Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits
and Application to Logarithmic Transparent Threshold Signatures

Thomas Attema and Ronald Cramer and Matthieu Rambaud

Asiacrypt - December 10, 2021
Setting - Proving General Constraints in Zero-Knowledge

ZK for General Constraint-Satisfiability:
- Prove knowledge of commitment opening x such that $f(x) = 0$; i.e., x is f-constrained.
- Zero-Knowledge (ZK): no info released except veracity of claim.

Goal:
- Low communication for general f: minimize number of bits transmitted.

Computation Model:
- Oftentimes the constraints f is described by an arithmetic circuit C.
- Sometimes other computation models are more natural.
Computation Model: Arithmetic Circuits

Defined over: A finite field $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$.

Wire values: \mathbb{Z}_q-elements

Gates:
- Addition
- Multiplication
Computation Model: Bilinear Group (Arithmetic) Circuits

Defined over: A bilinear group
\((q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e, G, H)\):

- Prime \(q\)
- Order \(q\) groups \(\mathbb{G}_1, \mathbb{G}_2\) and \(\mathbb{G}_T\)
- Bilinear map (pairing) \(e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T\)
- Generators \(G \in \mathbb{G}_1, H \in \mathbb{G}_2\) and \(e(G, H) \in \mathbb{G}_T\)

Wire values: \(\mathbb{Z}_q, \mathbb{G}_1, \mathbb{G}_2\) and \(\mathbb{G}_T\) elements

Gates:

- \(\mathbb{Z}_q\)-Addition, \(\mathbb{G}_*\)-Multiplication
- \(\mathbb{Z}_q\)-Multiplication
- Group exponentiation
- Pairings
Arithmetic circuits are bilinear group arithmetic circuits.

Bilinear group arithmetic circuits can be expressed as arithmetic circuits.

This requires:

1. Group elements to be represented as (vectors of) field elements.
2. Exponentiation and pairing gates to be expressed as arithmetic operations.
Reducing a Bilinear Circuit to an arithmetic circuit increases its size.

- Reductions are different for all bilinear groups.
- The blow-up is a constant factor \(\Rightarrow \) asymptotic complexities of ZKPs are preserved.
- But the constant factor can be large, significantly influencing concrete efficiency.
 - E.g., a single group exponentiation in a highly optimized group of order \(q \approx 2^{256} \) requires \(\approx 800 \mathbb{Z}_q\)-multiplication gates [HBHW20].
This Work

A direct approach for communication-efficient ZKPs for Bilinear Group Arithmetic Circuits

Our approach: Avoids specialized reductions from *bilinear group arithmetic circuits* to arithmetic circuits.

- Conceptual Simplicity.
- Improved concrete efficiency.

An Application: Transparent and succinct threshold signature scheme.
Prior Work

Arithmetic Circuit ZKPs with logarithmic communication.

- **Bulletproofs** \([\text{BCC}^{+}16, \text{BBB}^{+}18]\)
 - At its core: Recursive PoK for *quadratic* relations.
 - Presented as a replacement for \(\Sigma\)-Protocol Theory.

- **Compressed \(\Sigma\)-Protocols** \([\text{AC20}]\)
 - Reconciliation of Bulletproofs and \(\Sigma\)-Protocols.

ZKPs for Bilinear Group Arithmetic Circuits.

- **Lai et al.** \([\text{LMR19}]\)
 - Generalization of bulletproofs.
 - Direct approach; does not require reduction to arithmetic circuit.
 - Only applicable to a subclass circuits.
ZKPs for Bilinear Group Arithmetic Circuits

Our Approach:

Generalize Compressed Σ-Protocols to the Bilinear Circuit Model.

Compared to Lai et al. [LMR19]:
- Conceptual simplicity; our basic building block handles linear relations.
- Our approach works for arbitrary bilinear group arithmetic circuits.
- We improve the communication efficiency by roughly a factor 3.
Prior Work - Compressed Σ-Protocol Theory (CRYPTO 2020 [AC20])

High-Level Paradigm:

Solve linear instances first, and then linearize the non-linear instances.

1. Natural Σ-protocol for *linear* constraints.
 - Σ-protocol theory is a well-established, widely-used basis for zero-knowledge proofs.
 - E.g., general-constraint ZK: $O(|C|) \cdot \kappa$ communication [CD97].

2. Adaptation of Bulletproof PoK [BCC+16, BBB+18].
 - Bulletproofs core: recursive PoK for *quadratic* relations \implies logarithmic communication.
 - Repurposed as a *blackbox* compression for Σ-protocol 1.
3. Linearization strategy to handle non-linear constraints in a black-box manner.
 - Using arithmetic secret-sharing.

4. Instantiations.
 - *Logarithmic-communication*: DL, strong-RSA in class groups, (RSA + set-up)
 - *Constant-communication*: Knowledge of Exponent Assumption
 - *Polylogarithmic-communication*: Ring-SIS [ACK21]

5. Computation Model.
 - Constraints $f(x) = 0$ are expressed as an arithmetic circuit.
Observation: Compressed Σ-protocols for linear constraints can be viewed as proving knowledge of the preimage of a homomorphism

\[\Psi : G^n \rightarrow H \]

- \(G \) and \(H \) are order \(q \) groups.
- Communication: logarithmic number of \(H \)-elements.

In [AC20], \(\Psi \) is of the form:

\[\Psi : \mathbb{Z}_q^n \times \mathbb{Z}_q \rightarrow G \times \mathbb{Z}_q, \quad (x, \gamma) \rightarrow (\text{COM}(x, \gamma), L(x)) \]

Crucial: \(\text{COM} \) is a homomorphic and compact commitment scheme.

We need a homomorphic and compact commitment scheme for vectors in

\[\mathbb{Z}_{q}^{n_0} \times G_1^{n_1} \times G_2^{n_2} \times G_T^{n_T} \]
Bilinear group: \((q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e, G, H)\)

Pairing: \(e: \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T\)

Pairing-based generalization of Pedersen Commitments [AFG+10, LMR19]:

Setup:
- \(g, h \leftarrow \mathbb{G}_T\)
- \(H \leftarrow \mathbb{G}_2\)

Commit to an element \((x, y) \in \mathbb{Z}_q \times \mathbb{G}_1:\)

\[
\text{COM} : \mathbb{Z}_q \times \mathbb{G}_1 \times \mathbb{Z}_q \rightarrow \mathbb{G}_T, \quad (x, y, \gamma) \mapsto h^\gamma \cdot g^x \cdot e(y, H).
\]
Commitment Scheme - Bilinear Group Vectors (2/3)

Commit to an element \((x, y) \in \mathbb{Z}_q \times \mathbb{G}_1\):

\[
\text{Com} : \mathbb{Z}_q \times \mathbb{G}_1 \times \mathbb{Z}_q \rightarrow \mathbb{G}_T, \ (x, y, \gamma) \mapsto h^\gamma \cdot g^x \cdot e(y, H).
\]

Extensions:

1. **Natural extension to vectors** \((x, y) \in \mathbb{Z}_q^{n_0} \times \mathbb{G}_1^{n_1}\).
 - Homomorphic.
 - Compact: Commitment is 1 \(\mathbb{G}_T\)-element, i.e., size independent of \(n_0\) and \(n_1\).

2. **Extension to vectors** \((x, y, z) \in \mathbb{Z}_q^{n_0} \times \mathbb{G}_1^{n_1} \times \mathbb{G}_2^{n_2}\).
 - Binding: Some care is required.
 - Homomorphic.
 - Compact: Commitment is 2 \(\mathbb{G}_T\)-elements.

\[\implies\] Compressed Σ-Protocols for \((\mathbb{Z}_q, \mathbb{G}_1, \mathbb{G}_2)\)-vectors.
The above approach does not enable commitments to \mathbb{G}_T-coefficients.

El-Gamal based commitment scheme for \mathbb{G}_T-vectors:

$$
\text{COM} : \mathbb{G}_T^{n_T} \times \mathbb{Z}_q \rightarrow \mathbb{G}_T^{n_T+1}, \quad (x, \gamma) \mapsto \left(h^\gamma \right)
$$

$$
\implies \text{commitment scheme for vectors } x \in \mathbb{Z}_q^{n_0} \times \mathbb{G}_1^{n_1} \times \mathbb{G}_2^{n_2} \times \mathbb{G}_T^{n_T}
$$

Commitment Size: $n_T + 3 \mathbb{G}_T$-elements.

- Independent of n_0, n_1 and n_2.
- Linear in n_T.
Compressed Σ-Protocol - Linear Bilinear Group Relations

$$\implies \text{Compressed } \Sigma\text{-protocol for vectors } \mathbf{x} \in \mathbb{Z}_q^{n_0} \times \mathbb{G}_1^{n_1} \times \mathbb{G}_2^{n_2} \times \mathbb{G}_T^{n_T}.$$

Communication costs:

- Logarithmic in n_0, n_1 and n_2.
- Linear in n_T.
Linearizing Non-Linear Gates (1/2)

Arithmetic Circuits

- Arithmetic secret sharing based technique to linearize non-linear multiplication gates [AC20]:
 \[\mathbb{Z}_q \times \mathbb{Z}_q \rightarrow \mathbb{Z}_q, \quad (x, y) \mapsto x \cdot y \]

Bilinear Group Arithmetic Circuits

- Multiple types of non-linear gates:
 \[\mathbb{Z}_q \times \mathbb{Z}_q \rightarrow \mathbb{Z}_q, \quad (x, y) \mapsto x \cdot y \]
 \[\mathbb{G}_1 \times \mathbb{Z}_q \rightarrow \mathbb{G}_1, \quad (g, x) \mapsto g^x \]
 \[\mathbb{G}_2 \times \mathbb{Z}_q \rightarrow \mathbb{G}_2, \quad (h, x) \mapsto h^x \]
 \[\mathbb{G}_T \times \mathbb{Z}_q \rightarrow \mathbb{G}_T, \quad (k, x) \mapsto k^x \]
 \[\mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T, \quad (x, y) \mapsto e(g, h) \]
Observation

- All these non-linear gates are bilinear mappings
 \[\implies \text{Linearization techniques of [AC20] have a generalization to these bilinear gates.} \]

\[\implies \text{Compressed } \Sigma\text{-protocol for vectors } \mathbf{x} \in \mathbb{Z}_q^{n_0} \times G_1^{n_1} \times G_2^{n_2} \times G_T^{n_T} \text{ satisfying arbitrary constraints defined over a bilinear group arithmetic circuit.} \]

Communication costs:

- Logarithmic in
 - \(n_0, n_1 \) and \(n_2 \)
 - the number of non-linear gates with \(\mathbb{Z}_q, G_1 \) or \(G_2 \) outputs

- Linear in
 - \(n_T \)
 - the number of non-linear gates with \(G_T \) outputs
Functionality: A valid signature can only be created by a subset of at least k-out-of-n players.

Trivial approach: Exhibit k individual signatures.
- Signature size *linear* in k.
- Reveals the identities of the k signers.

Standard approach [Sho00]: Secret share the private key of a standard signature scheme.
- Signature size *constant* in k and n.
- Trusted set-up required.
- Hides the identities of the k signers.

Ingredients:
- BLS signature scheme [BLS01]: small bilinear group verification circuit.
- Proofs-of-partial knowledge: k-out-of-n threshold functionality [ACF21].
- Compressed Σ-Protocols for bilinear group arithmetic relations.

Properties:
- Signature size logarithmic in n.
- Transparent set-up.
- Hides the identities of the k signers.
Compressed Σ-protocols for bilinear group arithmetic circuits.

- Direct approach: no specialized reduction to arithmetic circuits.

Communication costs:
- Logarithmic in the “\mathbb{Z}_q, G_1 and G_2 parts”.
- Linear in the “G_T part”.
- Roughly factor 3 improvement over prior work.

Application:
- Transparent and logarithmic-size threshold signature scheme.
Thanks!
Thomas Attema and Ronald Cramer.
Compressed sigma-protocol theory and practical application to plug & play secure algorithmics.
In *CRYPTO (3)*, volume 12172 of *Lecture Notes in Computer Science*, pages 513–543.

Thomas Attema, Ronald Cramer, and Serge Fehr.
Compressing proofs of k-out-of-n partial knowledge.

Thomas Attema, Ronald Cramer, and Lisa Kohl.
A compressed sigma-protocol theory for lattices.
Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Structure-preserving signatures and commitments to group elements.

Bulletproofs: Short proofs for confidential transactions and more.

