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Setting - Proving General Constraints in Zero-Knowledge

ZK for General Constraint-Satisfiability:

@ Prove knowledge of commitment opening x such that f(x) = 0; i.e., x is f-constrained.

o Zero-Knowledge (ZK): no info released except veracity of claim.

Goal:

o Low communication for general f: minimize number of bits transmitted.

Computation Model:
o Oftentimes the constraints f is described by an arithmetic circuit C.

@ Sometimes other computation models are more natural.
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Computation Model: Arithmetic Circuits

Defined over: A finite field Z, = Z/qZ.
Wire values: Z4-elements

Gates:
o Addition
o Multiplication
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Computation Model: Bilinear Group (Arithmetic) Circuits

Defined over: A bilinear group
(q, Gl, Gz, GT, e, G, H):
@ Prime q
o Order g groups G1, G2 and Gt
o Bilinear map (pairing) e: G1 x Go — Gt
o Generators G € G, H € Gy and e(G,H) € Gt

Wire values: Z,, G1, G2 and G elements

Gates:
o Zg-Addition, G,-Multiplication
o Zg-Multiplication

o Group exponentiation

o Pairings
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Arithmetic Circuits vs. Bilinear Group Arithmetic Circuits (1/2)

= Arithmetic circuits are bilinear group arithmetic circuits.
<= Bilinear group arithmetic circuits can be expressed as arithmetic circuits.

This requires:
@ Group elements to be represented as (vectors of) field elements.

Q Exponentiation and pairing gates to be expressed as arithmetic operations.
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Arithmetic Circuits vs. Bilinear Group Arithmetic Circuits (2/2)

Reducing a Bilinear Circuit to an arithmetic circuit increases its size.
o Reductions are different for all bilinear groups.

o The blow-up is a constant factor = asymptotic complexities of ZKPs are preserved.
o But the constant factor can be large, significantly influencing concrete efficiency.

o E.g., a single group exponentiation in a highly optimized group of order g =~ 22%% requires
~ 800 Z4-multiplication gates [HBHW20].
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This Work

A direct approach for communication-efficient ZKPs for
Bilinear Group Arithmetic Circuits

Our approach: Avoids specialized reductions from bilinear group arithmetic circuits to
arithmetic circuits.

o Conceptual Simplicity.
o Improved concrete efficiency.

An Application: Transparent and succinct threshold signature scheme.
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Arithmetic Circuit ZKPs with logarithmic communication.

o Bulletproofs [BCC*16, BBB18]

o At its core: Recursive PoK for quadratic relations.
o Presented as a replacement for ¥-Protocol Theory.

o Compressed X-Protocols [AC20]
o Reconciliation of Bulletproofs and X-Protocols.

ZKPs for Bilinear Group Arithmetic Circuits.

o Lai et al. [LMR19]

o Generalization of bulletproofs.
o Direct approach; does not require reduction to arithmetic circuit.
o Only applicable to a subclass circuits.
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ZKPs for Bilinear Group Arithmetic Circuits

Our Approach:

Generalize Compressed ¥_-Protocols to the Bilinear Circuit Model.

Compared to Lai et al. [LMR19]:
o Conceptual simplicity; our basic building block handles linear relations.
@ Our approach works for arbitrary bilinear group arithmetic circuits.

o We improve the communication efficiency by roughly a factor 3.
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Prior Work - Compressed ¥-Protocol Theory (CRYPTO 2020 [AC20])

High-Level Paradigm:

|Solve linear instances first, and then linearize the non-linear instances. |

1. Natural X-protocol for linear constraints.

@ X -protocol theory is a well-established, widely-used
basis for zero-knowledge proofs.

o E.g., general-constraint ZK: O(|C|) - &
communication [CD97].

2. Adaptation of Bulletproof PoK [BCC*16, BBB™18].

o Bulletproofs core: recursive PoK for quadratic
relations = logarithmic communication.

o Repurposed as a blackbox compression for
> -protocol 1.
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Prior Work - Compressed ¥-Protocol Theory (CRYPTO 2020 [AC20])

3. Linearization strategy to handle non-linear constraints in a black-box manner.

o Using arithmetic secret-sharing.

4. Instantiations.

o Logarithmic-communication: DL, strong-RSA in class groups, (RSA + set-up)
o Constant-communication: Knowledge of Exponent Assumption
o Polylogarithmic-communication: Ring-SIS [ACK21]

5. Computation Model.

o Constraints f(x) = 0 are expressed as an arithmetic circuit.
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Generalized Compressed Y -Protocol - Linear Constraints

Observation:

Compressed ¥ -protocols for linear constraints can be viewed as proving knowledge of the
preimage of a homomorphism

V:G"—>H
o G and H are order g groups.
o Communication: logarithmic number of H-elements.
In [AC20], W is of the form:
V:ZgxZqg—GxZg, (x,7)— (Com(x,7),L(x)),

Crucial: CoM is a homomorphic and compact commitment scheme.

We need a homomorphic and compact commitment scheme for vectors in

no ny no nr
Ly X Gyt x G* x G
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Commitment Scheme - Bilinear Group Vectors (1/3)

o Bilinear group: (q,G1,G2,Gr,e€, G, H)
o Pairing: e: G1 X G, —» Gt

Pairing-based generalization of Pedersen Commitments [AFG*10, LMR19]:

Setup:
0 g, h+Gr
o H+ Gz

Commit to an element (x,y) € Zq x Gx:

COM : Zg x G1 X Zg — G, (x,y,7) — h" - g*-e(y, H).
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Commitment Scheme - Bilinear Group Vectors (2/3)

Commit to an element (x,y) € Zq x Gx:

CoM:Zgx Gy X Zg—Gr, (x,¥,7)— h -g*-e(y,H).

Extensions:
O Natural extension to vectors (x,y) € Z° x Gy
e Homomorphic.
o Compact: Commitment is 1 Gr-element, i.e., size independent of ny and nj.
Q Extension to vectors (x,y,2z) € Zp® x Gi* x G3°.
o Binding: Some care is required.
o Homomorphic.
o Compact: Commitment is 2 Gr-elements.

= Compressed Y-Protocols for (Z,, G1, G,)-vectors.
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Commitment Scheme - Bilinear Group Vectors (3/3)

The above approach does not enable commitments to G r-coefficients.
El-Gamal based commitment scheme for G r-vectors:
~
. nT nt+1 h
CoMm: GY x Zg — GT ™, (x,7) — (x*g’*)
= commitment scheme for vectors x € Z® x G* x G3* x G
Commitment Size: ny + 3 G-elements.

o Independent of ng, ny and ny.

o Linear in nt.
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Compressed 2 -Protocol - Linear Bilinear Group Relations

= Compressed X-protocol for vectors x € Z x GT' x Gy* x GY.

Communication costs:
o Logarithmic in ng, n1 and ny.

@ Linear in nt.
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Linearizing Non-Linear Gates (1/2)

Arithmetic Circuits

o Arithmetic secret sharing based technique to linearize non-linear multiplication
gates [AC20]:
Lg*xTLg—ZLq, (X,y)—x-Yy

Bilinear Group Arithmetic Circuits

o Multiple types of non-linear gates:

LgxTLg—ZLq, (X,y)r=>x-y
G1xZg—G1, (g,x)—g"

Go x Zg — Go,  (h,x) — h*
GTXZq—)GT, (k,X)l—>kX
G1XG2_>GT7 (Xay)'_)e(gah)
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Linearizing Non-Linear Gates (2/2)

Observation

o All these non-linear gates are bilinear mappings
= Linearization techniques of [AC20] have a generalization to these bilinear gates.

= Compressed Y-protocol for vectors x € Z x GT* x Gy* x G satisfying
arbitrary constraints defined over a bilinear group arithmetic circuit.

Communication costs:
o Logarithmic in

@ ng, N and np
o the number of non-linear gates with Zg, G; or G, outputs

o Linear in

o nt
o the number of non-linear gates with G outputs
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Application - Threshold Signatures (1/2)

Functionality: A valid signature can only be created by a subset of at least k-out-of-n players.

Trivial approach: Exhibit k individual signatures.
o Signature size linear in k.

o Reveals the identities of the k signers.

Standard approach [Sho00]: Secret share the private key of a standard signature scheme.
o Signature size constant in k and n.
o Trusted set-up required.

o Hides the identities of the k signers.
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Application - Threshold Signatures (2/2)

Our approach: Zero-Knowledge Proof of Knowledge of k-out-of-n signatures.

Ingredients:
o BLS signature scheme [BLSO1]: small bilinear group verification circuit.
o Proofs-of-partial knowledge: k-out-of-n threshold functionality [ACF21].

o Compressed ¥ -Protocols for bilinear group arithmetic relations.

Properties:
o Signature size logarithmic in n.
o Transparent set-up.

o Hides the identities of the k signers.
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Conclusion

|Compressed > -protocols for bilinear group arithmetic circuits. |

o Direct approach: no specialized reduction to arithmetic circuits.

Communication costs:

o Logarithmic in the "Zg, G1 and G parts”.
o Linear in the "Gt part”.

o Roughly factor 3 improvement over prior work.

Application:

o Transparent and logarithmic-size threshold signature scheme.
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Thanks!
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