

NTT Multiplication for NTT-unfriendly Rings

New Speed Records for Saber and NTRU on Cortex-M4 and AVX2

Chi-Ming Marvin Chung Vincent Hwang Matthias J. Kannwischer Gregor Seiler Cheng-Jhih Shih Bo-Yin Yang

CHES 2021 - September 17, 2021

Number-theoretic Transforms

Number-theoretic Transforms

Suppose *n* is invertible.

Given an invertible $\zeta \in R$ and a principle *n*-th root of unity ω ($\forall k, n \not| k \longrightarrow \sum_{i=0}^{n-1} \omega^{ik} = 0$), we have

NTT:
$$R[x]/\langle x^n - \zeta^n \rangle \cong \prod_{i=0}^{n-1} R[x]/\langle x - \zeta \omega^i \rangle.$$

- Cyclic: $\zeta^n = 1$
- Negacyclic: $\zeta^n = -1$
- Cooley–Tukey: $\zeta^n = (\omega^j)^n$, the *n*-th power of a power of ω

As an isomorphism, we have

$$\begin{cases} \operatorname{NTT}(\boldsymbol{a}(x)\boldsymbol{b}(x)) = \operatorname{NTT}(\boldsymbol{a}(x))\operatorname{NTT}(\boldsymbol{b}(x)) & \iff \boldsymbol{a}(x)\boldsymbol{b}(x) = \operatorname{NTT}^{-1}(\operatorname{NTT}(\boldsymbol{a}(x))\operatorname{NTT}(\boldsymbol{b}(x))) \\ \operatorname{NTT}(\boldsymbol{a}(x) + \boldsymbol{b}(x)) = \operatorname{NTT}(\boldsymbol{a}(x)) + \operatorname{NTT}(\boldsymbol{b}(x)) & \iff \boldsymbol{a}(x) + \boldsymbol{b}(x) = \operatorname{NTT}^{-1}(\operatorname{NTT}(\boldsymbol{a}(x)) + \operatorname{NTT}(\boldsymbol{b}(x))) \end{cases}$$

Fast Fourier Transforms

- Let ω be a principal n_0n_1 -th root of unity.
 - Cooley–Tukey:

$$R[x]/\langle x^{n_0n_1} - 1 \rangle \cong \prod_{i=0}^{n_0-1} R[x]/\langle x^{n_1} - \omega^{n_1i} \rangle \cong \prod_{i=0}^{n_0-1} \prod_{j=0}^{n_1-1} R[x]/\langle x - \omega^{i+n_0j} \rangle$$

• Gentleman–Sande:

$$R[x]/\langle x^{n_0n_1} - 1 \rangle \cong \prod_{i=0}^{n_0-1} R[x]/\langle x^{n_1} - \omega^{n_1i} \rangle \cong \prod_{i=0}^{n_0-1} R[x]/\langle x^{n_1} - 1 \rangle \cong \prod_{i=0}^{n_0-1} \prod_{j=0}^{n_1-1} R[x]/\langle x - \omega^{n_0j} \rangle$$

• For $q_0 \perp q_1$, Good's trick:

$$R[x]/\langle x^{q_0q_1}-1\rangle \cong (R[z]/\langle z^{q_1}-1\rangle)[y]/\langle y^{q_0}-1\rangle$$

NTTs: Montgomery Multiplications

- Cortex-M4: smull, smlal \implies 32-bit arithmetic
- AVX2: vpmulhw ⇒ 16-bit arithmetic

Algorithm 1 32-bit Montgomery multiplication on Cortex-M4	Algorithm 2 16-bit Montgomery multiplication with AVX2			
Input: $(c0, c1) = (a, b)$	Require: $a \in [-2^{15}, 2^{15}), b \in [-$	$\frac{q-1}{2}, \frac{q-1}{2}], b' = bq^{-1} \mod 2^{16}$		
Output: $c0 \equiv ab2^{-32} \pmod{q}$	Ensure: $r \equiv ab2^{-16} \pmod{q}$			
	1: $t_1 \leftarrow \left\lfloor \frac{ab}{2^{16}} \right\rfloor$	▷ signed high product		
1: smull tmp0, c0, c0, c1	2: $t_0 \leftarrow ab' \mod 2^{16}$	▷ signed low product		
2: mul tmp1, tmp0, $(-q^{-1} \mod {}^{\pm}\mathrm{R})$	3: $t_0 \leftarrow \left\lfloor \frac{t_0 q}{2^{16}} \right\rfloor$	▷ signed high product		
3: smlal tmp0, c0, tmp1, q	4: $r \leftarrow (t_1 - t_0) \mod 2^{16}$			

Saber

Saber

- *q* = 8192
- $R_q = \mathbb{Z}_q[x]/\langle x^{256} + 1 \rangle$
- Parameter (l, μ) varies for security levels:
 - Lightsaber: $(I, \mu) = (2, 10)$
 - Saber: $(I, \mu) = (3, 8)$
 - Firesaber: $(I, \mu) = (4, 6)$
- Compute $A^T \cdot s$ and $A \cdot s'$ where
 - $A \in R_q^{l \times l}$
 - $s,s' \in R'_q$, coefficients are in $[-rac{\mu}{2},rac{\mu}{2}]$, small

How NTT-friendly/unfriendly Saber is?

- Polynomial modulus: $x^{256} + 1$, awesome!
- Coefficient ring: \mathbb{Z}_{8192} , unfriendly
 - Solution: choose ...
 - Hold on.

 \implies

Recall if NTT is defined correctly, then

 $\boldsymbol{a}(x)\boldsymbol{b}(x) + \boldsymbol{c}(x)\boldsymbol{d}(x) = \operatorname{NTT}^{-1}(\operatorname{NTT}(\boldsymbol{a}(x))\operatorname{NTT}(\boldsymbol{b}(x)) + \operatorname{NTT}(\boldsymbol{c}(x))\operatorname{NTT}(\boldsymbol{d}(x)))$

$$A^T \cdot s = \operatorname{NTT}^{-1}(\operatorname{NTT}(A^T)\operatorname{NTT}(s))$$

NTTs for $A^T \cdot s$

- We compute $A^T \cdot s$ as if \mathbb{Z} is the coefficient ring
- Bounding the maximum value of the result:
 - Max: $2 \cdot 256 \cdot \frac{8192}{2} \cdot \frac{\mu}{2} \cdot l = 2^{20} \cdot \mu \cdot l$
 - Cortex-M4: choose a 32-bit prime $q' > 2^{20} \cdot \mu \cdot l$
 - AVX2: choose two 16-bit primes p_0, p_1 with $p_0p_1 > 2^{20} \cdot \mu \cdot I$
- Compute $A^T \cdot s$ as
 - Cortex-M4: $NTT^{-1}(NTT(A^T)NTT(s))$ in $\mathbb{Z}_{q'}$
 - AVX2: $\operatorname{NTT}^{-1}(\operatorname{NTT}(A^T)\operatorname{NTT}(s))$ in \mathbb{Z}_{p_0} and \mathbb{Z}_{p_1} , and CRT at the end
- $l + l^2$ NTTs: NTT(s) and NTT(A^T)
- *l*² "point multiplications"
- $/ \operatorname{NTT}^{-1}: \operatorname{NTT}^{-1} (\operatorname{NTT}(A^T) \operatorname{NTT}(s))$

NTTs for Saber on Cortex-M4

- Incomplete NTTs giving 4-coefficient polynomials
- Long multiplication with accumulation: smlal
 - Let **p**_i, **q**_i be 4-coefficient polynomials
 - \star is multiplication in (mod $x^4 \zeta$)
 - For $\mathbf{h} = \sum_{i} \mathbf{p}_{i} \star \mathbf{q}_{i}$, $[x^{0}]\mathbf{h} = \sum_{i} (\mathbf{p}_{i0}\mathbf{q}_{i0} + \zeta(\mathbf{p}_{i1}\mathbf{q}_{i3} + \mathbf{p}_{i2}\mathbf{q}_{i2} + \mathbf{p}_{i3}\mathbf{q}_{i1}))$
 - We can
 - montgomeryR for each of $\mathbf{p}_{i0}\mathbf{q}_{i0} + \zeta(\mathbf{p}_{i1}\mathbf{q}_{i3} + \mathbf{p}_{i2}\mathbf{q}_{i2} + \mathbf{p}_{i3}\mathbf{q}_{i1})$, or
 - montgomeryR for [x⁰]h

NTRU

NTRU

- $\mathbb{Z}_q[x]/\langle x^n-1\rangle$
- Parameter (q, n) varies for security levels:
 - ntruhps2048509: (q, n) = (2048, 509)
 - ntruhps2048677: (q, n) = (2048, 677)
 - ntruhrss701: (q, n) = (8192, 701)
 - ntruhps4096821: (q, n) = (4096, 821)
 - ntruhps40961229: (q, n) = (4096, 1229)
 - ntruhrss1373: (q, n) = (16384, 1373)
- One of the multiplicands is ternary, i.e. coefficients are in $\{\pm 1, 0\}$

NTTs for NTRU on Cortex-M4

Parameter sets	NTT _N	q'	Strategy
ntruhps4096821	$1728 = 9 \cdot 64 \cdot 3$	3365569	Mixed-radix (CT+GS)
ntruhrss701	$1536 = 512 \cdot 3$	5747201	Good's (CT+CT)
ntruhps2048677	$1536 = 512 \cdot 3$	1389569	Good's (CT+CT)
ntruhps2048509	$1024 = 256 \cdot 4$	1043969	Radix-2 (CT+GS)

In NTRU Prime, primes *p*, *q* give the field $\mathbb{Z}_q[x]/\langle x^p - x - 1 \rangle$. We compare (q, p) = (4591, 761) in NTRU Prime with (q, n) = (2048, 677) and (8192, 701) in NTRU.

- $\langle x^{\text{NTT}_{\mathbb{N}}} 1 \rangle \rightarrow \langle x^n 1 \rangle$ is faster than $\langle x^{\text{NTT}_{\mathbb{N}}} 1 \rangle \rightarrow \langle x^p x 1 \rangle$. Excluding head and tail cases,
 - $x^n \underline{1}$: 1 add; $q' > n \cdot q$
 - $x^p (x+1)$: 2 adds; $q' > n \cdot (2p-1)$
- $\mathbb{Z}_{q'} \to \mathbb{Z}_{\{2048, 8192\}}$ is faster than $\mathbb{Z}_{q'} \to \mathbb{Z}_{4591}$:
 - pkhbt before $\mathbb{Z}_{q'} \to \mathbb{Z}_{\{2048, 8192\}}$: 0.5 cycles on average with the and instruction
 - pkhbt after $\mathbb{Z}_{q'} \to \mathbb{Z}_{4591}$: 2 cycles on average with Barrett reduction
- On average, we save 2.5 cycles for each coefficient.
- Polynomials in NTRU are shorter than in NTRU Prime $\implies > 2.5 * 701 = 1752.5$ cycles of reduction

Implementation Considerations with AVX2

NTTs with AVX2

- Divided difference form of CRT:
 - Solve $|u| < P/2 = \prod_{i=1}^{s} p_i/2$ from $u \equiv u_i \pmod{p_i}$, $i = 1 \dots s$, $|u_i| < p_i/2$ Let $m_i := (p_1 \cdots p_{i-1})^{-1} \mod \pm p_i$.

$$\begin{cases} y_1 = u_1 \\ y_2 = y_1 + ((u_2 - y_1)m_2 \mod {}^{\pm}p_2) p_1 \\ y_3 = y_2 + ((u_3 - y_2)m_3 \mod {}^{\pm}p_3) p_1 p_2 \\ \vdots & \vdots \\ u = y_s = y_{s-1} + ((u_s - y_{s-1})m_s \mod {}^{\pm}p_s) p_1 \cdots p_{s-1} \end{cases}$$

- Range analysis
 - Compute worst-case intervals from input intervals
 - Precise operations and roots of unity

Results

Saber Results: MatrixVectorMul and InnerProd

MatrixVectorMul							
	Co	ortex-M4	Skylake (AVX2)				
	[BMKV20]	Ou	r Work	[BMKV20]	Our	Work	
<i>l</i> = 2	159k	66k	(- 58%)	7 002	5215	(-25%)	
<i>l</i> = 3	317k	125k	(-61%)	14 145	9 579	(-32%)	
<i>l</i> = 4	528k	205k	(-61%)	24 342	14 959	(-39%)	
InnerProduct							

Table 1: Cycles for MatrixVectorMul and InnerProd in Saber.

	Co	ortex-M4	Skylake (AVX2)		
	[BMKV20]	Our Work	[BMKV20]	Our Work	
<i>l</i> = 2	73k	41k (- 44%)	4 0 1 6	2125 (-47%)	
<i>l</i> = 3	99k	57k (- 42%)	5 977	2706 (-55%)	
<i>l</i> = 4	126k	73k (- 42%)	8 040	3278 (-60%)	

Saber Results: Full Scheme

		Cortex-M4		Skylake (AVX2)		
		[BMKV20]	Our Work	[BMKV20]	Our Work	
K Lightsaber E		466k	360k(-23%)	61 325	59831 (-2%)	
		653k	513k(-21%)	75 876	72473 (-4%)	
D	D	678k	498k(-27%)	70 228	64859 (-8%)	
I	K	853k	658 (-23%)	104 832	9971 (-5%)	
Saber	E	1103k	864 (-22%)	125 835	11844 (-6%)	
1	D	1127k	835 (-26%)	118 553	10726 (-10%)	
I	K	1 340k	1008k(-25%)	157 915	148729 (-6%)	
Firesaber	E	1642k	1255k(-24%)	184 322	171993 (-7%)	
I	D	1679k	1227k(-27%)	177 864	159950(-10%)	

Table 2: Clock cycles for Lightsaber, Saber, and Firesaber.

NTRU Results: Polynomial Multiplications

Table 3: Clock cycles for big by small polynomial multiplication in NTRU.

	Cortex-M4			Skyl	ake (AVX	(2)
п	[KRS19]	Our Work		[ZCH ⁺ 19]	Our	Work
509	104k	101k	(- 3%)	6 6 4 3	8 540	(+29%)
677	175k	156k	(-11%)	11 103	10373	(-7%)
701	173k	156k	(-10%)	11 242	10 373	(-8%)
821	230k	199k	(- 13%)	15 507	13247	(-15%)

NTRU Results: Full Scheme

 Table 4: Clock cycles for NTRU.

	Cortex-M4		Skylake (AVX2)	
	[KRS19]	Our Work	[ZCH ⁺ 19]	Our Work
K	79 682k	79660k(±0%)	208 653	218 887 (+5%)
ntruhps2048509 E	572k	564k(-1%)	71018	73176 (+3%)
D	545k	538k(-1%)	38 950	42953(+10%)
K	143 808k	143725k(±0%)	332 906	333278 (±0%)
ntruhps2048677 E	849k	821k(-3%)	96 293	95953 (±0%)
D	845k	818k(-3%)	59 169	58 406 (-1%)
K	154 477k	$154403k(\pm0\%)$	299 066	298505 (±0%)
ntruhrss701 E	403k	377k(-6%)	56616	56084 (-1%)
D	896k	871k(-3%)	62 503	61199 (-2%)
K	208 953k	207495k(-1%)	458 614	451664 (-2%)
ntruhps4096821 E	1069k	1027k(-4%)	114 986	113 935 (-1%)
D	1075k	1030k(-4%)	74 182	70917 (-4%)

LAC Results: Polynomial Multiplications

- q = 251 for LAC-{128, 192, 256}-v3a
- $\mathbb{Z}_q[x]/\langle x^n+1\rangle$
- Parameter *n* varies for security levels:
 - LAC-128-v3a: *n* = 512
 - LAC-192-v3a and LAC-256-v3a: n = 1024
- One of the multiplicands is ternary, i.e. coefficients are in $\{\pm 1, 0\}$

	Cortex-M4			Skyl	ake (AV>	<2)
	[LLZ ⁺ 18]	Our Work		[LLZ ⁺ 18]	Our	Work
LAC-128-v3a	638k	65k	(-90%)	14 691	4 552	(-69%)
LAC-192-v3a	1 274k	131k	(-90%)	73 955	10119	(-86%)
LAC-256-v3a	1701k	132k	(-92%)	73 955	10119	(-86%)

Table 5: LAC polynomial multiplication clock cycles on Cortex-M4 and Skylake

LAC Results: Full Scheme

		Cortex-M4		Sky	lake (AVX2)
		[LLZ ⁺ 18]	Our Work	[LLZ ⁺ 18]	Our Work
	κ	850k	282k(-67%)	53 000	42167(-20%)
LAC-128-v3a	E	1 430k	450k(-69%)	76418	59252(-22%)
	D	1 960k	565k(-71%)	86 209	55 880 (-35%)
	κ	1 507k	373k(-75%)	96 270	41713(-57%)
LAC-192-v3a	E	2 427k	610k(-75%)	128 342	67732(-47%)
	D	3 329k	824k(-75%)	189 660	74393(-61%)
LAC-256-v3a	κ	2 020k	459k(-77%)	143 568	76917(-46%)
	E	3 633k	748k(-79%)	202 346	106836(-47%)
		5 327k	1111k(-79%)	262 901	104 897 (-60%)

 Table 6:
 Performance results in clock cycles for LAC

Conclusion

Saber

- Coefficient ring: NTT-unfriendly
- Polynomial modulus: NTT-friendly
- MatrixVectorMul: NTT-friendly
- NTRU
 - Coefficient rings: NTT-unfriendly
 - The degrees of polynomials: large enough for NTTs
- LAC
 - Coefficient rings: NTT-unfriendly
 - Polynomial modulus: NTT-friendly
 - The degrees of polynomials: large enough for NTTs
- Compute the result as if $\ensuremath{\mathbb{Z}}$ is the coefficient ring
 - Cortex-M4: 32-bit prime
 - AVX2: two 16-bit primes

Works Worth Noting

- We optimized Saber on Cortex-M4 only for speed. We thank Michiel van Beirendonck for integrating stack optimizations. See commit 992f0f226503d43b6d33278ecb60a9168ed8d787 in pqm4.
- For even more stack optimized Saber on Cortex-M4 and more analysis on NTTs:
 - "Multi-moduli NTTs for Saber on Cortex-M3 and Cortex-M4"
 - https://eprint.iacr.org/2021/995
- For NTTs with 64-bit Armv8-A:
 - "Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1"
 - https://eprint.iacr.org/2021/986
 - Barrett multiplication: 3-instruction single-width modular multiplication
 - Asymmetric multiplication: multiplying in $R[x]/\langle x^{\{2,4\}} \zeta \rangle$ essentially as in $R[x]/\langle x^{\{2,4\}} 1 \rangle$ without requiring $\zeta = \omega^{\{2,4\}}$, applicable whenever incomplete NTTs are re-used, e.g. Kyber and Saber

Reference i

- Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.
 Time-memory trade-off in toom-cook multiplication: an application to module-lattice based cryptography.
 IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(2):222–244, Mar. 2020.
- Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe.
 Faster multiplication in Z_{2^m}[x] on cortex-m4 to speed up NIST PQC candidates.
 In Applied Cryptography and Network Security, pages 281–301, 2019.
- Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan He, and Bao Li.
 LAC: practical ring-lwe based public-key encryption with byte-level modulus.
 IACR Cryptol. ePrint Arch., 2018.
 https://eprint.iacr.org/2018/1009.
- Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, William Whyte, John M. Schanck, Andreas Hulsing, Joost Rijneveld, Peter Schwabe, and Oussama Danba.

NTRU.

Technical report, National Institute of Standards and Technology, 2019.

available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

