RP-secure gadgets composition (RP composition)
- RP-secure security level amplification (RP expansion)
Prior Works

- Security of masking in the Random Probing (RP) Model
- RP-secure gadgets composition (RP composition)
- RP-secure security level amplification (RP expansion)

Prior Works

- Security of masking in the **Random Probing (RP) Model**
- RP-secure gadgets composition (RP composition)
- RP-secure security level amplification (RP expansion)

- In-depth analysis of RP expansion
Prior Works

- Security of masking in the Random Probing (RP) Model
- RP-secure gadgets composition (RP composition)
- RP-secure security level amplification (RP expansion)

- In-depth analysis of RP expansion
- Generic constructions for RP expansion with improved complexities
Prior Works

- Security of masking in the **Random Probing (RP) Model**
- RP-secure gadgets composition (RP composition)
- RP-secure security level amplification (RP expansion)

- In-depth analysis of RP expansion
- Generic constructions for RP expansion with improved complexities
- Concrete instantiations for RP expansion tolerating a leakage rate of \(p \approx 2^{-7.5} \)
Contributions

- Introduction of **Dynamic** Random Probing Expansion (RPE)

Generalization of RPE to support any basic operations (e.g. multiplication by a constant G_{cmult})

Construction of n-share RPE-secure G_{add}, G_{copy}, G_{cmult} with $O(n \log n)$ complexity (using $G_{refresh}$ by Battistello et al. - CHES 2016)

Construction of RPE-secure G_{mult} with $O(n \log n)$ randomness and $O(n)$ multiplications between variables, from:

- Extension of sub-multiplication gadget $G_{submult}$: $K_n \times K_n \rightarrow K_{2n+1}$ by Belaïd et al. - Crypto 2017
- New compression gadget $G_{compress}$: $K_{2n+1} \rightarrow K_n$
Contributions

- Introduction of **Dynamic** Random Probing Expansion (RPE)

- Generalization of RPE to support any basic operations (e.g. multiplication by a constant G_{cmult})
Contributions

- Introduction of **Dynamic** Random Probing Expansion (RPE)

- Generalization of RPE to support any basic operations (e.g. multiplication by a constant G_{cmult})

- Construction of n-share RPE-secure G_{add}, G_{copy}, G_{cmult} with $O(n \log n)$ complexity (using $G_{refresh}$ by Battistello et al. - CHES 2016)
Contributions

- Introduction of **Dynamic** Random Probing Expansion (RPE)

- Generalization of RPE to support any basic operations (e.g. multiplication by a constant G_{cmult})

- Construction of n-share RPE-secure G_{add}, G_{copy}, G_{cmult} with $O(n \log n)$ complexity (using $G_{refresh}$ by Battistello et al. - CHES 2016)

- Construction of RPE-secure G_{mult} with $O(n \log n)$ **randomness** and $O(n)$ **multiplications** between variables, from:
Contributions

- Introduction of **Dynamic** Random Probing Expansion (RPE)

- Generalization of RPE to support any basic operations (e.g. multiplication by a constant G_{cmult})

- Construction of n-share RPE-secure G_{add}, G_{copy}, G_{cmult} with $O(n \log n)$ complexity (using $G_{refresh}$ by Battistello et al. - CHES 2016)

- Construction of RPE-secure G_{mult} with $O(n \log n)$ randomness and $O(n)$ multiplications between variables, from:
 - extension of sub-multiplication gadget $G_{submult} : \mathbb{K}^n \times \mathbb{K}^n \rightarrow \mathbb{K}^{2n+1}$ by Belaïd et al. - Crypto 2017
Contributions

- Introduction of **Dynamic** Random Probing Expansion (RPE)
- Generalization of RPE to support any basic operations (e.g. multiplication by a constant G_{cmult})
- Construction of n-share RPE-secure G_{add}, G_{copy}, G_{cmult} with $O(n \log n)$ complexity (using $G_{refresh}$ by Battistello et al. - CHES 2016)
- Construction of RPE-secure G_{mult} with $O(n \log n)$ **randomness** and $O(n)$ **multiplications** between variables, from:
 - extension of sub-multiplication gadget $G_{submult} : \mathbb{K}^n \times \mathbb{K}^n \rightarrow \mathbb{K}^{2n+1}$ by Belaïd et al. - Crypto 2017
 - new compression gadget $G_{compress} : \mathbb{K}^{2n+1} \rightarrow \mathbb{K}^n$
(p, ε)-RP Security

\[\begin{array}{c}
\oplus \quad \text{Add} \\
\otimes \quad \text{Mult.}
\end{array} \]

\[\begin{array}{c}
| \quad \text{Copy} \\
r \quad \text{Random}
\end{array} \]

\[\begin{array}{c}
\otimes_c \quad \text{Mult. by constant}
\end{array} \]
(p, ε)-RP Security

W set of wires

Add Mult. Copy Random

Mult. by constant
\((p, \varepsilon)\)-RP Security

\(\mathcal{W}\) set of wires

Independent from secret inputs?

\begin{itemize}
 \item Add \hspace{1cm} \times \text{ Mult.}
 \item Copy \hspace{1cm} \circ \text{ Random}
 \item \times_c \text{ Mult. by constant}
\end{itemize}
(\(p, \varepsilon\))-RP Security

\(W\) set of wires

Independent from secret inputs?

- yes
- no
(p, ε)-RP Security

W set of wires

Independent from secret inputs?

- yes
- no

Simulation Success

Add	Mult.
Copy | Random
×c | Mult. by constant
(\(p, \varepsilon\))-RP Security

\(W\) set of wires

Independent from secret inputs?

- yes
- no

Simulation Success

Add \(\oplus\) \hspace{1cm} \times\) Mult.

Copy \(\llbracket\llbracket\) \hspace{1cm} Random \(r\)

Mult. by constant \(\times_c\)
(p, ε)-RP Security

W set of wires

Independent from secret inputs?

- yes
- no

Simulation Success

Simulation Failure

Failure Probability ε

Add \oplus
Mult. \times
Copy $\|$
Random r
Mult. by constant \times_c

S. Belaid, M. Rivain, A. Taleb, D. Vergnaud
Using \(n \)-share gadgets \(G_1, \ldots, G_\beta \)
Using n-share gadgets G_1, \ldots, G_β

Leakage probability p
Using n-share gadgets G_1, \ldots, G_β
Using n-share gadgets G_1, \ldots, G_β

Leakage probability p

Simulation Failure ε
Using n-share gadgets G_1, \ldots, G_β

Leakage probability p

Simulation Failure ϵ

First Expansion
\rightarrow

Second Expansion
\rightarrow

ϵ_{k} first exp

$\epsilon < p$ (tolerated leakage rate)
Using n-share gadgets G_1, \ldots, G_β

Leakage probability p

Simulation Failure ε

First Expansion

$n=2$

$G_i \rightarrow G_j \rightarrow G_k$

Second Expansion

$n^2=4$

$G_i^{(2)} \rightarrow G_j^{(2)} \rightarrow G_k^{(2)}$
Using n-share gadgets G_1, \ldots, G_β
Using n-share gadgets G_1, \ldots, G_β
Using n-share gadgets G_1, \ldots, G_β

Leakage probability p

Simulation Failure ε

$n^k \rightarrow \varepsilon^k$
Using n-share gadgets G_1, \ldots, G_β

Condition: $\varepsilon < p$ (tolerated leakage rate)
RP Expansion

Definition

(t, p, ε)-**RP expandability** (RPE) of gadget G guarantees:

Independent failure probability on each input sharing G_1, \ldots, G_β are (t, p, ε)-RPE \Rightarrow compiled circuit C is $(p, 2^{|C|} \cdot \varepsilon^k)$-RP Secure.
RP Expansion

Definition

(t, p, ε)-RP expandability (RPE) of gadget G guarantees:

- (p, ε)-RP security of G (RPE is stronger than RP)
RP Expansion

Definition

(t, p, ε)-RP expandability (RPE) of gadget G guarantees:

- (p, ε)-RP security of G (RPE is stronger than RP)

- composition of G with other RP secure gadgets: ability to simulate any set W of internal wires and t output shares using t input shares
(t, p, ε)-RP expandability (RPE) of gadget G guarantees:

- $(p, ε)$-RP security of G (RPE is stronger than RP)

- composition of G with other RP secure gadgets: ability to simulate any set W of internal wires and t output shares using t input shares
RP Expansion

Definition

\((t, p, \varepsilon)\)-RP expandability (RPE) of gadget \(G\) guarantees:

- \((p, \varepsilon)\)-RP security of \(G\) (RPE is stronger than RP)

- composition of \(G\) with other RP secure gadgets: ability to simulate any set \(W\) of internal wires and \(t\) output shares using \(t\) input shares

\[G_1 \quad \quad G_3 \quad \quad G_4 \]

\[G_2 \]

\(t = 2\)
(t, p, ε)-RP expandability (RPE) of gadget G guarantees:

- (p, ε)-RP security of G (RPE is stronger than RP)
- composition of G with other RP secure gadgets: ability to simulate any set W of internal wires and t output shares using t input shares

\[t = 2 \]
\((t, p, \varepsilon)\)-RP expandability (RPE) of gadget G guarantees:

- \((p, \varepsilon)\)-RP security of G (RPE is stronger than RP)
- \textbf{composition} of G with other RP secure gadgets: ability to simulate any set \(W\) of internal wires and \(t\) output shares using \(t\) input shares
RP Expansion

Definition

(t, p, ε)-RP **expandability** (RPE) of gadget G guarantees:

- (p, ε)-RP security of G (RPE is stronger than RP)
- **composition** of G with other RP secure gadgets: ability to simulate any set \(W \) of internal wires and \(t \) output shares using \(t \) input shares

![Diagram showing composition of three gadgets](image)

\(t = 2 \)
(t, p, ε)-RP expandability (RPE) of gadget G guarantees:

- $(p, ε)$-RP security of G (RPE is stronger than RP)

- **composition** of G with other RP secure gadgets: ability to simulate any set W of internal wires and t output shares using t input shares

\[
\begin{aligned}
&G_1 \quad W_1 \\
&G_2 \quad W_2 \\
&G_3 \\
&G_4 \quad W_4
\end{aligned}
\]
RP Expansion

Definition

\((t, p, \varepsilon)\)-RP expandability (RPE) of gadget \(G\) guarantees:

- \((p, \varepsilon)\)-RP security of \(G\) (RPE is stronger than RP)
- composition of \(G\) with other RP secure gadgets: ability to simulate any set \(W\) of internal wires and \(t\) output shares using \(t\) input shares
- Independent failure probability on each input sharing
(t, p, ε)-RP expandability (RPE) of gadget G guarantees:

- (p, ε)-RP security of G (RPE is stronger than RP)
- **Composition** of G with other RP secure gadgets: ability to simulate any set W of internal wires and t output shares using t input shares

- Independent failure probability on each input sharing

G_1, \ldots, G_β are (t, p, ε)-RPE \implies compiled circuit C is $(p, 2.|C|.\varepsilon^k)$-RP Secure
Complexity of expanded circuit C of security parameter κ:

\[O(|C| \cdot \kappa^e) \]

\[e = \log(N_{\text{max}}) \log(d) \]

\[N_{\text{max}} \approx \max(\# \times \text{in} \ G_{\text{mult}}, \#(+| |) \text{in} \ G_{\text{add}}, G_{\text{copy}}, \# \times c \text{in} \ G_{\text{cmult}}) \]

d: amplification order (i.e. smallest failure set of internal wires)

\[a_1b_1 + a_2b_2 + c_1c_2 \]

Example $t = 1, n = 2$

Output $c_1 = a_1 + b_1$, set $W = \{b_2\}$

Simulation needs $a_1(\leq t)$ and $b_1, b_2(> t)$

Failure on $b = \Rightarrow d = |W| = 1$
Complexity of expanded circuit C of security parameter κ:

$$\mathcal{O}(|C| \cdot \kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$
Complexity of expanded circuit C of security parameter κ:

$$\mathcal{O}(|C| \cdot \kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$

$$N_{\text{max}} \approx \max(\# \times \text{ in } G_{\text{mult}}, \#(+, ||) \text{ in } G_{\text{add}}, G_{\text{copy}}, \# \times c \text{ in } G_{\text{cmult}})$$
Complexity of expanded circuit C of security parameter κ:

$$O(|C| \cdot \kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$

$$N_{\text{max}} \approx \max(\# \times\text{ in } G_{\text{mult}}, \#(+, ||) \text{ in } G_{\text{add}}, G_{\text{copy}}, \# \times_c \text{ in } G_{\text{cmult}})$$

d: amplification order (i.e. smallest failure set of internal wires)
Complexity of expanded circuit C of security parameter κ:

$$O(|C| \cdot \kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$

$$N_{\text{max}} \approx \max(\# \times \text{ in } G_{\text{mult}}, \#(+,||) \text{ in } G_{\text{add}}, G_{\text{copy}}, \# \times c \text{ in } G_{\text{cmult}})$$

d: amplification order (i.e. smallest failure set of internal wires)

Example $t = 1, n = 2$
Complexity of expanded circuit C of security parameter κ:

$$O(|C| \cdot \kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$

$$N_{\text{max}} \approx \max(\# \times \text{ in } G_{\text{mult}}, \#(+, ||) \text{ in } G_{\text{add}}, G_{\text{copy}}, \# \times c \text{ in } G_{\text{cmult}})$$

d: amplification order ($i.e.$ smallest failure set of internal wires)

Example $t = 1, n = 2$

Output $c_1 = a_1 + b_1$,
Complexity of expanded circuit C of security parameter κ:

$$O(|C| \cdot \kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$

$$N_{\text{max}} \approx \max(\# \times \text{ in } G_{\text{mult}}, \#(+, ||) \text{ in } G_{\text{add}}, G_{\text{copy}}, \# \times c \text{ in } G_{\text{cmult}})$$

d: amplification order (i.e. smallest failure set of internal wires)

Example $t = 1, n = 2$

Output $c_1 = a_1 + b_1$, set $W = \{b_2\}$
Complexity of expanded circuit C of security parameter κ:

$$O(|C| \cdot \kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$

$N_{\text{max}} \approx \max(\# \times \text{ in } G_{\text{mult}}, \#(+, ||) \text{ in } G_{\text{add}}, G_{\text{copy}}, \# \times c \text{ in } G_{\text{cmult}})$

d: amplification order (i.e. smallest failure set of internal wires)

Example $t = 1, n = 2$

Output $c_1 = a_1 + b_1$, set $W = \{b_2\}$

Simulation needs $a_1 (\leq t)$ and $b_1, b_2 (\geq t)$
Complexity of expanded circuit C of security parameter κ:

$$\mathcal{O}(|C| \cdot \kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$

$N_{\text{max}} \approx \max(\# \times \text{ in } G_{\text{mult}}, \#(+, ||) \text{ in } G_{\text{add}}, G_{\text{copy}}, \# \times c \text{ in } G_{\text{cmult}})$

d: amplification order (i.e. smallest failure set of internal wires)

Example $t = 1$, $n = 2$

Output $c_1 = a_1 + b_1$, set $W = \{b_2\}$

Simulation needs $a_1 \leq t$ and $b_1, b_2 > t$

Failure on b
Complexity of expanded circuit C of security parameter κ:

$$\mathcal{O}(|C|.\kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$

$$N_{\text{max}} \approx \max(\# \times \text{ in } G_{\text{mult}}, \# (+, ||) \text{ in } G_{\text{add}}, G_{\text{copy}}, \# \times c \text{ in } G_{\text{cmult}})$$

d: amplification order (i.e. smallest failure set of internal wires)

Example $t = 1, n = 2$

Output $c_1 = a_1 + b_1$, set $W = \{b_2\}$

Simulation needs $a_1 (\leq t)$ and $b_1, b_2 (> t)$

Failure on $b \implies d = |W| = 1$
Complexity of expanded circuit C of security parameter κ:

$$O(|C|\kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$

$N_{\text{max}} \approx \max(\# \times \text{ in } G_{\text{mult}}, \#(+,||) \text{ in } G_{\text{add}}, G_{\text{copy}}, \# \times c \text{ in } G_{\text{cmult}})$

d: amplification order (i.e. smallest failure set of internal wires)

$$\varepsilon = f(p) = c_d \cdot p^d + O(p^{d+1})$$
Complexity of expanded circuit C of security parameter κ:

$$O(|C|\cdot\kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$

$N_{\text{max}} \approx \max(\# \times \text{ in } G_{\text{mult}}, \#(+,||) \text{ in } G_{\text{add}}, G_{\text{copy}}, \# \times c \text{ in } G_{\text{cmult}})$

d: amplification order (i.e. smallest failure set of internal wires)

$$\varepsilon = f(p) = c_d \cdot p^d + O(p^{d+1})$$

- during expansion: $\varepsilon^k = f^{(k)}(p) = f(f(\ldots f(f(p))\ldots))$
Parameters

Complexity of expanded circuit C of security parameter κ:

\[\mathcal{O}(|C|\kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)} \]

$N_{\text{max}} \approx \max(\# \times \text{ in } G_{\text{mult}}, \#(+,||) \text{ in } G_{\text{add}}, G_{\text{copy}}, \# \times c \text{ in } G_{\text{cmult}})$

d: amplification order \textit{(i.e.} smallest failure set of internal wires\textit{)}

\[\varepsilon = f(p) = c_d \cdot p^d + \mathcal{O}(p^{d+1}) \]

- during expansion: $\varepsilon^k = f^{(k)}(p) = f(f(\ldots f(f(p))\ldots))$

- higher $d \implies$ faster decrease in failure probability ($d_{\text{max}} = \frac{n + 1}{2}$)
Dynamic RP Expansion

Idea

Using RPE compilers CC_1, \ldots, CC_ℓ with numbers of shares n_1, \ldots, n_ℓ

\[
C \xrightarrow{\text{k_1 times}} CC_1
\]

Leakage rate p

Conditions:

$\varepsilon_1 < p$, $\varepsilon_2 < \varepsilon_{k_1}$, \ldots, $\varepsilon_\ell < \varepsilon_{k_\ell - 1}$

Why?
Dynamic RP Expansion

Idea

Using RPE compilers CC_1, \ldots, CC_ℓ with numbers of shares n_1, \ldots, n_ℓ

\[C \xrightarrow{k_1 \text{ times}} CC_1 \]

Leakage rate p

$\varepsilon_{1}^{k_1} = f_1^{(k_1)}(p)$

Conditions:

$\varepsilon_1 < p$, $\varepsilon_2 < \varepsilon_1^{k_1}$, \ldots, $\varepsilon_\ell < \varepsilon_{\ell-1}^{k_\ell}$
Dynamic RP Expansion

Idea

Using RPE compilers CC_1, \ldots, CC_ℓ with numbers of shares n_1, \ldots, n_ℓ

\[C \xrightarrow[k_1]{CC_1} \hat{C}_1 \xrightarrow[k_2]{CC_2} \ldots \xrightarrow[k_\ell]{CC_\ell} \hat{C}_\ell \]

Leakage rate p

\[\varepsilon_{k_1}^{n_1} = f_1^{(k_1)}(p) \]

Conditions:

\[\varepsilon_1 < p, \varepsilon_2 < \varepsilon_{k_1}, \ldots, \varepsilon_\ell < \varepsilon_{k_\ell-1} \]

Why?

S. Belaid, M. Rivain, A. Taleb, D. Vergnaud
Dynamic RP Expansion

Idea

Using RPE compilers CC_1, \ldots, CC_ℓ with numbers of shares n_1, \ldots, n_ℓ

\[
\begin{align*}
C & \xrightarrow{CC_1 \ k_1 \ \text{times}} \hat{C}_1 & \xrightarrow{CC_2 \ k_2 \ \text{times}} \hat{C}_2 \\
\text{Leakage rate } p & \\
& n_1^{k_1} \ \text{shares} & n_2^{k_2} \cdot n_1^{k_1} \ \text{shares} \\
& \varepsilon_1^{k_1} = f_1^{(k_1)}(p) & \varepsilon_2^{k_2} = f_2^{(k_2)}(f_1^{(k_1)}(p))
\end{align*}
\]
Dynamic RP Expansion

Idea

Using RPE compilers CC_1, \ldots, CC_ℓ with numbers of shares n_1, \ldots, n_ℓ

\[C \xrightarrow{CC_1 \text{ times}} \hat{C}_1 \xrightarrow{CC_2 \text{ times}} \hat{C}_2 \xrightarrow{\text{\ldots}} \ldots \]

Leakage rate p

- $n_1^{k_1}$ shares
 \[\varepsilon_1^{k_1} = f_1^{(k_1)}(p) \]
- $n_2^{k_2} \cdot n_1^{k_1}$ shares
 \[\varepsilon_2^{k_2} = f_2^{(k_2)}(f_1^{(k_1)}(p)) \]

Conditions:

- $\varepsilon_1 < p$
- $\varepsilon_2 < \varepsilon_1$
- \ldots
- $\varepsilon_\ell < \varepsilon_{\ell-1}$
Dynamic RP Expansion

Idea

Using RPE compilers CC_1, \ldots, CC_ℓ with numbers of shares n_1, \ldots, n_ℓ

\[C \xrightarrow{CC_1 \text{ times}} \hat{C}_1 \xrightarrow{CC_2 \text{ times}} \hat{C}_2 \xrightarrow{\cdots \text{ times}} \cdots \xrightarrow{CC_\ell \text{ times}} \]

Leakage rate p

- $n_1^{k_1}$ shares
 \[\varepsilon_1^{k_1} = f_1^{(k_1)}(p) \]
- $n_2^{k_2} \cdot n_1^{k_1}$ shares
 \[\varepsilon_2^{k_2} = f_2^{(k_2)}(f_1^{(k_1)}(p)) \]
Dynamic RP Expansion

Idea

Using RPE compilers CC_1, \ldots, CC_ℓ with numbers of shares n_1, \ldots, n_ℓ

\[
\begin{align*}
C & \xrightarrow{CC_1 \text{ times}} \hat{C}_1 & \xrightarrow{CC_2 \text{ times}} \hat{C}_2 & \xrightarrow{\cdots} \cdots & \xrightarrow{CC_\ell \text{ times}} \hat{C}_\ell \\
& \quad n_1^{k_1} \text{ shares} & \quad n_2^{k_2} \cdot n_1^{k_1} \text{ shares} & \quad n_\ell^{k_\ell} \cdots n_1^{k_1} \text{ shares} \\
& \quad \varepsilon_1^{k_1} = f_1^{(k_1)}(p) & \quad \varepsilon_2^{k_2} = f_2^{(k_2)}(f_1^{(k_1)}(p)) & \quad \varepsilon_\ell^{k_\ell} = f_\ell^{(k_\ell)}(\cdots(f_1^{(k_1)}(p)\cdots)
\end{align*}
\]

Conditions:

$\varepsilon_1 < p$, $\varepsilon_2 < \varepsilon_1^{k_1}$, \ldots, $\varepsilon_\ell < \varepsilon_{\ell-1}^{k_{\ell-1}}$

Why?

S. Belaid, M. Rivain, A. Taleb, D. Vergnaud
Dynamic RP Expansion

Idea

Using RPE compilers CC_1, \ldots, CC_ℓ with numbers of shares n_1, \ldots, n_ℓ

\[
\begin{align*}
C \quad \xrightarrow{k_1 \text{ times}} \quad CC_1 \quad \xrightarrow{k_2 \text{ times}} \quad CC_2 \quad \xrightarrow{\ldots} \quad \ldots \quad \xrightarrow{k_\ell \text{ times}} \quad CC_\ell \\
C_1 \quad \xrightarrow{k_1 \text{ times}} \quad CC_1 \quad \xrightarrow{k_2 \text{ times}} \quad CC_2 \quad \xrightarrow{\ldots} \quad \ldots \quad \xrightarrow{k_\ell \text{ times}} \quad CC_\ell \\
\end{align*}
\]

Leakage rate p

\[
\begin{align*}
\varepsilon_1^{k_1} &= f_1^{(k_1)}(p) \\
\varepsilon_2^{k_2} &= f_2^{(k_2)}(f_1^{(k_1)}(p)) \\
\varepsilon_\ell^{k_\ell} &= f_\ell^{(k_\ell)}(\ldots(f_1^{(k_1)}(p))\ldots)
\end{align*}
\]

Conditions: $\varepsilon_1 < p$, $\varepsilon_2 < \varepsilon_1^{k_1}$, \ldots, $\varepsilon_\ell < \varepsilon_{\ell-1}^{k_\ell-1}$
Using RPE compilers CC_1, \ldots, CC_ℓ with numbers of shares n_1, \ldots, n_ℓ

\[
\begin{align*}
C \xrightarrow[\times k_1]{CC_1} \hat{C}_1 \xrightarrow[\times k_2]{CC_2} \hat{C}_2 \rightarrow \cdots \rightarrow \cdots \xrightarrow[\times k_\ell]{CC_\ell} \hat{C}_\ell
\end{align*}
\]

Leakage rate p

\[
\begin{align*}
\varepsilon^{k_1}_1 &= f^{(k_1)}_1(p) \\
\varepsilon^{k_2}_2 &= f^{(k_2)}_2(f^{(k_1)}_1(p)) \\
\varepsilon^{k_\ell}_{\ell} &= f^{(k_\ell)}_{\ell}(\cdots(f^{(k_1)}_1(p))\cdots)
\end{align*}
\]

Conditions: $\varepsilon_1 < p$, $\varepsilon_2 < \varepsilon^{k_1}_1$, \ldots, $\varepsilon_\ell < \varepsilon^{k_\ell-1}_{\ell-1}$

Why?
Dynamic RP Expansion

Motivation

\(n\)-share RPE compilers:

\[d_{\text{max}} = n + 1\]

\[\text{Complexity and security level of RP AES starting from tolerated leakage of } p = 2^{-7.6} \text{ using 3-share CC3 and 5-share CC5 by Belaïd et al. - EuroCrypt 2021}\]
n-share RPE compilers:

- **small** n: fewer sets of probes that reveal the secret \Rightarrow tolerate better leakage rate p
Motivation

\(n \)-share RPE compilers:

- **small** \(n \): fewer sets of probes that reveal the secret \(\Rightarrow \) tolerate better leakage rate \(p \)
- **big** \(n \): have higher amp. order \(d_{\text{max}} = \frac{n + 1}{2} \) \(\Rightarrow \) have better asymptotic complexity
Dynamic RP Expansion

Motivation

- **small** n: fewer sets of probes that reveal the secret \implies tolerate better leakage rate p
- **big** n: have higher amp. order $d_{\text{max}} = \frac{n+1}{2} \implies$ have better asymptotic complexity

Complexity and security level of RP AES starting from tolerated leakage of $p = 2^{-7.6}$ using 3-share CC_3 and 5-share CC_5 by Belaïd et al. - EuroCrypt 2021
n-share RPE compilers:

- **small** \(n \): fewer sets of probes that reveal the secret \(\Rightarrow \) tolerate better leakage rate \(p \)
- **big** \(n \): have higher amp. order \(d_{\text{max}} = \frac{n + 1}{2} \) \(\Rightarrow \) have better asymptotic complexity

Complexity and security level of RP AES starting from tolerated leakage of \(p = 2^{-7.6} \) using 3-share \(CC_3 \) and 5-share \(CC_5 \) by Belaïd et al. - EuroCrypt 2021
Dynamic RP Expansion

Motivation

\(n \)-share RPE compilers:

- **small** \(n \): fewer sets of probes that reveal the secret \(\Rightarrow \) tolerate better leakage rate \(p \)
- **big** \(n \): have higher amp. order \(d_{\text{max}} = \frac{n + 1}{2} \) \(\Rightarrow \) have better asymptotic complexity

Complexity and security level of RP AES starting from tolerated leakage of \(p = 2^{-7.6} \) using 3-share \(CC_3 \) and 5-share \(CC_5 \) by Belaïd et al. - EuroCrypt 2021
2 possible directions:
2 possible directions:

- look for gadgets with **small** number of shares tolerating the best leakage rate (eventually with high complexity)
2 possible directions:

- look for gadgets with **small** number of shares tolerating the best leakage rate (eventually with high complexity)

- look for gadgets which achieve maximal amp. order for **any** number shares with low asymptotic complexity
2 possible directions:

- look for gadgets with **small** number of shares tolerating the best leakage rate (eventually with high complexity)

- look for gadgets which achieve maximal amp. order for **any** number shares with low asymptotic complexity

In this work:
2 possible directions:

- look for gadgets with small number of shares tolerating the best leakage rate (eventually with high complexity)
- look for gadgets which achieve maximal amp. order for any number shares with low asymptotic complexity

In this work:

- construction of \(n \)-share linear \(G_{\text{add}}, G_{\text{copy}}, G_{\text{cmult}} \) with \(O(n \log n) \) asymptotic complexity and maximal amp. order
2 possible directions:

- look for gadgets with **small** number of shares tolerating the best leakage rate (eventually with high complexity)

- look for gadgets which achieve maximal amp. order for **any** number shares with low asymptotic complexity

In this work:

- construction of n-share linear G_{add}, G_{copy}, G_{cmult} with $O(n \log n)$ asymptotic complexity and maximal amp. order

- construction of n-share G_{mult} with $O(n \log n)$ **randomness** and $O(n)$ **multiplications** between variables
Linear Gadgets
Building Block

$O(n \log n)$ refresh gadget G_{refresh} by Battistello et al. - CHES 2016:

\[
\begin{pmatrix}
a_1 \\
\vdots \\
a_n \\
\end{pmatrix}
\begin{pmatrix}
a_1 \\
\vdots \\
a_n \\
\end{pmatrix}
\]
$O(n \log n)$ refresh gadget G_{refresh} by Battistello et al. - CHES 2016:

\[\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \xrightarrow{L_1} \begin{pmatrix} b_1 \\ \vdots \\ b_{n/2} \\ a_{n/2+1} \\ \vdots \\ a_n \end{pmatrix} \]

\[
\begin{align*}
 b_i & \leftarrow a_i + r_i \\
 b_{n/2+i} & \leftarrow a_{n/2+i} + r_i
\end{align*}
\]
$O(n \log n)$ refresh gadget G_{refresh} by Battistello et al. - CHES 2016:

\[
\begin{pmatrix}
 a_1 \\
 \vdots \\
 a_n
\end{pmatrix}
\xrightarrow{L_1}
\begin{pmatrix}
 b_1 \\
 \vdots \\
 b_{n/2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
 b_{n/2+1} \\
 \vdots \\
 b_n
\end{pmatrix}
\]

\[
\begin{pmatrix}
 b_1 \\
 \vdots \\
 b_{n/2}
\end{pmatrix} + \begin{pmatrix}
 r_1 \\
 \vdots \\
 r_{n/2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
 b_{n/2+1} \\
 \vdots \\
 b_n
\end{pmatrix} + \begin{pmatrix}
 r_{n/2+1} \\
 \vdots \\
 r_n
\end{pmatrix}
\]

\[
\begin{pmatrix}
 b_i \\ b_{n/2+i}
\end{pmatrix} = \begin{pmatrix}
 a_i \\ a_{n/2+i}
\end{pmatrix} + \begin{pmatrix}
 r_i \\ r_{n/2+i}
\end{pmatrix}
\]

\[
\begin{pmatrix}
 b_{n/2+1} \\
 \vdots \\
 b_n
\end{pmatrix} = \begin{pmatrix}
 a_{n/2+1} \\
 a_{n+1}
\end{pmatrix} + \begin{pmatrix}
 r_{n/2+1} \\
 r_{n+1}
\end{pmatrix}
\]
$O(n \log n)$ refresh gadget G_{refresh} by Battistello et al. - CHES 2016:

\[
\begin{pmatrix}
a_1 \\ \vdots \\ a_n
\end{pmatrix}
\rightarrow
\begin{pmatrix}
b_1 \\ \vdots \\ b_{n/2}
\end{pmatrix}
\rightarrow
R_1
\rightarrow
R_2
\rightarrow
\begin{pmatrix}
b_{n/2+1} \\ \vdots \\ b_n
\end{pmatrix}
\]

Recursive call

\[
b_i \leftarrow a_i + r_i
\]

$n/2$ randoms

\[
b_{n/2+i} \leftarrow a_{n/2+i} + r_i
\]
$\mathcal{O}(n \log n)$ refresh gadget G_{refresh} by Battistello et al. - CHES 2016:

\[
\begin{pmatrix}
 a_1 \\
 \vdots \\
 a_n
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 b_1 \\
 \vdots \\
 b_{n/2}
\end{pmatrix}
\text{recursive call}
\rightarrow
\begin{pmatrix}
 c_1 \\
 \vdots \\
 c_{n/2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
 b_{n/2+1} \\
 \vdots \\
 b_n
\end{pmatrix}
\text{recursive call}
\rightarrow
\begin{pmatrix}
 c_{n/2+1} \\
 \vdots \\
 c_n
\end{pmatrix}
\]

$n/2$ randoms

\[
b_i \leftarrow a_i + r_i
\]

\[
b_{n/2+i} \leftarrow a_{n/2+i} + r_i
\]
$\mathcal{O}(n \log n)$ refresh gadget G_{refresh} by Battistello et al. - CHES 2016:
$O(n \log n)$ refresh gadget G_{refresh} by Battistello et al. - CHES 2016:

\[
\begin{align*}
L_1 & \quad \begin{pmatrix}
 a_1 \\
 \vdots \\
 a_n
\end{pmatrix} \quad \begin{pmatrix}
 b_1 \\
 \vdots \\
 b_{n/2}
\end{pmatrix} \\
R_1 & \quad \begin{pmatrix}
 b_{n/2+1} \\
 \vdots \\
 b_n
\end{pmatrix} \quad \begin{pmatrix}
 c_1 \\
 \vdots \\
 c_{n/2}
\end{pmatrix} \\
R_2 & \quad \begin{pmatrix}
 c_{n/2+1} \\
 \vdots \\
 c_n
\end{pmatrix} \\
L_0 & \quad \begin{pmatrix}
 d_1 \\
 \vdots \\
 d_n
\end{pmatrix}
\end{align*}
\]

Recursive call

\[
\begin{align*}
& n/2 \text{ randoms} \quad b_i \leftarrow a_i + r_i \\
& b_{n/2+i} \leftarrow a_{n/2+i} + r_i \\
& n/2 \text{ randoms} \quad d_i \leftarrow c_i + r'_i \\
& d_{n/2+i} \leftarrow c_{n/2+i} + r'_i
\end{align*}
\]
Example (4 shares):

\[
\begin{align*}
 d_1 &\leftarrow (a_1 + r_1) + r_3 + r_5 \\
 d_2 &\leftarrow (a_2 + r_2) + r_3 + r_6 \\
 d_3 &\leftarrow (a_3 + r_1) + r_4 + r_5 \\
 d_4 &\leftarrow (a_4 + r_2) + r_4 + r_6
\end{align*}
\]
Example (4 shares):

\[
\begin{align*}
 d_1 &\leftarrow (a_1 + r_1) + r_3 + r_5 \\
 d_2 &\leftarrow (a_2 + r_2) + r_3 + r_6 \\
 d_3 &\leftarrow (a_3 + r_1) + r_4 + r_5 \\
 d_4 &\leftarrow (a_4 + r_2) + r_4 + r_6
\end{align*}
\]

- proven by Battistello et al. to be \((n-1)\)-SNI in the probing model
Linear Gadgets

Building Block

Example (4 shares):

\[d_1 \leftarrow (a_1 + r_1) + r_3 + r_5 \]
\[d_2 \leftarrow (a_2 + r_2) + r_3 + r_6 \]
\[d_3 \leftarrow (a_3 + r_1) + r_4 + r_5 \]
\[d_4 \leftarrow (a_4 + r_2) + r_4 + r_6 \]

- proven by Battistello et al. to be \((n - 1)\)-SNI in the probing model

- proven in our work to satisfy stronger requirements to be used as a building block for RPE secure constructions (extension of requirements proposed by Belaïd et al. - EuroCrypt 2021)
Using $\mathcal{O}(n \log n)$ G_{refresh}
Using $O(n \log n)$ G_{refresh}

G_{add}

\[a_1, \ldots, a_n \quad b_1, \ldots, b_n \]

\[G_{\text{refresh}} \quad G_{\text{refresh}} \]

\[e_1, \ldots, e_n \quad f_1, \ldots, f_n \]

\[c_i = e_i + f_i \]
Using $\mathcal{O}(n \log n)$ G_{refresh}

G_{add}

\[
a_1, \ldots, a_n \quad b_1, \ldots, b_n
\]

\[
G_{\text{refresh}} \quad G_{\text{refresh}}
\]

\[
e_1, \ldots, e_n \quad f_1, \ldots, f_n
\]

\[
\begin{array}{c}
+ \\
\end{array}
\]

\[
c_i = e_i + f_i
\]

G_{copy}

\[
a_1, \ldots, a_n
\]

\[
G_{\text{refresh}} \quad G_{\text{refresh}}
\]

\[
e_1, \ldots, e_n \quad f_1, \ldots, f_n
\]
Using $O(n \log n)$ G_{refresh}

\[G_{\text{add}} \]
\[a_1, \ldots, a_n \quad b_1, \ldots, b_n \]
\[G_{\text{refresh}} \quad G_{\text{refresh}} \]
\[e_1, \ldots, e_n \quad f_1, \ldots, f_n \]
\[+ \]
\[c_i = e_i + f_i \]

\[G_{\text{copy}} \]
\[a_1, \ldots, a_n \]
\[G_{\text{refresh}} \quad G_{\text{refresh}} \]
\[e_1, \ldots, e_n \quad f_1, \ldots, f_n \]

\[G_{\text{cmult}} \]
\[a_1, \ldots, a_n \]
\[\times_c \]
\[c \cdot a_1, \ldots, c \cdot a_n \]
\[G_{\text{refresh}} \]
\[e_1, \ldots, e_n \]
Linear Gadgets

Constructions

Using $O(n \log n)$ G_{refresh}

G_{add}

\[a_1, \ldots, a_n \quad b_1, \ldots, b_n \]

\[G_{\text{refresh}} \quad G_{\text{refresh}} \]

\[e_1, \ldots, e_n \quad f_1, \ldots, f_n \]

$\quad +$

\[c_i = e_i + f_i \]

\[G_{\text{copy}} \]

\[a_1, \ldots, a_n \]

\[G_{\text{refresh}} \quad G_{\text{refresh}} \]

\[e_1, \ldots, e_n \quad f_1, \ldots, f_n \]

\[G_{\text{cmult}} \]

\[a_1, \ldots, a_n \]

\[\times c \]

\[c \cdot a_1, \ldots, c \cdot a_n \]

\[G_{\text{refresh}} \]

\[e_1, \ldots, e_n \]

- Complexity in $O(n \log n)$
Linear Gadgets
Constructions

Using $\mathcal{O}(n \log n)$ G_{refresh}

- G_{add}
 \[a_1, \ldots, a_n \quad b_1, \ldots, b_n \]
 \[G_{\text{refresh}} \quad G_{\text{refresh}} \]
 \[e_1, \ldots, e_n \quad f_1, \ldots, f_n \]
 \[\text{+} \]
 \[c_i = e_i + f_i \]

- G_{copy}
 \[a_1, \ldots, a_n \]
 \[G_{\text{refresh}} \quad G_{\text{refresh}} \]
 \[e_1, \ldots, e_n \quad f_1, \ldots, f_n \]

- G_{cmult}
 \[a_1, \ldots, a_n \]
 \[\times_c \]
 \[c \cdot a_1, \ldots, c \cdot a_n \]
 \[G_{\text{refresh}} \]
 \[e_1, \ldots, e_n \]

- Complexity in $\mathcal{O}(n \log n)$
- RPE secure with $d = d_{\text{max}} = \frac{n + 1}{2}$
G_{mult} (over \mathbb{K}) construction from 2 subgadgets
Multiplication Gadget

Construction from $G_{\text{submult}}, G_{\text{compress}}$

G_{mult} (over \mathbb{K}) construction from 2 subgadgets
Multiplication Gadget
Construction from $G_{\text{submult}}, G_{\text{compress}}$

G_{mult} (over \mathbb{K}) construction from 2 subgadgets

- In classical constructions, $m = \mathcal{O}(n^2)$
Multiplication Gadget

Construction from $G_{\text{submult}}, G_{\text{compress}}$

G_{mult} (over \mathbb{K}) construction from 2 subgadgets

- In classical constructions, $m = \mathcal{O}(n^2)$
- G_{mult} must be RPE secure \iff composition of G_{submult} and G_{compress} must be RPE secure
Multiplication Gadget
Construction from $G_{\text{submult}}, G_{\text{compress}}$

G_{mult} (over \mathbb{K}) construction from 2 subgadgets

- In classical constructions, $m = \mathcal{O}(n^2)$
- G_{mult} must be RPE secure \implies composition of G_{submult} and G_{compress} must be RPE secure
- Extension of G_{submult} by Belaïd et al. - Crypto 2017 with $m = 2n + 1$
Multiplication Gadget
Construction from $G_{\text{submult}}, G_{\text{compress}}$

G_{mult} (over \mathbb{K}) construction from 2 subgadgets

- In classical constructions, $m = \mathcal{O}(n^2)$
- G_{mult} must be RPE secure \implies composition of G_{submult} and G_{compress} must be RPE secure
- Extension of G_{submult} by Belaïd et al. - Crypto 2017 with $m = 2n + 1$
- New G_{compress} with complexity in $\mathcal{O}(m \log m)$
Inputs a,b (illustration with 3 shares), field \mathbb{K}
Multiplication Gadget
Extension of G_{submult} by Belaïd et al. - Crypto 2017

Inputs a, b (illustration with 3 shares), field \mathbb{K}

\[
\gamma = \begin{pmatrix}
\gamma_{1,1} & \gamma_{1,2} & \gamma_{1,3} \\
\gamma_{2,1} & \gamma_{2,2} & \gamma_{2,3} \\
\gamma_{3,1} & \gamma_{3,2} & \gamma_{3,3}
\end{pmatrix}
\]

\[
\delta = \begin{pmatrix}
1 - \gamma_{1,1} & 1 - \gamma_{2,1} & 1 - \gamma_{3,1} \\
1 - \gamma_{1,2} & 1 - \gamma_{2,2} & 1 - \gamma_{3,2} \\
1 - \gamma_{1,3} & 1 - \gamma_{2,3} & 1 - \gamma_{3,3}
\end{pmatrix}
\]
Multiplication Gadget

Extension of G_{submult} by Belaïd et al. - Crypto 2017

Inputs a, b (illustration with 3 shares), field \mathbb{K}

$$\gamma = \begin{pmatrix}
\gamma_{1,1} & \gamma_{1,2} & \gamma_{1,3} \\
\gamma_{2,1} & \gamma_{2,2} & \gamma_{2,3} \\
\gamma_{3,1} & \gamma_{3,2} & \gamma_{3,3}
\end{pmatrix}$$

$$\delta = \begin{pmatrix}
1 - \gamma_{1,1} & 1 - \gamma_{2,1} & 1 - \gamma_{3,1} \\
1 - \gamma_{1,2} & 1 - \gamma_{2,2} & 1 - \gamma_{3,2} \\
1 - \gamma_{1,3} & 1 - \gamma_{2,3} & 1 - \gamma_{3,3}
\end{pmatrix}$$

$$c_1 \leftarrow ((r_1 + a_1) + (r_2 + a_2) + (r_3 + a_3)) \cdot ((s_1 + b_1) + (s_2 + b_2) + (s_3 + b_3))$$
Inputs a, b (illustration with 3 shares), field \mathbb{K}

$$\gamma = \begin{pmatrix}
\gamma_{1,1} & \gamma_{1,2} & \gamma_{1,3} \\
\gamma_{2,1} & \gamma_{2,2} & \gamma_{2,3} \\
\gamma_{3,1} & \gamma_{3,2} & \gamma_{3,3}
\end{pmatrix}$$

$$\delta = \begin{pmatrix}
1 - \gamma_{1,1} & 1 - \gamma_{2,1} & 1 - \gamma_{3,1} \\
1 - \gamma_{1,2} & 1 - \gamma_{2,2} & 1 - \gamma_{3,2} \\
1 - \gamma_{1,3} & 1 - \gamma_{2,3} & 1 - \gamma_{3,3}
\end{pmatrix}$$

$$c_1 \leftarrow ((r_1 + a_1) + (r_2 + a_2) + (r_3 + a_3)) \cdot ((s_1 + b_1) + (s_2 + b_2) + (s_3 + b_3))$$

$$c_2 \leftarrow -r_1 \cdot ((\delta_{1,1} \cdot s_1 + b_1) + (\delta_{1,2} \cdot s_2 + b_2) + (\delta_{1,3} \cdot s_3 + b_3))$$

$$c_3 \leftarrow -r_2 \cdot ((\delta_{2,1} \cdot s_1 + b_1) + (\delta_{2,2} \cdot s_2 + b_2) + (\delta_{2,3} \cdot s_3 + b_3))$$

$$c_4 \leftarrow -r_3 \cdot ((\delta_{3,1} \cdot s_1 + b_1) + (\delta_{3,2} \cdot s_2 + b_2) + (\delta_{3,3} \cdot s_3 + b_3))$$
Multiplication Gadget
Extension of G_{submult} by Belaïd et al. - Crypto 2017

Inputs a, b (illustration with 3 shares), field \mathbb{K}

\[
\gamma = \begin{pmatrix}
\gamma_{1,1} & \gamma_{1,2} & \gamma_{1,3} \\
\gamma_{2,1} & \gamma_{2,2} & \gamma_{2,3} \\
\gamma_{3,1} & \gamma_{3,2} & \gamma_{3,3}
\end{pmatrix}
\]

\[
\delta = \begin{pmatrix}
1 - \gamma_{1,1} & 1 - \gamma_{2,1} & 1 - \gamma_{3,1} \\
1 - \gamma_{1,2} & 1 - \gamma_{2,2} & 1 - \gamma_{3,2} \\
1 - \gamma_{1,3} & 1 - \gamma_{2,3} & 1 - \gamma_{3,3}
\end{pmatrix}
\]

\[
c_1 \leftarrow ((r_1 + a_1) + (r_2 + a_2) + (r_3 + a_3)) \cdot ((s_1 + b_1) + (s_2 + b_2) + (s_3 + b_3))
\]

\[
c_2 \leftarrow -r_1 \cdot ((\delta_{1,1} \cdot s_1 + b_1) + (\delta_{1,2} \cdot s_2 + b_2) + (\delta_{1,3} \cdot s_3 + b_3))
\]

\[
c_3 \leftarrow -r_2 \cdot ((\delta_{2,1} \cdot s_1 + b_1) + (\delta_{2,2} \cdot s_2 + b_2) + (\delta_{2,3} \cdot s_3 + b_3))
\]

\[
c_4 \leftarrow -r_3 \cdot ((\delta_{3,1} \cdot s_1 + b_1) + (\delta_{3,2} \cdot s_2 + b_2) + (\delta_{3,3} \cdot s_3 + b_3))
\]

\[
c_5 \leftarrow -s_1 \cdot ((\gamma_{1,1} \cdot r_1 + a_1) + (\gamma_{1,2} \cdot r_2 + a_2) + (\gamma_{1,3} \cdot r_3 + a_3))
\]

\[
c_6 \leftarrow -s_2 \cdot ((\gamma_{2,1} \cdot r_1 + a_1) + (\gamma_{2,2} \cdot r_2 + a_2) + (\gamma_{2,3} \cdot r_3 + a_3))
\]

\[
c_7 \leftarrow -s_3 \cdot ((\gamma_{3,1} \cdot r_1 + a_1) + (\gamma_{3,2} \cdot r_2 + a_2) + (\gamma_{3,3} \cdot r_3 + a_3))
\]
G_{submult} uses 2^n random values, outputs $2^n + 1$ shares, performs $2^n + 1$ multiplications, performs $2^n 2$ multiplications by a constant. It is proven to be secure for $G_{\text{mult}} RPE secure construction, for the right choice of constants in γ (can be chosen uniformly at random if the field is large enough).
Multiplication Gadget
Extension of G_{submult} by Belaïd et al. - Crypto 2017

G_{submult}
- uses $2n$ random values
Multiplication Gadget

Extension of G_{submult} by Belaïd et al. - Crypto 2017

G_{submult}

- uses $2n$ random values
- outputs $2n + 1$ shares
Multiplication Gadget
Extension of G_{submult} by Belaïd et al. - Crypto 2017

G_{submult}

- uses $2n$ random values
- outputs $2n + 1$ shares
- performs $2n + 1$ multiplications operations
Multiplication Gadget
Extension of G_{submult} by Belaïd et al. - Crypto 2017

G_{submult}
- uses $2n$ random values
- outputs $2n + 1$ shares
- performs $2n + 1$ multiplications operations
- performs $2n^2$ multiplications by a constant
Multiplication Gadget

Extension of G_{submult} by Belaïd et al. - Crypto 2017

G_{submult}

- uses $2n$ random values
- outputs $2n + 1$ shares
- performs $2n + 1$ multiplications operations
- performs $2n^2$ multiplications by a constant
- is proven to be secure for G_{mult} RPE secure construction, for the right choice of constants in γ (can be chosen uniformly at random if the field is large enough)
The \([m : n]\)-compression gadget proposed by Belaïd et al. - Crypto 2017 is not secure as claimed.
The \([m : n]\)-compression gadget proposed by Belaïd et al. - Crypto 2017 is not secure as claimed.

New Compression gadget

\[
\begin{align*}
a_1, \ldots, a_m \\
\text{G}_{\text{refresh}} \\
c_1, \ldots, c_n, c_{n+1}, \ldots, c_{2n}, \ldots, c_{Kn+1}, \ldots, c_m \\
\ldots \\
\mathbf{d}_i = c_i + c_{n+i} + \ldots + c_{Kn+i}
\end{align*}
\]
New Construction of G_{compress}

New G_{compress}
New G_{compress}

- is of size $\mathcal{O}(|G_{\text{refresh}}| + m)$
New \(G_{\text{compress}} \)

- is of size \(\mathcal{O}(|G_{\text{refresh}}| + m) \)

- using \(\mathcal{O}(n \log n) \) \(G_{\text{refresh}} \), has complexity \(\mathcal{O}(m \log m) \)
Multiplication Gadget
New Construction of G_{compress}

New G_{compress}
- is of size $O(|G_{\text{refresh}}| + m)$
- using $O(n \log n)$ G_{refresh}, has complexity $O(m \log m)$
- With $m = O(n)$ (from G_{submult}), has complexity $O(n \log n)$
New G_{compress}

- is of size $\mathcal{O}(|G_{\text{refresh}}| + m)$

- using $\mathcal{O}(n \log n)$ G_{refresh}, has complexity $\mathcal{O}(m \log m)$

- With $m = \mathcal{O}(n)$ (from G_{submult}), has complexity $\mathcal{O}(n \log n)$

- is proven secure for G_{mult} RPE secure construction
New G_{compress}

- is of size $\mathcal{O}(|G_{\text{refresh}}| + m)$
- using $\mathcal{O}(n \log n)$ G_{refresh}, has complexity $\mathcal{O}(m \log m)$
- With $m = \mathcal{O}(n)$ (from G_{submult}), has complexity $\mathcal{O}(n \log n)$
- is proven secure for G_{mult} RPE secure construction

Using G_{submult} described earlier, and new G_{compress}, we get G_{mult}:
Multiplication Gadget
New Construction of \(G_{\text{compress}} \)

New \(G_{\text{compress}} \)
- is of size \(\mathcal{O}(|G_{\text{refresh}}| + m) \)
- using \(\mathcal{O}(n \log n) \) \(G_{\text{refresh}} \), has complexity \(\mathcal{O}(m \log m) \)
- With \(m = \mathcal{O}(n) \) (from \(G_{\text{submult}} \)), has complexity \(\mathcal{O}(n \log n) \)
- is proven secure for \(G_{\text{mult}} \) RPE secure construction

Using \(G_{\text{submult}} \) described earlier, and new \(G_{\text{compress}} \), we get \(G_{\text{mult}} \):
- performs \(\mathcal{O}(n) \) multiplications between variables
New G_{compress}

- is of size $\mathcal{O}(|G_{\text{refresh}}| + m)$
- using $\mathcal{O}(n \log n)$ G_{refresh}, has complexity $\mathcal{O}(m \log m)$
- With $m = \mathcal{O}(n)$ (from G_{submult}), has complexity $\mathcal{O}(n \log n)$
- is proven secure for G_{mult} RPE secure construction

Using G_{submult} described earlier, and new G_{compress}, we get G_{mult}:

- performs $\mathcal{O}(n)$ multiplications between variables
- uses $\mathcal{O}(n \log n)$ random values
New G_{compress}
- is of size $O(|G_{\text{refresh}}| + m)$
- using $O(n \log n)$ G_{refresh}, has complexity $O(m \log m)$
- With $m = O(n)$ (from G_{submult}), has complexity $O(n \log n)$
- is proven secure for G_{mult} RPE secure construction

Using G_{submult} described earlier, and new G_{compress}, we get G_{mult}:
- performs $O(n)$ multiplications between variables
- uses $O(n \log n)$ random values
- is RPE secure with amplification order $d = d_{\text{max}} = \frac{n + 1}{2}$
New RPE Compiler
With Quasi-Linear Asymptotic Complexity

New Linear gadgets G_{add}, G_{copy}, G_{cmult} with $\mathcal{O}(n \log n)$ complexity
New RPE Compiler
With Quasi-Linear Asymptotic Complexity

New Linear gadgets G_{add}, G_{copy}, G_{cmult} with $O(n \log n)$ complexity

New G_{mult} with $O(n)$ multiplications between variables
New RPE Compiler

With Quasi-Linear Asymptotic Complexity

New Linear gadgets G_{add}, G_{copy}, G_{cmult} with $O(n \log n)$ complexity

New G_{mult} with $O(n)$ multiplications between variables

All gadgets of amplification order $d = \frac{n + 1}{2}$
New RPE Compiler
With Quasi-Linear Asymptotic Complexity

New Linear gadgets G_{add}, G_{copy}, G_{cmult} with $O(n \log n)$ complexity

New G_{mult} with $O(n)$ multiplications between variables

All gadgets of amplification order $d = \frac{n + 1}{2}$

Complexity of expansion of a circuit C:

$$O(|C|.\kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$
New RPE Compiler
With Quasi-Linear Asymptotic Complexity

New Linear gadgets G_{add}, G_{copy}, G_{cmult} with $O(n \log n)$ complexity

New G_{mult} with $O(n)$ multiplications between variables

All gadgets of amplification order $d = \frac{n + 1}{2}$

Complexity of expansion of a circuit C:

$$O(|C| \cdot \kappa^e), \quad e = \frac{\log(N_{\text{max}})}{\log(d)}$$

$N_{\text{max}} \approx \max(\# \times \text{ in } G_{\text{mult}}, \#(+, ||) \text{ in } G_{\text{add}}, G_{\text{copy}}, \# \times c \text{ in } G_{\text{cmult}}) = O(n \log n)$
New RPE Compiler
With Quasi-Linear Asymptotic Complexity

\[O(|C| \cdot \kappa^e), \quad e = \frac{\log(N_{\max})}{\log(d)} \]

Previously best compiler with \(N_{\max} = O(n^2), \quad d = (n + 1)/2 \)
New RPE compiler with \(N_{\max} = O(n \log n), \quad d = (n + 1)/2 \)
Conclusion

- Construction of new RPE compiler with quasilinear complexity from
Construction of new RPE compiler with quasilinear complexity from

- n-share G_{add}, G_{copy}, G_{cmult} with $\mathcal{O}(n \log n)$ complexity
Conclusion

- Construction of new RPE compiler with quasilinear complexity from
 - n-share $G_{\text{add}}, G_{\text{copy}}, G_{\text{cmult}}$ with $O(n \log n)$ complexity
 - n-share G_{mult} with $O(n \log n)$ randomness and $O(n)$ multiplications between variables

Dynamic RPE (different compilers) is more interesting than static RPE (single compiler)
- Start with RPE compiler with small nb. of shares tolerating the best leakage rate
- Continue with RPE compiler with best asymptotic complexity (e.g. our new RPE compiler)

Future work: Find gadgets with small nb. of shares (e.g. 3 shares) which tolerate the best possible leakage rate
Conclusion

- Construction of new RPE compiler with quasilinear complexity from
 - n-share G_{add}, G_{copy}, G_{cmult} with $O(n \log n)$ complexity
 - n-share G_{mult} with $O(n \log n)$ randomness and $O(n)$ multiplications between variables

- Dynamic RPE (different compilers) is more interesting than static RPE (single compiler)
Conclusion

- Construction of new RPE compiler with quasilinear complexity from
 - n-share $G_{\text{add}}, G_{\text{copy}}, G_{\text{cmult}}$ with $O(n \log n)$ complexity
 - n-share G_{mult} with $O(n \log n)$ randomness and $O(n)$ multiplications between variables

- Dynamic RPE (different compilers) is more interesting than static RPE (single compiler)
 - start with RPE compiler with small nb. of shares tolerating the best leakage rate
Conclusion

- Construction of new RPE compiler with quasilinear complexity from
 - n-share $G_{\text{add}}, G_{\text{copy}}, G_{\text{cmult}}$ with $O(n \log n)$ complexity
 - n-share G_{mult} with $O(n \log n)$ randomness and $O(n)$ multiplications between variables

- Dynamic RPE (different compilers) is more interesting than static RPE (single compiler)
 - start with RPE compiler with small nb. of shares tolerating the best leakage rate
 - continue with RPE compiler with best asymptotic complexity (e.g. our new RPE compiler)
Conclusion

- Construction of new RPE compiler with quasilinear complexity from
 - n-share $G_{\text{add}}, G_{\text{copy}}, G_{\text{cmult}}$ with $O(n \log n)$ complexity
 - n-share G_{mult} with $O(n \log n)$ randomness and $O(n)$ multiplications between variables

- Dynamic RPE (different compilers) is more interesting than static RPE (single compiler)
 - start with RPE compiler with small nb. of shares tolerating the best leakage rate
 - continue with RPE compiler with best asymptotic complexity (e.g. our new RPE compiler)

- Future work: Find gadgets with small nb. of shares (e.g. 3 shares) which tolerate the best possible leakage rate