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PKE+SIG

PKE and SIG are “workhorse” primitives that are typically used simultaneously to
secure communication

PKE ⇒ protect confidentiality
SIG ⇒ protect authenticity: data integrity & authenticated data source

Classical examples
Secure communication software: PGP, WhatsApp
Privacy-preserving cryptocurrency: Zcash, Zether, PGC

A Subtle Point: Joint security (somewhat akin to UC)
EUF-CMA security for SIG: holds even in the presence of Odec

IND-CCA security for PKE: holds even in the presence of Osign
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Two Pincipals When Using PKE and SIG

Key Separation vs. Key Reuse
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Key Separation: Cartesian-Product Combined Public-Key Scheme

SIG
sk

vk

PKE
dk

ek

Engineering folklore: using different keypairs for different cryptographic operations

Pros
joint security is immediate & construction is off-the-shelf
naturally admits individual key escrow ; achieve a balance between user’s
authenticity requirement and society’s auditing requirement

Cons
double key management complexity and certificate cost1

complicate the design of high-level protocol: tricky address derivation
1Certificate costs include but not limit to registration, issuing, storage, transmission,

verification, and building/recurring fees.
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Key Reuse: Integrated Signature and Encryption

SIG PKE
sk

pk

Pros
reduce key management complexity, certificate cost, and cryptographic footprint
simplify the design of high-level protocol

Cons
joint security is not immediate (consider textbook RSA) & require careful design
does not admit individual key escrow
does not admit classified protection of secret keys

Deployed in EMV standard, Ping Identity, Zether and PGC
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Motivation

We are facing a dilemma between key reuse that brings performance benefit and key
separation that supports individual key escrow.

Key Separation Key Reuse

Can we enable individual key escrow mechanism while retaining the merits of key reuse?
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Hierarchy Integrated Signature and Encryption

SIG sk PKEdk
pk

hierarchy

Setup(1λ)→ pp

KeyGen(1λ)→ (pk, sk). pk serves as encryption and verification key; sk is the
signing key, serving as master secret key.
Derive(sk)→ dk used only for decryption
Enc(pk,m)→ c

Dec(dk, c)→ m

Sign(sk, m̃)→ σ

Vefy(pk, m̃, σ)→ 0/1
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Strong Joint Security

IND-CCA security in the presence of a signing oracle (unrestricted access)

Pr

b = b′ :

pp← Setup(1λ);
(pk, sk)← KeyGen(pp);
(m0,m1)← AOdec,Osign(pp, pk);

b
R←− {0, 1}, c∗ ← Enc(pk,mb);

b′ ← AOdec,Osign(c∗);

− 1

2
≤ negl(λ).

EUF-CMA security in the presence of a decryption key

Pr

 Vrfy(pk,m∗, σ∗) = 1
∧ m∗ /∈ Q :

pp← Setup(1λ);
(pk, sk)← KeyGen(pp);
dk ← Derive(sk);
(m∗, σ∗)← AOsign(pp, pk, dk );

 ≤ negl(λ).
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Application of HISE

Merit of HISE
compact public key size
reduce key management complexity
simplify the design and analysis of high-level protocols

suitable for scenarios that simultaneously require privacy, authenticity and key
escrow

Zether/PGP

(pk, sk)

outsource costly operations
e.g., expensive decryption

auditing

delegate decryption capability
sk

compromise the security of SIG

delegate decryption capability
dk

retain the security of SIG
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Starting Point: ISE from IBE

Paterson et al. [PSST11] give an elegant ISE construction from IBE.
(mpk,msk)

I0 = 0|v, v ∈ {0, 1}n I1 = 1|v, v ∈ {0, 1}n

Naor transform CHK transform

σ ← Extract(msk, 0|m̃)

m
R←−M

c← Enc(mpk, 0|m̃,m)

m
?
= Dec(σ, c)

(vk, sk)← OTS.KeyGen(1λ)
c← Enc(mpk, 1|vk,m)
σ ← OTS.Sign(sk, c)

1
?
= OTS.Vefy(vk, c, σ);
m← Dec(sk1|vk, c)

bit prefix partition trick
⇒ joint security

(pk, sk)

ISE from IBE does not lend itself to HISE
msk plays the role of both sk and dk ; does not satisfy strong joint security
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HISE from Constrained IBE for Prefix Predicate

Main idea: msk acts as sk, secret keys for identities in I1 as decryption key
Technical hurdle: decryption key should be short ; we need a succinct representation
for all secret keys for identites in I1 ⇐ constrained IBE for prefix predicates ⇐ BTE

(mpk,msk)

I0 = 0|v, v ∈ {0, 1}n I1 = 1|v, v ∈ {0, 1}n

Naor transform CHK transform

σ ← Extract(msk, 0|m̃)

m
R←−M

c← Enc(mpk, 0|m̃,m)

m
?
= Dec(σ, c)

(vk, sk)← OTS.KeyGen(1λ)
c← Enc(mpk, 1|vk,m)
σ ← OTS.Sign(sk, c)
1

?
= OTS.Vefy(vk, c, σ)
m← Dec(sk1|vk, c)

bit prefix partition trick
⇒ joint security

(pk, sk)

dk ← Constrain(sk, 1|v)
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Efficient Instantiation - HISE Scheme 1

The above generic construction from constrained IBE enjoys joint security in the
standard model.

constrained IBE is still less efficient
In applications where IND-CPA security suffice, or one is willing to accept IND-CCA
security in the random oracle model, we have a simpler and more efficient construction
of HISE from any IBE.

IBE

Naor transform IBE-to-PKE downgrade
+Fujisaki-Okamato transform

SIG PKE

Boneh-Frankline IBE
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HISE from PKE and NIZKPoK (HI coversion)

Goal: add signing functionality to PKE in a generic manner
bootstrap PKE in-use to HISE ; enables a seamless upgrade

Idea: create hierarchical key structure via OWF
1 picks sk

R←− {0, 1}n as signing key
2 maps sk to randomness r via uniform OWF: F(sk)→ r

3 runs PKE.KeyGen(r)→ (pk, dk)

sk r pk dk
F G

PKE.KeyGen

Rkey

Figure: The hierarchical key structure
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HISE from PKE and NIZKPoK (HI coversion)

The encryption component of HISE is simple: same as that of the underlying PKE.
But, we are facing the following technical hurdle when designing signature:

sk is unstructured bit string, how to create the signing functionality?
the signature should remain secure even in the presence of dk (partial leakage of
sk) ⇒ strong joint security

Solution
using general-purpose public-coin ZKPoK to prove knowledge of sk given pk
require Rkey to be leakage-resilient one-way w.r.t. leakage r and thus certainly dk

minimum requirement on G: target-collision resistant
Strong joint security:

SIG component: Sigma protocol for leakage-resilient one-way relation ;
leakage-resilient SIG
PKE component: zero-knowledge property ; Osign is useless + uniformity of F
admits security reduction to the underlying PKE
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“Efficient” Instantiation - HISE Scheme 2

uniform OWF PKE ZKPoK

Poseidon-128 hash ElGamal PKE Spartan

The above construction is still less practical for real world applications. The bottleneck
lies at general-purpose ZKPoK.

We left more efficient instantiation as an interesting open problem.
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Motivation of Global Escrow

Motivating example: large-scale collaborative working Apps such as Slack is getting
popular ; encrypted communication may contain proprietary information

employer may have the right to get access to all private communications for
various reasons

naive solution: collect individual decryption key one by one ⇒ impractical and
inefficient

employees need to be assured that even a malicious employer cannot slander them
by forging signatures for fabricated communications

We further expect global escrow property
there is a “super” key that can decrypt any ciphertext under any public key
signature remains secure even in the presence of the “super” key

To attain global escrow property for HISE in a generic manner, we first take a detour
to revisit global escrow PKE.
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Global Escrow PKE

Global escrow PKE: an escrow agent holds a global escrow decryption key that can
decrypt ciphertexts encrypted under any public key

(pk1, sk1)

. . .

(pki, ski)

. . .

(pkn, skn)

The state of the art of global escrow PKE is less satisfactory
long overdue for formal definition and generic construction
the only known practical scheme is the escrow ElGamal PKE proposed by Boneh
and Franklin from bilinear maps
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Formal Definition
(epk, edk)← Setup(1λ)

(pks, sks) (pkr, skr)

c← Enc(pkr,m)

m← Dec(edk, c)

m← Dec(skr, c)

||

Correctness: honestly generated CTs decrypting to the same result under edk and skr

Consistency: no PPT adversary can generate an ill-formed CT decrypting different
results under edk and skr

Failure attempts
1 Identity-based encryption: does not directly lend itself to global escrow PKE

(users must be able to generate keypairs themselves)
2 Broadcast encryption: sender could be malicious especially when he has incentive

to evade oversight
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Global Escrow PKE from PKE and NIZK (GE conversion)

escrow
center

sender receiver

ppnizk ← NIZK.Setup(1λ)
pppke ← PKE.KeyGen(1λ)

(epk, edk)← PKE.KeyGen(pppke)
pp = (ppnike, pppke, epk), edk

NIZK.Verify(c1, c2, π) ?
= 1

m← PKE.Dec(edk, c2)

c1 ← PKE.Enc(pk,m; r1)
c2 ← PKE.Enc(epk,m; r2)

π ← NIZK.Prove(c1, c2, (m, r1, r2))

(pk, sk)

NIZK.Verify(c1, c2, π) ?
= 1

m← PKE.Dec(sk, c1)

Give a generic approach to compile any PKE into global escrow PKE
enrich the application scope of the Naor-Yung transform beyond CCA security
achieve CCA security with no overhead
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Efficient Instantiation - Global Escrow PKE Scheme 1

Choices of primitives
PKE: ElGamal PKE in EC groups
NIZK: Groth-Sahai proof in standard model or Sigma proof in random oracle
model

Improvement
When PKE satisfies the “randomness fusion” property [BMV16], we can safely
reuse the randomness and then apply twisted Naor-Yung transform ⇒ better
efficiency

plenty of PKE schemes from the DDH, quadratic residuosity, and subset sum
assumptions satisfy randomness fusion property.
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Multiparty NIKE

Setup(1λ, n)→ ppnike

(pk1, sk1)

. . .

(pki, ski)

. . .

(pkn, skn)

ShareKey(ski, {pk1, . . . , pkn})→ k pseudorandom

mild property
PK is efficiently recognizable

n = 2: Diffie-Hellman key exchange [DH76]
n = 3: Joux’s key exchange [Jou04] from bilinear maps
n is any positive integer

Boneh and Silverberg [BS02] using multilinear maps
Alamati et al. [AMPR19] using composable input homomorphic weak PRF
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Global Escrow PKE from 3-party NIKE

escrow
center

sender receiver

ppnike ← NIKE.Setup(1λ, 3)
(pkγ , skγ)← NIKE.KeyGen(ppnike)

pp = (ppnike, pkγ), edk = skγ

k ← NIKE.ShareKey(skγ , S)
m← SKE.Dec(k, c)

(pkα, skα)← NIKE.KeyGen(ppnike)

k ← NIKE.ShareKey(skα, S)
c← SKE.Enc(k,m) (pkβ, skβ)

k ← NIKE.ShareKey(skβ, S)
m← SKE.Dec(k, c)

S = {pkα, pkβ, pkγ}

running 3-party NIKE in-the-head

security of NIZK (pseudorandomness of shared key k) ⇒ IND-CPA/CCA security
PK is efficiently recognizable ⇒ consistency
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Efficent Instantiation (First Attempt)
Joux’s 3-party NIZK from symmetric pairing

(a, ga)

(b, gb) (c, gc)

pp = (G,GT , e, g)
k ← e(g, g)abc

supersingular curve ss-1536
|G| = 1536
|GT | = 1536
|Zp| = 256

symmetric pairing is too slow

Recover the only prior known scheme Boneh-Franklin escrow ElGamal PKE
Setup(1λ): edk

R←− Zp, epk ← gedk.
KeyGen(pp): sk

R←− Zp, pk ← gsk.
Enc(pk,m): skt

R←− Zp, pkt ← gskt ; k ← ShareKey(skt, S = {pkt, pk, epk}),
c = (pkt,m⊕ k)
Dec(sk, c): k ← ShareKey(sk, S = {pkt, pk, epk}), m← c2 ⊕ k.
Dec′(edk, c): k ← ShareKey(edk, S = {pkt, pk, epk}), m← c2 ⊕ k.
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Efficent Instantiation (Second Attempt)
The original Joux’s protocol inherently relies on symmetric pairing
Second attempt to improve efficiency: adapt Joux’s protocol with asymmetric pairing

Joux’s 3-party NIZK from asymmetric pairing

(a, ga1 , g
a
2)

(b, gb1, g
b
2) (c, gc1, g

c
2)

pp = (G,GT , e, g)
k ← e(g1, g2)

abc

shortcomings
(i) key and ciphertext size get doubled

(ii) decryption is expensive

we need pairing to check if ciphertext is valid
e(g1, g

b
2)

?
= e(gb1, g2)
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Efficent Instantiation (Final Attempt) - Global Escrow PKE Scheme 2

relaxed 3-party NIKE from asymmetric pairing

type-A: (a, ga1 , ga2)

type-B: (b, gb1) type-C: (c, gc2)

pp = (G1,G2,GT , e, g1, g2)
k ← e(g1, g2)

abc

keypairs could be of different types
type-A+type-B+type-C ⇒ k

curve bls12-381
|G1| = 381
|G2| = 762
|GT | = 1524
|Zp| = 256

much faster and compact
New Global Escrow PKE

Setup(1λ): edk
R←− Zp, epk = (gedk1 , gedk2 ) (type-A)

KeyGen(pp): sk
R←− Zp, pk ← gsk2 (type-B)

Enc(pk,m): skt
R←− Zp, pkt ← gskt1 (type-C);

k ← ShareKey(skt, S = {pkt, pk, epk}), c = (pkt,m⊕ k)
Dec(sk, c): k ← ShareKey(sk, S = {pkt, pk, epk}), m← c2 ⊕ k
Dec′(edk, c): k ← ShareKey(edk, S = {pkt, pk, epk}), m← c2 ⊕ k
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Global Escrow HISE

global escrow HISE

HISE

(constrained) IBE PKE+ZKPoK

HI conversion

GE conversion

global escrow PKE

PKE+NIZK three-party NIKE

GE conversion

HI conversion

Figure: Technology roadmap of global escrow HISE. The rectangles denote our newly
introduced cryptographic schemes.
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Efficient Instantiations of Global Escrow HISE

Boneh-Frankin IBE

HISE scheme 1

global escrow
HISE scheme 1

twisted Naor-Yung transform
add global escrow

3-party NIKE

global escrow
PKE scheme 2

global escrow
HISE scheme 2

Poseidon hash+Spartan
add hierarchy
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Applications of Global Escrow HISE

super key
edk

(pk1, sk1)

. . .

(pki, ski)

. . .

(pkn, skn)

The employer can perform efficient large-scale supervision over private
communications with “super” key.
The employees are assured that even a malicious boss of the “super” key cannot
slander them by forging signatures for fabricated communications.
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Comparison with Cartesian-Product CPK and ISE

Table: Comparison between CP-CPK, ISE, and our (global escrow) HISE

Scheme strong
joint security

individual
escrow

global
escrow

key
reuse

certificate
cost

CP-CPK [PSST11] 3 3 7 7 ×2
ISE [PSST11] 7 7 7 3 ×1

HISE 3 3 7 3 ×1
global escrow HISE 3 3 3 3 ×1

For certificate cost, ×1 (resp. ×2) means the cost associated with one (resp. two) certificate(s). As
aforementioned, certificate costs include but not limit to registration, issuing, storage, transmission,
verification, and building/recurring fees. Take SSL certificate as an example, one certificate is roughly 1KB,
takes roughly 200∼300ms to transmit in WAN setting with 50Mbps network bandwidth and 8ms to verify.
The monetary cost for an SSL certificate varies depending on features and business needs. While the cost of
an SSL certificate for common usage is $10∼$2000/year, the banks and large financial institutions could
spend up to $500,000/year on an SSL certificate with high-level security guranttee.
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Experimental Results

Table: Efficiency comparison of CPK and our proposed (global escrow) HISE schemes

Scheme efficiency (ms) [# exp, #pairing] sizes (bits) [# G, # Zp]
KGen Sign Vrfy Enc Dec Der Dec′ |pk| |sk| |c| |σ|

CP-CPK 0.015 0.064 0.120 0.118 0.056 ⊘ ⊘ 512 512 512 512
[2, 0] [1, 0] [2, 0] [2, 0] [1, 0] ⊘ ⊘ 2G 2Zp 2G [G,Zp]
0.057 0.148 0.733 0.569 0.364 0.148 ⊘ 381 256 1905 762HISE scheme 1 [1, 0] [1, 0] [0, 2] [2, 1] [0, 1] [1, 0] ⊘ G1 Zp [G1,GT ] G2

0.058 3.5s 250 0.115 0.056 0.0004 ⊘ 256 256 512 40KHISE scheme 2 [1, 0] N/A N/A [2, 0] [1, 0] N/A ⊘ G Zp 2G N/A
global escrow 0.057 0.148 0.733 1.462 1.505 0.148 1.505 381 256 5590 762

HISE scheme 1 [1, 0] [1, 0] [0, 2] [5, 2] [4, 1] [1, 0] [4, 1] G1 Zp [2G1, 3GT ,Zp] G2

global escrow 0.057 3.5s 250 0.629 0.531 0.0004 0.532 381 256 2286 40K
HISE scheme 2 [1, 0] N/A N/A [2, 1] [1, 1] N/A [1, 1] G1 Zp [G2,GT ] N/A

Performance of Cartesian product CPK and (global escrow) HISE schemes with 128-bit security level.
(G1,G2,GT ) refers to asymmetric pairing groups. G refers to ordinary elliptic group. The symbol ⊘
indicates that there is no corresponding algorithm. The symbol N/A indicates that the efficiency (or
bandwidth) is hard to measure by algebra operations (or elements).
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A Byproduct: Global Escrow PKE

Table: Comparison of escrow ElGamal PKE [BF03] and our global escrow PKE

Scheme efficiency (ms) [# exp, #pairing] sizes (bits) [# G, # Zp]
Setup KGen Enc Dec Dec′ |pp| |edk| |pk| |sk| |c|

Boneh-Franklin 2.879 2.014 8.723 6.654 6.745 3072 256 1536 256 3072
escrow ElGamal PKE [2, 0] [1, 0] [2, 1] [1, 1] [1, 1] 2G Zp G Zp [G,GT ]

our proposed 0.243 0.058 0.680 0.579 0.586 2286 256 381 256 2286
global escrow PKE [4, 0] [1, 0] [2, 1] [1, 1] [1, 1] [2G1, 2G2] Zp G1 Zp [G2,GT ]

Performance of global escrow PKE schemes with 128-bit security level. (G1,G2,GT ) refers to asymmetric
pairing groups. (G,GT ) refers to symmetric pairing groups. We report times for setup, key generation,
encryption, and (escrow) decryption, as well as the sizes of public parameters pp, global escrow decryption
key edk, public key pk, secret key sk, and ciphertext c.

12 ∼ 30× speed up

Our implementation is released on Github: https://github.com/yuchen1024/HISE
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Summary

Key Separation Key Reuse(global escrow)
HISE

Hybrid Principal

sweet balance

HISE (formal definition + generic constructions)
reconcile the apparent conflict between key separation and key resue
resolve the problem left open in Verheul [Ver01] at Eurocrypt 2001
can be used as a drop-in replacement of PKE+SIG in scenarios that requires
authenticity, confidentiality and auditibility simultaneously
both users and authority have incentives to deploy

Global escrow PKE revisit (formal definition + generic constructions)
indicate a new application of Naor-Yung paradigm
establish a novel connection from 3-party NIKE
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Thanks for Your Attention!
Any Questions?
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