Improved Single-Round Secure Multiplication Using Regenerating Codes

Daniel Escudero - JP Morgan AI Research * Mark Abspoel * Ivan Damgsrod * Ronald Cramer * Chaoping Xing

Exmples $\frac{\text{Comm} \approx n^2}{\#\text{Rounds} = 1}$ BGW/GRR $\begin{bmatrix} x \end{bmatrix}_{t} = (x_{1} \cdots x_{n})$ $\begin{bmatrix} y \end{bmatrix}_{t} = (y_{1} \cdots y_{n})$ * 1 $[x \cdot y]_{2t} = (x_1y_1 - - x_ny_n)$ 2 Each party P: distributes shares [xiyi]t (3) The parties compute locally $\sum_{i=1}^{2t+1} \lambda_i [x_i y_i]_t = [x_i y]_t$

This Work

We make use of regenerating codes in order to design a 1-round secure multiplication protocol for many multiplications, having sub-quadratic communication complexity per product * More concretely, we present on MPC protocol with the following chorecteristics → Active security
→ t<n/2 (maximal honest majority)</p>
→ Evaluates ≈ log(n) copies of a d-layer circuit with:
* d+O(s) rounds
* o(n²) communication per instance

Regenerating Codes
Regenerating Codes

$$S = [s]_t$$
 P_1 $M_1(s)$ All n shares
 $re needed$
 $S = [s]_t$ P_2 $M_2(s_2)$ S
 \vdots $M_n(s_n)$
 S_n P_n
 S_n P_n
 $S_n = P_n$
 $S_n = \Omega(leg(n))$
 $Compression function $M_1: \mathbb{F}_{p^n} \to \mathbb{F}_p$$

.

tow con they be useful for MPC?
MAIN LIMITATION Requires field Fpm with m=Ω(log n)
* Most computation takes happen over a structure Fpe of fixed size
(in terms of n)
* Solution: ended this structure Fpc into Fpm, and use regenerating
codes to avoid the overhead in m
* Downside: This can already be avoided without the need of
regenerating codes:
Only 143 suffice
$$P:(x) = TT(\lambda; \cdot x)$$

 $Population
s = LSJ_{t}$
 S_{n} $P_{n}(S_{n})$
 $P_{n}(S_$

Observation: Unlike the previous compressing functions pi, regenerating codes enable reconstruction of the "full" & (in contrast to TT(s))

We use regenerating codes to optimize secure multiplication over Fgm, and we use reverse multiplication-friendly embeddings (RMFEs) to turn this into $\approx m$ multiplications over Fq.

Contributions to the theory of Regenerating Codes * We provide a novel characterization of regenerating codes in terms of certain properties of the dual code * We generalize the theory above to the case of Galois Rings, and present our protocol in this setting La This in posticular includes the case Z/2 Z

Rosdmap

Regenerating Codes over Galois Rings
Let
$$S = GR(p^{t}, l)$$
 and $R = GR(p^{t}, m.l)$
 $GR(p^{t}, l)$:
 $polynomials over Zpt$
 $R is an extension of S of degree m
Let $C \subseteq R^{n+3}$ be m R-submodule
Definition (Linear repair)
C has linear repair)
C has linear repair over S if there exist S-linear maps
 $\phi_{i}: R \rightarrow S$ and scalars $z_{i} \in R$ for $i=1,...,n$ such that,
for every $x \in C$:
 $x_{0} = \sum_{i=1}^{n} \phi_{i}(x_{i}) \cdot z_{i}$$

.

One if our results:
There exist a repairing/regenerating code of R over S, assuming

$$p^{1.(m-1)} \le n-t$$

We can naturally use this
as a secret-sharing scheme
The repairing property enables efficient 1-round reconstruction:
If $[x_1] = (x_1, \dots, x_n)$, then
(1) Each party P: sends $\oint_{i}(x_i)$ to all parties
(2) The parties compute $x = \sum_{i=1}^{n} \oint_{i}(x_i) \cdot z_i$

.

Solution from [CCXY18]
Intuition:
$$\mathbb{F}_{2^m} \cong (\mathbb{F}_2)^m$$
, so we can hope to use MPC over
 \mathbb{F}_{2^m} to evaluate m circuits over \mathbb{F}_2
Problem: This is a vector isomorphism, but we need a
"RING homomorphism"
Solution: Reverse Multiplication Friendly Embeddings (RMFEs):
 \mathbb{F}_2 homemorphism $\Psi:\mathbb{F}_{2^m} \to \mathbb{F}_2$ and $\varphi:\mathbb{F}_2 \to \mathbb{F}_p \text{ s.t:}$
 $\forall \vec{x}, \vec{y} \in S^d: \vec{x} \times \vec{y} = \Psi(\phi(\vec{x}) \cdot \phi(\vec{y}))$
 $\begin{pmatrix} x & m/d \to constant \\ x & we can replace \mathbb{F}_{2^m} by
 \mathbb{F}_2 constant \mathbb{F}_2 by S$

In
$$\mathcal{L}(\mathbf{x}, \mathbf{y}, \mathbf{18}]$$
:
To secret-share $\vec{\mathbf{x}} \in \mathbb{F}_{2^m}$: Use secret-sharing $[\phi(\vec{\mathbf{x}})]$
* Addition: $[\phi(\vec{\mathbf{x}} + \vec{\mathbf{y}})] \leftarrow [\phi(\vec{\mathbf{x}})] + [\phi(\vec{\mathbf{y}})]$ con be local
* Multiplication: we need to obtain $[\phi(\vec{\mathbf{x}} * \vec{\mathbf{y}})]$:
① Use MPC over \mathbb{F}_{2^m} to multiply
 $[\phi(\vec{\mathbf{x}}) \cdot \phi(\vec{\mathbf{y}})] \leftarrow [\phi(\vec{\mathbf{x}})] \cdot [\phi(\vec{\mathbf{y}})]$
② Use MPC to apply the map $\mathcal{I} = \phi \circ \mathcal{I}$:
 $[\mathcal{I}(\phi(\vec{\mathbf{x}}) \cdot \phi(\vec{\mathbf{y}}))] \leftarrow \mathcal{I}([\phi(\vec{\mathbf{x}}) \cdot \phi(\vec{\mathbf{y}})])$
 $\phi\left(\left(\psi(\phi(\vec{\mathbf{x}}) \cdot \phi(\vec{\mathbf{y}})\right)\right) = \phi\left(\left(\vec{\mathbf{x}} * \vec{\mathbf{y}}\right)\right)$

This does not work in our current setting!
Applying the function I adds extra rounds
Our solution
Secret-share
$$\vec{x} \in S^d$$
 differently
* Before: $[\phi(\vec{x})]$
* Now: $[x]$, where $x \in R$ is ANY element with $Y(x) = \vec{x}$

ADDITION IS STILL LOCAL:

Given
$$[x]$$
 not $[y]$ with $f(x) = \hat{x}$, $f(y) = \hat{y}$, then
 $[x+y] \leftarrow [x] + [y]$ satisfies $f(x+y) = \hat{x} + \hat{y}$

What about (1-round) multiplication?

Assume preprocessed tuple
([]], [b], []], []()], [](), [](), [])
((iven [x] and [y] with
$$\Psi(x) = \vec{x} \mod \Psi(y) = \vec{y}$$
, we
obtain [2] with $\Psi(z) = \vec{x} * \vec{y}$ as follows:
(1) Parties open $d \leftarrow [x] - [a]$ and $e \leftarrow [y] - [b]$
(2) Parties compute locally
[$T(x) \cdot \tau(y)$] $\leftarrow \tau(d)[\tau(a)] + \tau(e)[\tau(b)] + [\tau(a) \cdot \tau(e)]$
NOTE $\Psi(z) = \Psi(\phi(\Psi(x)) \cdot \phi(\Psi(y))) = \vec{x} * \vec{y}$

NOTES

Our new encoding method also improves [CCXY18]: * The extra "re-encoding" round (where I use applied) is not needed * The subspace check for the input phase disappears

Revisiting Repairing Codes Over Galois Rings

Theorem (Characterization of repairing ability)
C has linear repair over S if and only if there exists m
S-submedule
$$D_0 \subseteq C^{\perp}$$
 satisfying:
(1) $Th_0(D_0) = R$
(2) For every $i = 1, ..., n_0$ $TT_1(D_0) \cong p^{j}S$ (for some j)
Theorem (Existence of repairing/representing codes)
 $x = \sum_{i=1}^{n} \phi_i(x_i) \cdot z_i$ with $\begin{cases} \varphi_1(x_i) = Tr\left(\frac{w_i \cdot x_i}{\alpha_i}\right) \\ z_i = -\alpha_i/w_0 \end{cases}$
• Tre: Generalized trace function
• α_i : Evaluation points
• w_i : "Weights" associated with the dual RS-code

•

