Secure and Efficient Software Masking on

Superscalar Pipelined Processors

Barbara Gigerl, Robert Primas, Stefan Mangard
07/12/2021

IAIK — Graz University of Technology

Physical Side-Channel Attacks

e Device:
e Has certain asset, e.g. cryptographic key
e Examples: Credit card, passport, government IDs, SIM cards, security tokens, ...
e Microprocessors
o Attacker:
e Has physical access to device
e Can observe or manipulate its physical properties,
e.g. power consumption

e Power consumption of CPU depends on:

e What instruction is executed? = —— Break the dependency!
e Which data is involved (key)?
e Masking:
e Secret sharing technique
e Split sensitive value into d + 1 (random) shares
>

e Observation of up to d shares does not reveal any

Key k = ki @ ko @ k3

information about sensitive value

¥ Problem: assumes that independent computations result in independent leakage

e Runtime of masked

@ Fine-tune masked implementation for software is significantly
specific microprocessor increased

@ Lazy engineering: use protection order e Still requires manual
that is higher than theoretically required [BGG'14] leakage assessments

e Security of masked software on more complex processors (multiple pipeline stages,
forwarding logic, superscalar building blocks, caches, ...)

e Analysis can barely be done manually any more — we perform formal analysis

e Case study: RISC-V SweRV core

e Questions:

? Which CPU components cause problems in the context of masking?

? How can we deal with these problems?

? Which general rules need to be fulfilled by masked software running on complex
cores?

? How can we still design efficient masked software for complex CPUs?

Target Processor Platform

SweRV EH1 Core

e Open-source RISC-V core

Designed by Western Digital

Use cases: data-intensive applications
(storage controllers, industrial loT)

Comparable to ARM Cortex Al5

In-order, dual-issue, load/store buffers

9 pipeline stages

—

Fetchl

Fetch2

Align

Decode

EX1

EX1 DC1

M1

ALU 1

EX2

ALU 2

EX2 DC2

LSU

Mult.

M2

EX3

EX3 DC3

M3

Commit

S|l Q|| n| A W|N

Writeback

Verification Setup

e Goal: investigate security of masked software when executed on a specific CPU
e Classical probing model for HW: attacker uses d probes to measure specific gate/wire
e Captures hardware effects like glitches and transitions but too powerful for masked

software

e Time-constrained probing model: Attacker can use d probes to measure specific
gate/wire for the duration of one clock cycle
e Coco [GHP'21]: Co-Verification and Co-Design

£
<
Masked Software

CPU netlist

¥No, not secure.

Coco

Leak in cycle 5 at
gate MUX1234.

| «Yes, secure.

Verification Setup

e Simple RISC-V Ibex core was analyzed before [GHP*21]
e Problematic hardware components: register file, ALU, Load-Store unit
e Needs modification of hardware by applying hardware fixes and software constraints
e Secured |bex: allows the secure execution of masked software as long as it follows
constraints
e Setup Modifications

e Initial analysis with Coco shows: SweRV has similar problems

2 We map these hardware fixes to SweRV — secured SweRV as our
base point

Formal Analysis

e Starting point: Verify software generated by Tornado [BDM™20]

e Tornado: generates masked C implementation based on unmasked high-level
description

e Security proof in register probing model: attacker places probes on individual
registers for one cycle

e Experiment:

e Generate masked Keccak S-box with Tornado up to 4th-order
e Verify its execution on secured SweRV using Coco

e Result: implementations lose all protection orders due to CPU components
causing:

1. Big problems (combination of more than two shares)
2. Small problems (combination of up to two shares)

Example of a big problem

e Software: 10 shares are in the pipeline at the same time (masking is
algorithmically correct)

e Gate-level timing simulation of SweRV to visualize possible glitches/transitions on
wire

e Based on a specific cell library with concrete timings

Attacker probes a wire in bypass logic for the duration of one cycle - what can be
observed?

EA
(s2A\sa) Vs3

: |

S sV s3
(s2Vs3)Asa

e Observation of up to five shares is possible (big problem)!

Leaks in Pipelines and Execution Units

B

General-purpose
registers
Decode (4)

Miselect

ALUI - EX1(5)

ALU2 - EX1 (5)

result ALUT result ALU1
result ALU2 REl R | result ALU2 result ALU2
EX2 (6) EX3 (7) Commit (8) Writeback (9)

e Mlselect is
susceptible for
glitches

e Leak if multiple
shares of the same
secret are in different
pipeline registers

Leaks in Pipelines and Execution Units

@ Possible HW solution
e Gate output of each pipeline register with a bit indicating whether the value
should be forwarded or not
e Gate-bits need to be glitch-free

e Impractical due to latency overhead

@ Solution in SW
e Ensure that at no time there are multiple shares of the same native value in
different pipeline registers - how?
e Place enough unrelated instructions between two instructions processing shares of
the same native value
e Unrelated instructions: nop, shares from another secret, ALU computations on
non-secret data, ...

Leaks in other components

e Management Components of Data Memory:

e LSU Bus Buffer, Store Pipeline Stages, Data Memory Interface, ...
e Example: Share is stored in LSU Bus Buffer and gets overwritten by counterpart

@ Possible HW solutions: again impractical

@ — more SW constraints
e Example: flush LSU Bus Buffer between loading two shares of the same native

value

Generic Rules for Masked Software

e Analysis shows: SW constraints are still necessary besides HW fixes

o Effective SW constraint: insertion of unrelated instructions

Generic Rule for Pipelines and Execution Units: For a pipelined processor, the number

of unrelated instructions 1 required is:

n=expg+1
e p Amount of pipeline stages, p = p; + o Amount of data processing stages
e p; Amount of instruction fetch stages e ¢ Amount of execution units

Order reduction when applying lazy engineering: {ﬁiﬁlj

Efficiency of masked software

If one adapts these rules strictly, the overhead will be huge:

Masked without constraints Masked with constraints

Cycles Instructions Cycles | Instructions | NOPs
DOM AND 10 8 33 48 40
ISW AND 10 8 32 48 40
TI AND 14 15 37 54 39
Trichina AND 9 8 34 46 38
DOM AND 2nd order 20 21 86 148 127
DOM AND 3rd order 33 42 250 295 235

— We need specific implementation techniques

to reduce overhead.

Serial vs. Parallel Implementations

e Example: Keccak S-box state consists of five lanes (each of d shares)

e Serial: take the d shares of three lanes, process them, store them in the output
lane

e Lots of unrelated instructions are needed to separate processing of two shares of
the same native value

e Parallel: instead of NOPs, use computations of shares of other lanes as unrelated

instructions

Masked without constraints Masked with constraints
Cycles Instructions Cycles | Instructions | NOPs
DOM Keccak 83 95 240 418 333
S-box serial
DOM Keccak 36 60 81 144 79
S-box parallel

Threshold Implementations

e Non-complete component functions: computation is independent of at least one
of its input shares

e Tl Keccak S-Box: linear layer in sequence for each share, non-linear layer in
sequence for each component function

e Ignore small problems, but requires three shares for 1st-order security

Masked without constraints Masked with constraints
Cycles Instructions Cycles | Instructions | NOPs
Tl Keccak S-box 66 105 72 126 15
(Input: 15 x 32 bit)
Tl Ascon (1 round) 721 863 1621 1153 290
(Input: 15 X 64 bit)

Conclusion

A S 70U

Architectural side-effects of

Problematic components: Secure and efficient masking
complex CPUs can reduce o _ _ _
. pipelines, memory requires consideration of
the security of masked
management components HW and SW

software by multiple orders

Secure and Efficient Software Masking on

Superscalar Pipelined Processors

Barbara Gigerl, Robert Primas, Stefan Mangard
07/12/2021

IAIK — Graz University of Technology

Bibliography

GHP*21

BDM*20

BGGT14.

Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick Bloem. Coco: Co-Design
and Co-Verification of Masked Software Implementations on CPUs. 30th USENIX Security
Symposium,USENIX Security 2021, 2021.

Sonia Belaid, Pierre-Alain Fouque, Darius Mercadier, Matthieu Rivain, and Raphael Wintersdorff.
Tornado: Automatic generation of probing-secure masked bitsliced implementations. In EUROCRYPT
(3), volume 12107 of Lecture Notes in Computer Science, pages 311-341. Springer, 2020.

Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and Francgois-Xavier Standaert. On the
cost of lazy engineering for masked software implementations. In Smart Card Research and Advanced
Applications - 13th International Conference, CARDIS 2014, Paris, France, November 5-7, 2014. Revised
Selected Papers, volume 8968 of Lecture Notes in Computer Science, pages 64—-81. Springer, 2014.

Barbara Gigerl, Robert Primas, Stefan Mangard — IAIK — Graz University of Technology

