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Physical Side-Channel Attacks

e Device:
e Has certain asset, e.g. cryptographic key
e Examples: Credit card, passport, government IDs, SIM cards, security tokens, ...
e Microprocessors
o Attacker:
e Has physical access to device
e Can observe or manipulate its physical properties,
e.g. power consumption



e Power consumption of CPU depends on:

e What instruction is executed? = —— Break the dependency!
e Which data is involved (key)?
e Masking:
e Secret sharing technique
e Split sensitive value into d + 1 (random) shares
>

e Observation of up to d shares does not reveal any

Key k = ki @ ko @ k3

information about sensitive value



¥ Problem: assumes that independent computations result in independent leakage

e Runtime of masked

@ Fine-tune masked implementation for software is significantly
specific microprocessor increased

@ Lazy engineering: use protection order e Still requires manual
that is higher than theoretically required [BGG'14] leakage assessments



e Security of masked software on more complex processors (multiple pipeline stages,
forwarding logic, superscalar building blocks, caches, ...)

e Analysis can barely be done manually any more — we perform formal analysis

e Case study: RISC-V SweRV core

e Questions:

? Which CPU components cause problems in the context of masking?

? How can we deal with these problems?

? Which general rules need to be fulfilled by masked software running on complex
cores?

? How can we still design efficient masked software for complex CPUs?



Target Processor Platform

SweRV EH1 Core

e Open-source RISC-V core

Designed by Western Digital

Use cases: data-intensive applications
(storage controllers, industrial loT)

Comparable to ARM Cortex Al5

In-order, dual-issue, load/store buffers

9 pipeline stages
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Verification Setup

e Goal: investigate security of masked software when executed on a specific CPU
e Classical probing model for HW: attacker uses d probes to measure specific gate/wire
e Captures hardware effects like glitches and transitions but too powerful for masked

software

e Time-constrained probing model: Attacker can use d probes to measure specific
gate/wire for the duration of one clock cycle
e Coco [GHP'21]: Co-Verification and Co-Design
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Verification Setup

e Simple RISC-V Ibex core was analyzed before [GHP*21]
e Problematic hardware components: register file, ALU, Load-Store unit
e Needs modification of hardware by applying hardware fixes and software constraints
e Secured |bex: allows the secure execution of masked software as long as it follows
constraints
e Setup Modifications

e Initial analysis with Coco shows: SweRV has similar problems

2 We map these hardware fixes to SweRV — secured SweRV as our
base point



Formal Analysis

e Starting point: Verify software generated by Tornado [BDM™20]

e Tornado: generates masked C implementation based on unmasked high-level
description

e Security proof in register probing model: attacker places probes on individual
registers for one cycle

e Experiment:

e Generate masked Keccak S-box with Tornado up to 4th-order
e Verify its execution on secured SweRV using Coco

e Result: implementations lose all protection orders due to CPU components
causing:

1. Big problems (combination of more than two shares)
2. Small problems (combination of up to two shares)



Example of a big problem

e Software: 10 shares are in the pipeline at the same time (masking is
algorithmically correct)

e Gate-level timing simulation of SweRV to visualize possible glitches/transitions on
wire

e Based on a specific cell library with concrete timings

Attacker probes a wire in bypass logic for the duration of one cycle - what can be
observed?
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e Observation of up to five shares is possible (big problem)!



Leaks in Pipelines and Execution Units
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Leaks in Pipelines and Execution Units

@ Possible HW solution
e Gate output of each pipeline register with a bit indicating whether the value
should be forwarded or not
e Gate-bits need to be glitch-free

e Impractical due to latency overhead

@ Solution in SW
e Ensure that at no time there are multiple shares of the same native value in
different pipeline registers - how?
e Place enough unrelated instructions between two instructions processing shares of
the same native value
e Unrelated instructions: nop, shares from another secret, ALU computations on
non-secret data, ...



Leaks in other components

e Management Components of Data Memory:

e LSU Bus Buffer, Store Pipeline Stages, Data Memory Interface, ...
e Example: Share is stored in LSU Bus Buffer and gets overwritten by counterpart

@ Possible HW solutions: again impractical

@ — more SW constraints
e Example: flush LSU Bus Buffer between loading two shares of the same native

value



Generic Rules for Masked Software

e Analysis shows: SW constraints are still necessary besides HW fixes

o Effective SW constraint: insertion of unrelated instructions

Generic Rule for Pipelines and Execution Units: For a pipelined processor, the number

of unrelated instructions 1 required is:

n=expg+1
e p Amount of pipeline stages, p = p; + o Amount of data processing stages
e p; Amount of instruction fetch stages e ¢ Amount of execution units

Order reduction when applying lazy engineering: {ﬁiﬁlj



Efficiency of masked software

If one adapts these rules strictly, the overhead will be huge:

Masked without constraints Masked with constraints

Cycles Instructions Cycles | Instructions | NOPs
DOM AND 10 8 33 48 40
ISW AND 10 8 32 48 40
TI AND 14 15 37 54 39
Trichina AND 9 8 34 46 38
DOM AND 2nd order 20 21 86 148 127
DOM AND 3rd order 33 42 250 295 235

— We need specific implementation techniques

to reduce overhead.



Serial vs. Parallel Implementations

e Example: Keccak S-box state consists of five lanes (each of d shares)

e Serial: take the d shares of three lanes, process them, store them in the output
lane

e Lots of unrelated instructions are needed to separate processing of two shares of
the same native value

e Parallel: instead of NOPs, use computations of shares of other lanes as unrelated

instructions

Masked without constraints Masked with constraints
Cycles Instructions Cycles | Instructions | NOPs
DOM Keccak 83 95 240 418 333
S-box serial
DOM Keccak 36 60 81 144 79
S-box parallel




Threshold Implementations

e Non-complete component functions: computation is independent of at least one
of its input shares

e Tl Keccak S-Box: linear layer in sequence for each share, non-linear layer in
sequence for each component function

e Ignore small problems, but requires three shares for 1st-order security

Masked without constraints Masked with constraints
Cycles Instructions Cycles | Instructions | NOPs
Tl Keccak S-box 66 105 72 126 15
(Input: 15 x 32 bit)
Tl Ascon (1 round) 721 863 1621 1153 290
(Input: 15 X 64 bit)




Conclusion
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