Probing Security through InputOutput Separation and Revisited Quasilinear Masking

Dahmun Goudarzi, Thomas Prest, Matthieu Rivain and Damien Vergnaud

- CHES 2021 -

Introduction

- What is this about?
- Security against side-channel attacks
- Masking schemes
- Formal proofs through probing security
- Our contributions
- New masking composition approach:

IOS refresh gadget + probing-secure gadgets
\Rightarrow region probing security of the composition

- Quasilinear IOS refresh gadget (variant of [BPCZ, CHES'16])
- Quasilinear masking scheme (improved version of [GJR, AC'18])

Introduction

- What is this about?
- Security against side-channel attacks
- Masking schemes
- Formal proofs through probing security new simple property
- Our contributions
- New masking composition approach:

IOS refresh gadget + probing-secure gadgets
\Rightarrow region probing security of the composition

- Quasilinear IOS refresh gadget (variant of [BPCZ, CHES'16])
- Quasilinear masking scheme (improved version of [GJR, AC'18])

Introduction

- What is this about?
- Security against side-channel attacks
- Masking schemes
- Formal proofs through probing security
- Our contributions
- New masking composition approach:

IOS refresh gadget + hrobing-secure gadgets
\Rightarrow region probing security of the composition

- Quasilinear IOS refresh gadget (variant of [BPCZ, CHES'16])
- Quasilinear masking scheme (improved version of [GJR, AC'18])

Introduction

- What is this about?
- Security against side-channel attacks
- Masking schemes
- Formal proofs through probing security
- Our contributions
- New masking composition approach:

IOS refresh gadget + hrobing-secure gadgets
\Rightarrow region probing securityof the composition stronger than probing security

- Quasilinear IOS refresh gadget (variant of [BPCZ, CHES'16])
- Quasilinear masking scheme (improved version of [GJR, AC'18])

Masking

$$
\begin{aligned}
& x \xrightarrow{\text { Encode }} \vec{x}=\left(x_{1}, \ldots, x_{n}\right) \\
& x=x_{1}+\cdots+x_{n} \quad(\text { on a field } \mathbb{K})
\end{aligned}
$$

Masking

Masking

In this work:

$$
\begin{aligned}
x & =v_{1} \cdot x_{1}+\cdots+v_{n} \cdot x_{n} \\
& =\langle\vec{v}, \vec{x}\rangle \quad(\text { on a field } \mathbb{K})
\end{aligned}
$$

Masking

In this work:

Masking

In this work:

Circuit model

Crypto computation modelled as an arithmetic circuit on \mathbb{K}

Circuit model

Crypto computation modelled as an arithmetic circuit on \mathbb{K}

Circuit model

Crypto computation modelled as an arithmetic circuit on \mathbb{K}

Circuit model

Crypto computation modelled as an arithmetic circuit on \mathbb{K}

Gadgets

gadget : small circuit computing an operation on sharings

Gadgets

 z

Refresh gadgets

Standard circuit compiler

wire $\rightarrow n$ wires (sharing)
gate \rightarrow gadget

Standard circuit compiler

```
wire }->n\mathrm{ wires (sharing)
gate }->\mathrm{ gadget
```


Standard circuit compiler ...

.... witith full
refreshing

Standard circuit compiler ...

Probing security

Region probing security

-
t probes per gadget (or region)
with $t=r \times|G|$
rate
$\int_{\text {security }}$

Why region probing security?

r-region probing security
$\Rightarrow p$-random probing security

$$
\Rightarrow \delta \text {-noisy leakage security }
$$

Why region probing security?

r-region probing security

$\Rightarrow p$-random probing security

$$
\Rightarrow \delta \text {-noisy leakage security }
$$

Why region probing security?

r-region probing security

$\Rightarrow p$-random probing security

$\Rightarrow \delta$-noisy leakage security

Why region probing security?

r-region probing security

Chernoff bound

$$
\Rightarrow \delta \text {-noisy leakage security }
$$

Why region probing security?

r-region probing security

Chernoff bound

$\Rightarrow \delta$-noisy leakage security
$\delta \approx p \approx r$
Duc-Dziembowski-Faust [EC'14]

Why region probing security?

r-region probing security

Composition

- Use gadgets achieving composition properties (stronger than PS)
- Obtain the (region) PS for the composition

Composition

- Use gadgets achieving composition properties (stronger than PS)
- Obtain the (region) PS for the composition
- Example: strong non-interference (SNI) notion

Composition

- Use gadgets achieving composition properties (stronger than PS)
- Obtain the (region) PS for the composition
- Example: strong non-interference (SNI) notion

Composition

- Use gadgets achieving composition properties (stronger than PS)
- Obtain the (region) PS for the composition
- Example: strong non-interference (SNI) notion

Our composition approach

- We only require a composition property for the refresh gadget
- Other gadgets only need to be probing secure

Our composition approach

- We only require a composition property for the refresh gadget
- Other gadgets only need to be probing secure
- We use full refreshing

Our composition approach

- We only require a composition property for the refresh gadget
- Other gadgets only need to be probing secure
- We use full refreshing

Input-Output Separation (IOS)

Input-Output Separation (IOS)

Input-Output Separation (IOS)

IOS is weaker than previous composition notions

Composition theorem

Composition theorem

t_{R} probes per refresh gadget
$+t_{\text {op }}$ probes per operation gadget
can be perfectly simulated from
$t_{o p}+3 t_{R}$ probes per operation gadget
can be perfectly simulated nothing
assuming $\left(t_{o p}+3 t_{R}\right)$-PS
 of operation gadgets

Composition theorem

Obtained rate:

$$
\min \left(\frac{t_{R}}{\left|G_{R}\right|}, \frac{t_{o p}}{\left|G_{o p}\right|}\right)
$$

Composition theorem

Obtained rate:

$$
\max _{t_{R}, t_{o p}} \min \left(\frac{t_{R}}{\left|G_{R}\right|}, \frac{t_{o p}}{\left|G_{o p}\right|}\right)
$$

with $\quad t_{R}<n \quad$ and $\quad\left(t_{o p}+3 t_{R}\right) \leq t_{P S}$

An IOS refresh gadget

An IOS refresh gadget

$\log n$ layers

Batistello-Coron-Prouff-Zeitoun refresh gadget [CHES'16]

An IOS refresh gadget

An IOS refresh gadget

Quasilinear masking

- We extend the Goudarzi-Joux-Rivain (GJR) scheme [AC'18]
- complexity $O(n \log n)$ against $O\left(n^{2}\right)$ for many probing secure scheme
- proof of p-random probing security with $p=O(1 / \log n)$
- defined over fields \mathbb{F}_{p} with $p=2^{\lceil\log n\rceil+1} \alpha+1$
- Our extension enjoys
- base field \mathbb{K} of any form
- proof in the (stronger) r-region probing model (still with $r=O(1 / \log n)$)
- we patch a flaw in the security proof thanks to the IOS approach

Quasilinear masking

- GJR scheme uses \vec{v}-sharings with

$$
\vec{v}=\left(1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right)
$$

- A sharing of x

$$
\vec{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)
$$

satisfies

$$
\langle\vec{v}, \vec{x}\rangle=\sum_{i=0}^{n-1} x_{i} \cdot \omega^{i}=x
$$

Quasilinear masking

- GJR scheme uses \vec{v}-sharings with

$$
\vec{v}=\left(1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right)
$$

- A sharing of x

$$
\vec{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)
$$

satisfies

Multiplication gadget

- Let \vec{t} such that

$$
P_{\vec{t}}(W)=P_{\vec{x}}(W) \cdot P_{\vec{y}}(W)
$$

Multiplication gadget

- Let \vec{t} such that

$$
P_{\vec{t}}(W)=P_{\vec{x}}(W) \cdot P_{\vec{y}}(W)
$$

- We get

$$
\sum_{i=0}^{2 n-1} t_{i} \omega^{i}=P_{\vec{t}}(\omega)=P_{\vec{x}}(\omega) \cdot P_{\vec{y}}(\omega)=x \cdot y
$$

Multiplication gadget

- Let \vec{t} such that
- We get $P_{\vec{t}} \sum_{\sum_{i=0}^{2 n-1} t_{i}} \omega^{i}=P_{\vec{t}}(\omega)=P_{\vec{x}}(W) \cdot P_{\vec{y}}(W) \cdot P_{\vec{y}}(\omega)=x \cdot y$

Multiplication gadget

- Let \vec{t} such that
-We get $P_{\vec{t}} \sum_{\sum_{i=0}^{2 n-1} t_{i} \omega^{i}=P_{\vec{t}}(\omega)=P_{\vec{x}}(W) \cdot P_{\vec{y}}(W) \cdot P_{\vec{y}}(\omega)=x \cdot y}^{l}$

$$
\vec{t} \text { is a }\left(1, \ldots, \omega^{n-1}, \omega^{n}, \ldots, \omega^{2 n-1}\right) \text {-sharing of } x \cdot y
$$

Multiplication gadget

- Let \vec{t} such that

$$
!\quad P_{\vec{t}}(W)=P_{\vec{x}}(W) \cdot P_{\vec{y}}(W)
$$

- We get

- Compression:

$$
\vec{z}=\left(t_{0}, \ldots, t_{n-1}\right)+\omega^{n} \cdot\left(t_{n}, \ldots, t_{2 n-1}\right)
$$

Multiplication gadget

- Let \vec{t} such that

$$
!\quad P_{\vec{t}}(W)=P_{\vec{x}}(W) \cdot P_{\vec{y}}(W)
$$

- We get

- Compression:

$$
\vec{z}=\left(t_{0}, \ldots, t_{n-1}\right)+\omega^{n} \cdot\left(t_{n}, \ldots, t_{2 n-1}\right)
$$

$$
\sum_{i=0}^{n-1}\left(t_{i}+t_{n+i} \omega^{n}\right) \omega^{i}
$$

Multiplication gadget

- Let \vec{t} such that

- We get

- Compression:

$$
\vec{z}=\left(t_{0}, \ldots, t_{n-1}\right)+\omega^{n} \cdot\left(t_{n}, \ldots, t_{2 n-1}\right)
$$

$$
\sum_{i=0}^{n-1}\left(t_{i}+t_{n+i} \omega^{n}\right) \omega^{i}
$$

Multiplication gadget

- Let \vec{t} such that

- We get

- Compression:

$$
\vec{z}=\left(t_{0}, \ldots, t_{n-1}\right)+\omega^{n} \cdot\left(t_{n}, \ldots, t_{2 n-1}\right)
$$

$$
\sum_{i=0}^{n-1}\left(t_{i}+t_{n+i} \omega^{n}\right) \omega^{i}
$$

Multiplication gadget

$$
\vec{x}-\mathrm{FFT} \vec{r}
$$

Multiplication gadget

Multiplication gadget

Multiplication gadget

Multiplication gadget

Security

- We have sharewise addition / subtraction / copy gadgets
\Rightarrow inherently probing secure
- Multiplication gadgets composed of
- sharewise blocks
- FFT blocks
- refresh blocks

Security

- We have sharewise addition / subtraction / copy gadgets
\Rightarrow inherently probing secure
- Multiplication gadgets composed of
- sharewise blocks
- FFT blocks
- refresh blocks
- We can apply the IOS composition approach

Security

- We have sharewise addition / subtraction / copy gadgets
\Rightarrow inherently probing secure
- Multiplication gadgets composed of
- sharewise blocks
- FFT blocks
- refresh blocks
- We can apply the IOS composition approach

```
! assuming the FFT blocks are probing-secure
```


Security

- We have sharewise addition / subtraction / copy gadgets
\Rightarrow inherently probing secure
- Multiplication gadgets composed of
- sharewise blocks
- FFT blocks
- refresh blocks
- We can apply the IOS composition approach
! assuming the FFT blocks are probing-secure

```
Security reduction: PS FFT }=>\mathrm{ region PS scheme
```


Statistical security (GJR)

- Pick a random ω over \mathbb{K}

Statistical security (GJR)

- Pick a random ω over \mathbb{K}
- Use a "linear" FFT
- e.g. NTT, Cantor / Gao-Mateer additive FFT

Statistical security (GJR)

- Pick a random ω over \mathbb{K}
- Use a "linear" FFT
- e.g. NTT, Cantor / Gao-Mateer additive FFT
- Any $n-1$ probes can be perfectly simulated
with proba $1-\frac{n}{|\mathbb{K}|} \quad($ over the random choice of $\omega)$

Statistical security (GJR)

- Pick a random ω over \mathbb{K}
- Use a "linear" FFT
- e.g. NTT, Cantor / Gao-Mateer additive FFT
- Any $n-1$ probes can be perfectly simulated

Statistical security (GJR)

- Pick a random ω over \mathbb{K}
- Use a "linear" FFT
- e.g. NTT, Cantor / Gao-Mateer additive FFT
- Any $n-1$ probes can be perfectly simulated

$\Rightarrow(\lambda+\log n)$-bit field elements

Statistical security (GJR)

- Pick a random ω over \mathbb{K}
- Use a "linear" FFT
- e.g. NTT, Cantor / Gao-Mateer additive FFT
- Any $n-1$ probes can be perfectly simulated

$\Rightarrow(\lambda+\log n)$-bit field elements
- Open problem: probing secure FFT on smaller fields

Application to AES and MiMC

- We apply
- GJR+ (our variant with IOS composition)

$$
\Rightarrow O(n \log n) \text { complexity / } O(1 / \log n) \text { leakage rate }
$$

- ISW+ (ISW mult. \& BPCZ refresh)

$$
\Rightarrow O\left(n^{2}\right) \text { complexity / } O(1 / n) \text { leakage rate }
$$

- To
- AES: $\mathbb{K}=\mathbb{F}_{256} \Rightarrow$ Gao-Mateer additive FFT
- MiMC: $\mathbb{K}=\mathbb{F}_{p} \Rightarrow$ Number Theoretic Transform (NTT)

Application to AES and MiMC

- Results for AES -

n		Mul	Add.	Random
8	Full AES with ISW ${ }^{+}$	64896	297088	123520
	Full AES with GJR ${ }^{+}$	157056	257408	110080
	Efficiency ratio (GJR ${ }^{+} / \mathrm{ISW}^{+}$)	2.43	0.87	0.9
16	Full AES with ISW ${ }^{+}$	211712	926976	372480
	Full AES with GJR ${ }^{+}$	396032	683776	286720
	Efficiency ratio (GJR ${ }^{+} /$ISW $^{+}$)	1.88	0.74	0.77
32	Full AES with ISW ${ }^{+}$	751104	2847232	1077760
	Full AES with GJR ${ }^{+}$	955904	1725952	706560
	Efficiency ratio (GJR ${ }^{+} / \mathrm{ISW}^{+}$)	1.28	0.61	0.66
64	Full AES with ISW ${ }^{+}$	2812928	8991744	3148800
	Full AES with GJR ${ }^{+}$	2239488	4209664	1679360
	Efficiency ratio (GJR ${ }^{+}$/ SSW $^{+}$)	0.8	0.47	0.54
128	Full AES with ISW ${ }^{+}$	10868736	29820928	9594880
	Full AES with GJR ${ }^{+}$	5134336	10016768	3891200
	Efficiency ratio (GJR ${ }^{+} / \mathrm{ISW}^{+}$)	0.48	0.34	0.41

Application to AES and MiMC

- Results for AES -

n		Mul	Add.	Random
8	Full AES with ISW ${ }^{+}$	64896	297088	123520
	Full AES with GJR ${ }^{+}$	157056	257408	110080
	Efficiency ratio (GJR ${ }^{+}$/ ISW^{+})	2.43	0.87	0.9
16	Full AES with ISW ${ }^{+}$	211712	926976	372480
	Full AES with GJR ${ }^{+}$	396032	683776	286720
	Efficiency ratio (GJR ${ }^{+} / \mathrm{ISW}^{+}$)	1.88	0.74	0.77
32	Full AES with ISW ${ }^{+}$	751104	2847232	1077760
	Full AES with GJR ${ }^{+}$	955904	1725952	706560
	Efficiency ratio (GJR ${ }^{+}$ISW $^{+}$)	1.28	0.61	0.66
64	Full AES with ISW ${ }^{+}$	2812928	8991744	3148800
	Full AES with GJR ${ }^{+}$	2239488	4209664	1679360
	Efficiency ratio (GJR ${ }^{+}$ISW $^{+}$)	0.8	0.47	0.54
128	Full AES with ISW ${ }^{+}$	10868736	29820928	9594880
	Full AES with GJR ${ }^{+}$	5134336	10016768	3891200
	Efficiency ratio (GJR ${ }^{+}$ISW ${ }^{+}$)	0.48	0.34	0.41

! The field should be large for GJR+

Application to AES and MiMC

- Results for MiMC -

n		Mul	Add.	Random
8	Full MiMC with ISW ${ }^{+}$	10416.0	45408.0	17544.0
	Full MiMC with GJR ${ }^{+}$	40512.0	66128.0	20100.0
	Efficiency ratio (GJR ${ }^{+} / \mathrm{ISW}^{+}$)	3.89	1.46	1.15
16	Full MiMC with ISW ${ }^{+}$	41600.0	153056.0	55856.0
	Full MiMC with GJR ${ }^{+}$	100796.0	165968.0	51872.0
	Efficiency ratio (GJR ${ }^{+} / \mathrm{ISW}^{+}$)	2.43	1.09	0.93
32	Full MiMC with ISW ${ }^{+}$	166208.0	513536.0	173984.0
	Full MiMC with GJR ${ }^{+}$	240812.0	399360.0	127088.0
	Efficiency ratio (GJR ${ }^{+} / \mathrm{ISW}^{+}$)	1.45	0.78	0.74
64	Full MiMC with ISW ${ }^{+}$	664320.0	1773696.0	555456.0
	Full MiMC with GJR ${ }^{+}$	559740.0	933568.0	300864.0
	Efficiency ratio (GJR ${ }^{+} / \mathrm{ISW}^{+}$)	0.85	0.53	0.55
128	Full MiMC with ISW ${ }^{+}$	2656000.0	6367744.0	1857664.0
	Full MiMC with GJR ${ }^{+}$	1275388.0	2136832.0	695104.0
	Efficiency ratio (GJR ${ }^{+} / \mathrm{ISW}^{+}$)	0.49	0.34	0.38

Thank you for watching!

For any questions:
matthieu.rivain@cryptoexperts.com

