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Setting - Proving General Constraints in Zero-Knowledge

ZK for General Constraint-Satisfiability:

Prove knowledge of commitment opening x such that f (x) = 0; i.e., x is f -constrained.

Zero-Knowledge (ZK): no info released except veracity of claim.

Goal:

Low communication for general f : minimize number of bits transmitted.

Computation Model:

Oftentimes the constraints f is described by an arithmetic circuit C .

Sometimes other computation models are more natural.
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Computation Model: Arithmetic Circuits

Defined over: A finite field Zq = Z/qZ.

Wire values: Zq-elements

Gates:

Addition

Multiplication
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Computation Model: Bilinear Group (Arithmetic) Circuits

Defined over: A bilinear group
(q,G1,G2,GT , e,G ,H):

Prime q

Order q groups G1, G2 and GT

Bilinear map (pairing) e : G1 ×G2 → GT

Generators G ∈ G1, H ∈ G2 and e(G ,H) ∈ GT

Wire values: Zq, G1, G2 and GT elements

Gates:

Zq-Addition, G∗-Multiplication

Zq-Multiplication

Group exponentiation

Pairings
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Arithmetic Circuits vs. Bilinear Group Arithmetic Circuits (1/2)

=⇒ Arithmetic circuits are bilinear group arithmetic circuits.

⇐= Bilinear group arithmetic circuits can be expressed as arithmetic circuits.

This requires:

1 Group elements to be represented as (vectors of) field elements.

2 Exponentiation and pairing gates to be expressed as arithmetic operations.
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Arithmetic Circuits vs. Bilinear Group Arithmetic Circuits (2/2)

Reducing a Bilinear Circuit to an arithmetic circuit increases its size.

Reductions are different for all bilinear groups.

The blow-up is a constant factor =⇒ asymptotic complexities of ZKPs are preserved.

But the constant factor can be large, significantly influencing concrete efficiency.

E.g., a single group exponentiation in a highly optimized group of order q ≈ 2256 requires
≈ 800 Zq-multiplication gates [HBHW20].
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This Work

A direct approach for communication-efficient ZKPs for
Bilinear Group Arithmetic Circuits

Our approach: Avoids specialized reductions from bilinear group arithmetic circuits to
arithmetic circuits.

Conceptual Simplicity.

Improved concrete efficiency.

An Application: Transparent and succinct threshold signature scheme.
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Prior Work

Arithmetic Circuit ZKPs with logarithmic communication.

Bulletproofs [BCC+16, BBB+18]
At its core: Recursive PoK for quadratic relations.
Presented as a replacement for Σ-Protocol Theory.

Compressed Σ-Protocols [AC20]
Reconciliation of Bulletproofs and Σ-Protocols.

ZKPs for Bilinear Group Arithmetic Circuits.

Lai et al. [LMR19]
Generalization of bulletproofs.
Direct approach; does not require reduction to arithmetic circuit.
Only applicable to a subclass circuits.

8 / 26



ZKPs for Bilinear Group Arithmetic Circuits

Our Approach:

Generalize Compressed Σ-Protocols to the Bilinear Circuit Model.

Compared to Lai et al. [LMR19]:

Conceptual simplicity; our basic building block handles linear relations.

Our approach works for arbitrary bilinear group arithmetic circuits.

We improve the communication efficiency by roughly a factor 3.
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Prior Work - Compressed Σ-Protocol Theory (CRYPTO 2020 [AC20])

High-Level Paradigm:

Solve linear instances first, and then linearize the non-linear instances.

1. Natural Σ-protocol for linear constraints.

Σ-protocol theory is a well-established, widely-used
basis for zero-knowledge proofs.

E.g., general-constraint ZK: O(|C |) · κ
communication [CD97].

2. Adaptation of Bulletproof PoK [BCC+16, BBB+18].

Bulletproofs core: recursive PoK for quadratic
relations =⇒ logarithmic communication.

Repurposed as a blackbox compression for
Σ-protocol 1.

[x] s.t. L(x) = y

P V
[r],L(r)−−−−−−→

c←−−−−−−
z = r+ cx

z−−−−−−→ Accept?
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Prior Work - Compressed Σ-Protocol Theory (CRYPTO 2020 [AC20])

3. Linearization strategy to handle non-linear constraints in a black-box manner.

Using arithmetic secret-sharing.

4. Instantiations.

Logarithmic-communication: DL, strong-RSA in class groups, (RSA + set-up)

Constant-communication: Knowledge of Exponent Assumption

Polylogarithmic-communication: Ring-SIS [ACK21]

5. Computation Model.

Constraints f (x) = 0 are expressed as an arithmetic circuit.
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Generalized Compressed Σ-Protocol - Linear Constraints

Observation:
Compressed Σ-protocols for linear constraints can be viewed as proving knowledge of the
preimage of a homomorphism

Ψ : Gn → H
G and H are order q groups.
Communication: logarithmic number of H-elements.

In [AC20], Ψ is of the form:

Ψ : Zn
q × Zq → G× Zq, (x, γ)→ (Com(x, γ), L(x)) ,

Crucial: Com is a homomorphic and compact commitment scheme.

We need a homomorphic and compact commitment scheme for vectors in

Zn0
q ×Gn1

1 ×Gn2
2 ×GnT

T .
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Commitment Scheme - Bilinear Group Vectors (1/3)

Bilinear group: (q,G1,G2,GT , e,G ,H)

Pairing: e : G1 ×G2 → GT

Pairing-based generalization of Pedersen Commitments [AFG+10, LMR19]:

Setup:

g , h← GT

H ← G2

Commit to an element (x , y) ∈ Zq ×G1:

Com : Zq ×G1 × Zq → GT , (x , y , γ) 7→ hγ · g x · e(y ,H) .
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Commitment Scheme - Bilinear Group Vectors (2/3)

Commit to an element (x , y) ∈ Zq ×G1:

Com : Zq ×G1 × Zq → GT , (x , y , γ) 7→ hγ · g x · e(y ,H) .

Extensions:
1 Natural extension to vectors (x, y) ∈ Zn0

q ×Gn1
1 .

Homomorphic.
Compact: Commitment is 1 GT -element, i.e., size independent of n0 and n1.

2 Extension to vectors (x, y, z) ∈ Zn0
q ×Gn1

1 ×Gn2
2 .

Binding: Some care is required.
Homomorphic.
Compact: Commitment is 2 GT -elements.

=⇒ Compressed Σ-Protocols for (Zq,G1,G2)-vectors.

14 / 26



Commitment Scheme - Bilinear Group Vectors (3/3)

The above approach does not enable commitments to GT -coefficients.

El-Gamal based commitment scheme for GT -vectors:

Com : GnT
T × Zq → GnT+1

T , (x, γ) 7→
(

hγ

x ∗ gγ
)

=⇒ commitment scheme for vectors x ∈ Zn0
q ×Gn1

1 ×Gn2
2 ×GnT

T

Commitment Size: nT + 3 GT -elements.

Independent of n0, n1 and n2.

Linear in nT .
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Compressed Σ-Protocol - Linear Bilinear Group Relations

=⇒ Compressed Σ-protocol for vectors x ∈ Zn0
q ×Gn1

1 ×Gn2
2 ×GnT

T .

Communication costs:

Logarithmic in n0, n1 and n2.

Linear in nT .
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Linearizing Non-Linear Gates (1/2)

Arithmetic Circuits

Arithmetic secret sharing based technique to linearize non-linear multiplication
gates [AC20]:

Zq × Zq → Zq, (x , y) 7→ x · y

Bilinear Group Arithmetic Circuits

Multiple types of non-linear gates:

Zq × Zq → Zq, (x , y) 7→ x · y
G1 × Zq → G1, (g , x) 7→ g x

G2 × Zq → G2, (h, x) 7→ hx

GT × Zq → GT , (k , x) 7→ kx

G1 ×G2 → GT , (x , y) 7→ e(g , h)
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Linearizing Non-Linear Gates (2/2)

Observation

All these non-linear gates are bilinear mappings
=⇒ Linearization techniques of [AC20] have a generalization to these bilinear gates.

=⇒ Compressed Σ-protocol for vectors x ∈ Zn0
q ×Gn1

1 ×Gn2
2 ×GnT

T satisfying
arbitrary constraints defined over a bilinear group arithmetic circuit.

Communication costs:

Logarithmic in

n0, n1 and n2
the number of non-linear gates with Zq, G1 or G2 outputs

Linear in

nT
the number of non-linear gates with GT outputs
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Application - Threshold Signatures (1/2)

Functionality: A valid signature can only be created by a subset of at least k-out-of-n players.

Trivial approach: Exhibit k individual signatures.

Signature size linear in k .

Reveals the identities of the k signers.

Standard approach [Sho00]: Secret share the private key of a standard signature scheme.

Signature size constant in k and n.

Trusted set-up required.

Hides the identities of the k signers.
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Application - Threshold Signatures (2/2)

Our approach: Zero-Knowledge Proof of Knowledge of k-out-of-n signatures.

Ingredients:

BLS signature scheme [BLS01]: small bilinear group verification circuit.

Proofs-of-partial knowledge: k-out-of-n threshold functionality [ACF21].

Compressed Σ-Protocols for bilinear group arithmetic relations.

Properties:

Signature size logarithmic in n.

Transparent set-up.

Hides the identities of the k signers.
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Conclusion

Compressed Σ-protocols for bilinear group arithmetic circuits.

Direct approach: no specialized reduction to arithmetic circuits.

Communication costs:

Logarithmic in the “Zq, G1 and G2 parts”.

Linear in the “GT part”.

Roughly factor 3 improvement over prior work.

Application:

Transparent and logarithmic-size threshold signature scheme.
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Thanks!
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