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Side-channel analysis on observable leakages
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Figure 1: Observable leakages from the manipulation of X [CG18].
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Masking as a countermeasure against SCA

Masking
Security: provably secure against SCA [ISW03, PR13]

Costs: quadratically or cubically in higher-order glitch-free case [GSF13]

Others: device independent

Boolean masking [CJRR99]

Let K = F2` be a finite field, e.g., K = F28
∼= F2[α]/〈α8 + α4 + α3 + α+ 1〉, then

X ∈ K: the sensitive variable

Y ∈ Kn−1: the random masks

Z ∈ Kn: the masked variable

For Boolean masking with n shares:

Z = (Z1, . . . , Zn) =

(
X +

n−1∑
i=1

Yi, Y1, Y2, . . . , Yn−1

)
.
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Code-based masking

GCM: a uniform representation

In a generalized code-based masking [WMCS20, CGC+21a], the encoding is:

Z = XG+ YH

where

X ∈ Kk: the sensitive variables

Y ∈ Kt: the random masks

Z ∈ Kn: the masked variable

G ∈ Kk×n and H ∈ Kt×n: generator matrices of C and D, resp.

Constraints & conditions
Condition for decoding: C ∩ D = {0}
Without redundancy: n = k + t; with redundancy: n > k + t.
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Code-based masking
Two examples

Boolean masking

Z = (Z1, . . . , Zn)

=

(
X +

n−1∑
i=1

Yi, Y1, Y2, . . . , Yn−1

)
= XG+ YH,

(1)

where G and H are:

G =
(

1 0 0 . . . 0
)
∈ K1×n

H =


1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1

 ∈ Kt×n.

Inner Product masking [BFG15]

Z = (Z1, . . . , Zn)

=

(
X +

n−1∑
i=1

αiYi, Y1, Y2, . . . , Yn−1

)
= XG+ YH,

(2)

where G and H are:

G =
(

1 0 0 . . . 0
)
∈ K1×n

H =


α1 1 0 · · · 0
α2 0 1 · · · 0
...

...
...

. . .
...

αt 0 0 · · · 1

 ∈ Kt×n.

6/36 Télécom Paris Wei Cheng et al. Sep 13, 2021 @ TCHES 2021



Code-based masking: a brief history
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Figure 2: A brief history of masking schemes.

Marked in BLUE are the first proposals of the corresponding schemes
For IPM, we consider the improved IPM [BFG15] rather than the original one [BFGV12].
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Code-based masking: overview

Direct Sum Masking 
(DSM)

Leakage Squeezing 
(LS)

Inner Product 
Masking (IPM)

Generalized Code-based Masking
(GCM)

Boolean Masking

(BM)

Figure 3: Overview of code-based masking schemes.

The core Russian dolls:
BM ⊆ IPM ⊆ LS ⊆ DSM
support masking only,
since n = t+ 1

Whilst SSS-based masking
and GCM also allow for error
detection/correction when
n > t+ 1

Two problems

How to measure information leakage in different schemes?

For each scheme, how to choose optimal codes?
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Dual codes and transformations
Definition (Dual Code).

The dual code of D, denoted as D⊥, is: D⊥ = {v | ∀u ∈ D, 〈v, u〉 = 0}.

Sub-field representation [MS77]

Let x ∈ F2` , the sub-field representation of x is [x]2 ∈ F`2.

Code Expansion [MS77]

Consider a generator matrix of a linear code of size k×n in F2` , the generator matrix of the expanded
code has a size of k`× n` in F2.

...

1	bit

X:					bits Y:	(n-1)	words	=	(n-1)			bits

Z:	n	words	=	n			bits

			bits	=	1	word
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The kissing number of a code

Definition (Weight Enumerator [MS77]).

For a linear code D of parameters [n, k, d], its weight enumerator is defined as:

WD(X,Y) =
n∑
i=0

BiX
n−iYi,

where Bi = |{u ∈ D|wH(u) = i}| and wH is the Hamming weight function.

In particular, Bd is called the kissing number of D.

Example.

For the linear code [8,4,4], we have WD(X,Y) = X8 + 14X4Y4 +Y8, thus: B0 = 1, B4 = 14, B8 = 1.

Definition (Adjusted kissing number [CGC+21a]).

Let C and D denote two linear codes, the adjusted kissing number B′d is defined as:

B′d =
∣∣{(x, y) ∈ (D\C)2 |x+ y ∈ C, wH(x) = wH(y) = d}

∣∣ . (3)
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Security models

Two probing models

The two kinds of probing model (see also [DGH+18, PGS+17]) are:

Bit-probing model: each probe only gets one bit at a time where each bit leaks independently
or jointly. The security order under the bit-probing model is denoted by tb.

Word-probing model: each probe gets an `-bit word at a time, where an `-bit variable leaks as
a whole. Similarly, the security order is then denoted by tw.
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Leakage functions and numerical degree

Leakage functions

Leakage functions, turning a bitvector into a real value, are pseudo-Boolean functions P : Kn` 7→ R,
where K = F2.

P (Z) =
∑

I∈{0,1}n`

βIZ
I , (4)

where ZI =
∏
i∈I Zi, and βI ∈ R.

Definition (Numerical Degree [CG99]).

The numerical degree of a pseudo-Boolean function P denoted by deg(P ) equals: deg(P ) := d =
max{|I| |βI 6= 0}.

Example.

Z(100···0)2 for MSB, and Z(000···1)2 for LSB, with deg(P ) = 1

wH(Z) = Z(100···0)2 + Z(010···0)2 + · · ·+ Z(000···1)2 for the Hamming weight, with deg(P ) = 1

Z(110···0)2 = Z1Z2 with deg(P ) = 2.
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Concrete security level of CBM
SNR as a leakage metric

Let
L = P (Z) +N

denote the leakages where N ∼ N (0, σ2) denotes the independent Gaussian noise.

How to exploit the leakage in SCA?

The distinguishing rule in SCA:

E [L|X]
?
= E [L] −→ Var [E [L|X]]

?
= 0

We have
Var [E [P (Z) +N |X]] = Var [E [P (Z)|X]] ,

where Z = XG+ YH ∈ Kn ∈ Fn2` . The SNR of leakages is defined as:

SNR =
Var [E [L|X]]

Var [N ]
=

Var [E [P (Z)|X]]

σ2
total

, (5)

where Var [N ] = σ2
total ∝ σ2d [CGC+21b].
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Quantifying leakage of CBM by SNR

Taking P (z) = wH(z)d as higher-order moments of leakages, then

P (z) =
∑

J1+···+Jn`=d

(
d

J1, . . . , Jn`

)
n∏̀
i=1

zJii =
∑

J∈Nn`, s.t. wH (J)<d;∑n`
i=1 Ji=d

(
d

J

)
zJ + d!

∑
I∈{0,1}n`;
wH (I)=d

zI
(6)

where N = {0, 1, 2, . . .}. The multinomial coefficient
(

d
J1,...,Jn`

)
is defined as d!

J1!···Jn`!
.

Theorem (SNR for Hamming Weight Leakage [CGC+21a]).

Let a device be protected by the GCM scheme as Z = XG + YH. Assume the device is leaking in
Hamming weight model in the form: L = P (Z) +N . Then the SNR of the exploitable leakages is:

SNR =
Var [E [P (Z)|X]]

σ2
total

=
B′
d⊥D

σ2
total

(
d⊥D!

2d
⊥
D

)2

, (7)

where σ2
total is the total noise such that σ2

total ∝ σ2d.

15/36 Télécom Paris Wei Cheng et al. Sep 13, 2021 @ TCHES 2021



Concrete security level of CBM
In an information-theoretic sense

MI between L and X is defined as I(L;X) = H(L)− H(L|X) where:

the total entropy is: H(L) = −
∫
l
P [l] log2 P [l] dl,

the conditional entropy H(L|X) is: H(L|X) = −
∑
x∈F`2

P [x]
∫
l
P [l|x] log2 P [l|x] dl.

Theorem (MI for Hamming Weight Leakage [CGC+21a]).

Let a device be protected by the GCM scheme as Z = XG + YH. Assume the leakages of the
device can be represented in the form: L = P (Z) +N . Then the MI between L and X is:

I(L;X) =


0 , if deg(P ) < d⊥D

d⊥D !B′
d⊥D

2 ln 2·22d
⊥
D
× 1

σ
2d⊥D

+O
(

1

σ
2(d⊥D+1)

)
, if deg(P ) = d⊥D, when σ → +∞

(8)

where σ is the standard deviation of noise in the leakage of each share.

Proof. See [CGC+21a].
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Mutual information of IPM and DSM

Reduce Bd⊥D

Increase d⊥D

Noise variance: σ2

M
I:
I(
L;

X
)

Figure 4: Two concomitant objectives to reduce the mutual information.

Two observations:

the slope in the log-log representation of the MI versus the noise standard deviation is all the
steeper as d⊥D is high, and

the vertical offset is adjusted by Bd⊥D : the smaller it is the smaller the MI.
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Mutual information of different codes in IPM
Numerical validation

2 7 2 6 2 5 2 4 2 3 2 2 2 1 20 21 22 23 24 25 26 27 28 29 210

Noise level: 2

2 32
2 30
2 28
2 26
2 24
2 22
2 20
2 18
2 16
2 14
2 12
2 10
2 8
2 6
2 4
2 2
20
22

M
ut

ua
l i

nf
or

m
at

io
n:

 I(
;X

)

Numerical Calc
Unprotected: dD =1, BdD

=4
IPM with dD =2, BdD

=4
IPM with dD =2, BdD

=3
IPM with dD =2, BdD

=2
IPM with dD =2, BdD

=1
IPM with dD =3, BdD

=4
IPM with dD =3, BdD

=3

Approximation
dD =1, BdD

=4
dD =2, BdD

=4
dD =2, BdD

=3
dD =2, BdD

=2
dD =2, BdD

=1
dD =3, BdD

=4
dD =3, BdD

=3

d⊥D = 1

d⊥
D =

2

d ⊥
D

=
3

Figure 5: Numerical calculation and approximation of I(L;X) between leakages and X in IPM.
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Evaluation framework and optimal codes for GCM

A unified evaluation framework for GCM

For GCM with Z = XG + YH, its side-channel resistance can be characterized by two defining
parameters d⊥D and B′

d⊥D
, where codes C and D are generated by G and H.

Optimal codes for GCM

The optimal codes for GCM are determined by d⊥D and B′
d⊥D

, which can be chosen by maximizing d⊥D
and /or minimizing B′

d⊥D
.
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SSS-based masking and RS code

Definition (Reed-Solomon Code [CMP18]).

The Reed-Solomon code RS(S, t+1) ⊂ Kn of dimension t+1 over a finite field K and with evaluation
subset S = {α0, α1, . . . , αn} of K is the subspace:

RS(S, t+ 1) = {(f(α0), f(α1), . . . , f(αn)); f(X) ∈ K[X] and deg(f) ≤ t} .
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SSS-based masking and RS code

In fact, the sharing of X with SSS scheme is an encoding with a RS code: RS({α1, . . . , αn}, t+ 1):

Z = (Z1, Z2, . . . , Zn) = (X, Y )

(
G
H

)
= XG+ YH, (9)

where
(
G
H

)
is the generator matrix (αji )i∈[1;n], j∈[0; t] shown as below.

G =
(

1 1 · · · 1
)
∈ K1×n

H =


α1
1 α1

2 · · · α1
n

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αt1 αt2 · · · αtn

 ∈ Kt×n

By denoting Gi and Hi the i-th column of G and H resp., we have:

Zi = fX(αi) = X +
t∑

j=1

Yjα
j
i = XGi + (Y1, . . . , Yt) Hi.
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SSS-based masking: one instance

(3, 1)-SSS based masking

Considering n = 3 and t = 1, giving α1, α2 and α3 are three public points, we have

G =
(

1 1 1
)
,

H =
(
α1 α2 α3

)
=
(

1 αj αk
)
.

Therefore, taking a random mask u1, X is encoded into:

Z = (Z1, Z2, Z3)

= XG+ u1H

= (X + u1α1, X + u1α2, X + u1α3) .

(10)
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Mutual information of SSS-based masking
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Figure 6: Numerical calculation and approximation of I(L;X) between leakage L and X in
(3, 1)-SSS based masking. The three public points are α1 = αi, α2 = αj , α3 = αk.
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All codes for (3, 1)-SSS based masking

Table 1: Exhibiting different codes in (3, 1)-SSS scheme generated by Eqn. 10. Note that
we take α1 = αi = 1, α2 = αj and α3 = αk.

j = 1

k = 2

j = 7

k = 15

j = 24

k = 48

j = 8

k = 79

j = 59

k = 172

j = 72

k = 80

Minimum distance dD 3 3 3 3 3 3

Dual distance (word) d⊥D 2 2 2 2 2 2

Dual distance (bit) d⊥D2
2 2 3 3 4 4

Kissing number (bit) Bd⊥
D2

20 1 22 1 76 36

Adjusted kissing number (bit) B′
d⊥
D2

34 1 60 1 140 44

We extend the state-of-the-art [CS21] in two directions:

we show the BEST cases of the linear codes, that are recommended to use,

we give the WORST cases of the linear codes that are NOT recommend for practical applications.

0All codes are available at: https://github.com/Qomo-CHENG/GeneralizedCM
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More redundancy leaks more

Recall that in (3, 1)-SSS based masking:

G =
(

1 1 1
)
,

H =
(
α1 α2 α3

)
=
(

1 αj αk
)
.

Taking a random mask u1, then X is encoded into:

Z = (Z1, Z2, Z3)

= XG+ u1H

= (X + u1α1, X + u1α2, X + u1α3) .
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More redundancy leaks more
In (3, 1)-SSS based masking
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Figure 7: More shares leak more information, two cases on (3, 1)-SSS based masking.
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More redundancy leaks more
In (3, 1)-SSS based masking
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Figure 8: More shares leak more information, two cases on (3, 1)-SSS based masking.

28/36 Télécom Paris Wei Cheng et al. Sep 13, 2021 @ TCHES 2021



Outline

1. Introduction of Code-based Masking
1.1 A brief history
1.2 Basics on linear codes

2. Concrete security of the code-based masking
2.1 Security models and leakage functions
2.2 Leakage quantification and optimal codes

3. Leakages in SSS-based masking
3.1 SSS-based masking and RS code
3.2 More redundancy in sharing leaks more

4. Conclusions

29/36 Télécom Paris Wei Cheng et al. Sep 13, 2021 @ TCHES 2021



Conclusions

We propose a coding-theoretic approach to quantify the side-channel resistance of general code-
based masking:

using SNR and MI to characterize the SCA resistance quantitatively

proposing a unified framework to evaluate all codes for GCM systematically

presenting a simple method to choose optimal codes for GCM and provide some instances

Open sources on Github

Optimal linear codes for IPM: https://github.com/Qomo-CHENG/OC-IPM

Optimal linear codes for GCM: https://github.com/Qomo-CHENG/GeneralizedCM
The paper is available at: https://tches.iacr.org/index.php/TCHES/article/view/8983

Welcome to our talk in PROOFS 2021 on Sep 17, 2021, we will show our justification of MI
and how to choose optimal linear codes for GCM based on the complete weight distribution.

PROOFS 2021: http://www.proofs-workshop.org/2021/
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