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Physical Side-Channel Attacks

w =
• Device:

• Has certain asset, e.g. cryptographic key

• Examples: Credit card, passport, government IDs, SIM cards, security tokens, ...

• Microprocessors

• Attacker:

• Has physical access to device

• Can observe or manipulate its physical properties,

e.g. power consumption
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Masking

• Power consumption of CPU depends on:

• What instruction is executed?

• Which data is involved (key)?

• Masking:

• Secret sharing technique

• Split sensitive value into d + 1 (random) shares

• Observation of up to d shares does not reveal any

information about sensitive value

Break the dependency!
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Masking

� Problem: assumes that independent computations result in independent leakage

 Fine-tune masked implementation for

specific microprocessor

 Lazy engineering: use protection order

that is higher than theoretically required [BGG+14]

• Runtime of masked

software is significantly

increased

• Still requires manual

leakage assessments
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Our Work

• Security of masked software on more complex processors (multiple pipeline stages,

forwarding logic, superscalar building blocks, caches, ...)

• Analysis can barely be done manually any more → we perform formal analysis

• Case study: RISC-V SweRV core

• Questions:

? Which CPU components cause problems in the context of masking?

? How can we deal with these problems?

? Which general rules need to be fulfilled by masked software running on complex

cores?

? How can we still design efficient masked software for complex CPUs?
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Target Processor Platform

SweRV EH1 Core

• Open-source RISC-V core

• Designed by Western Digital

• Use cases: data-intensive applications

(storage controllers, industrial IoT)

• Comparable to ARM Cortex A15

• In-order, dual-issue, load/store buffers

• 9 pipeline stages Writeback
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Verification Setup

• Goal: investigate security of masked software when executed on a specific CPU
• Classical probing model for HW: attacker uses d probes to measure specific gate/wire

• Captures hardware effects like glitches and transitions but too powerful for masked

software

• Time-constrained probing model: Attacker can use d probes to measure specific

gate/wire for the duration of one clock cycle

• Coco [GHP+21]: Co-Verification and Co-Design

3
Masked Software

)
CPU netlist

Coco

ËYes, secure.

éNo, not secure.

Leak in cycle 5 at

gate MUX1234.
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Verification Setup

• Simple RISC-V Ibex core was analyzed before [GHP+21]

• Problematic hardware components: register file, ALU, Load-Store unit

• Needs modification of hardware by applying hardware fixes and software constraints

• Secured Ibex: allows the secure execution of masked software as long as it follows

constraints

• Setup Modifications

• Initial analysis with Coco shows: SweRV has similar problems

) We map these hardware fixes to SweRV → secured SweRV as our

base point
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Formal Analysis

• Starting point: Verify software generated by Tornado [BDM+20]

• Tornado: generates masked C implementation based on unmasked high-level

description

• Security proof in register probing model: attacker places probes on individual

registers for one cycle

• Experiment:

• Generate masked Keccak S-box with Tornado up to 4th-order

• Verify its execution on secured SweRV using Coco

• Result: implementations lose all protection orders due to CPU components
causing:

1. Big problems (combination of more than two shares)

2. Small problems (combination of up to two shares)
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Example of a big problem

• Software: 10 shares are in the pipeline at the same time (masking is

algorithmically correct)

• Gate-level timing simulation of SweRV to visualize possible glitches/transitions on

wire

• Based on a specific cell library with concrete timings

Attacker probes a wire in bypass logic for the duration of one cycle - what can be

observed?
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• Observation of up to five shares is possible (big problem)!
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Leaks in Pipelines and Execution Units

...
General-purpose

registers
Decode (4)

ALU1 - EX1(5)

XOR

AND
Shift

result ALU1

result ALU2

EX2 (6)

result ALU2

EX3 (7)

result ALU2

Commit (8)

result ALU2

Writeback (9)

ALU2 - EX1 (5)

XOR

AND
Shift

M1

result ALU1 result ALU1 result ALU1

LSU CSR

LSU

Fwd

M1select

fwd_data

• M1select is

susceptible for

glitches

• Leak if multiple

shares of the same

secret are in different

pipeline registers
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Leaks in Pipelines and Execution Units

 Possible HW solution

• Gate output of each pipeline register with a bit indicating whether the value

should be forwarded or not

• Gate-bits need to be glitch-free

• Impractical due to latency overhead

 Solution in SW

• Ensure that at no time there are multiple shares of the same native value in

different pipeline registers - how?

• Place enough unrelated instructions between two instructions processing shares of

the same native value

• Unrelated instructions: nop, shares from another secret, ALU computations on

non-secret data, ...
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Leaks in other components

• Management Components of Data Memory:

• LSU Bus Buffer, Store Pipeline Stages, Data Memory Interface, ...

• Example: Share is stored in LSU Bus Buffer and gets overwritten by counterpart

 Possible HW solutions: again impractical

 → more SW constraints

• Example: flush LSU Bus Buffer between loading two shares of the same native

value
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Generic Rules for Masked Software

• Analysis shows: SW constraints are still necessary besides HW fixes

• Effective SW constraint: insertion of unrelated instructions

Generic Rule for Pipelines and Execution Units: For a pipelined processor, the number

of unrelated instructions n required is:

n = e × pd + 1

• p Amount of pipeline stages, p = pi + pd

• pi Amount of instruction fetch stages

• pd Amount of data processing stages

• e Amount of execution units

Order reduction when applying lazy engineering:
⌊

d
e×pd+1

⌋
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Efficiency of masked software

If one adapts these rules strictly, the overhead will be huge:

Masked without constraints Masked with constraints

Cycles Instructions Cycles Instructions NOPs

DOM AND 10 8 33 48 40

ISW AND 10 8 32 48 40

TI AND 14 15 37 54 39

Trichina AND 9 8 34 46 38

DOM AND 2nd order 20 21 86 148 127

DOM AND 3rd order 33 42 250 295 235

→ We need specific implementation techniques

to reduce overhead.
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Serial vs. Parallel Implementations

• Example: Keccak S-box state consists of five lanes (each of d shares)

• Serial: take the d shares of three lanes, process them, store them in the output

lane

• Lots of unrelated instructions are needed to separate processing of two shares of

the same native value

• Parallel: instead of NOPs, use computations of shares of other lanes as unrelated

instructions

Masked without constraints Masked with constraints

Cycles Instructions Cycles Instructions NOPs

DOM Keccak

S-box serial

83 95 240 418 333

DOM Keccak

S-box parallel

36 60 81 144 79
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Threshold Implementations

• Non-complete component functions: computation is independent of at least one

of its input shares

• TI Keccak S-Box: linear layer in sequence for each share, non-linear layer in

sequence for each component function

• Ignore small problems, but requires three shares for 1st-order security

Masked without constraints Masked with constraints

Cycles Instructions Cycles Instructions NOPs

TI Keccak S-box

(Input: 15 × 32 bit)

66 105 72 126 15

TI Ascon (1 round)

(Input: 15 × 64 bit)

721 863 1621 1153 290
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Conclusion

o
Architectural side-effects of

complex CPUs can reduce

the security of masked

software by multiple orders

a
Problematic components:

pipelines, memory

management components

È�
Secure and efficient masking

requires consideration of

HW and SW
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