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Introduction

 What is this about ?
* Security against side-channel attacks
 Masking schemes

* Formal proofs through probing security

e Qur contributions

* New masking composition approach:

|IOS refresh gadget + probing-secure gadgets
= region probing security of the composition

* Quasilinear 10S refresh gadget (variant of [BPCZ, CHES’16])

* Quasilinear masking scheme (improved version of [GJR, AC’18])
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Quasilinear masking

* We extend the Goudarzi-Joux-Rivain (GJR) scheme [AC’18]
» complexity O(nlog n) against O(n?) for many probing secure scheme
» proof of p-random probing security with p = O(1/log n)
- defined over fields [, with p = pllognl+ly 4 1
* QOur extension enjoys
 base field K of any form
» proof in the (stronger) r-region probing model (still with r = O(1/log n))

e we patch a flaw in the security proof thanks to the I0OS approach
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+ GJR scheme uses Vv -sharings with
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Statistical security (GJR)

e Pick a random w over K

e Use a“linear” FFT

* e.g. NTT, Cantor / Gao-Mateer additive FFT

* Any n — | probes can be perfectly simulated

with proba 1

1 (over the random choice of w)

. Constraint: | K| ~ n2" for A-bit security T should be
negligible

= (4 + log n)-bit field elements

» Open problem: probing secure FFT on smaller fields



Application to AES and MIMC

 We apply
 GJR+ (our variant with |IOS composition)

= 0O(nlogn) complexity / O(1/logn) leakage rate

o ISW+ (ISW mult. & BPCZ refresh)

= 0(n?) complexity / O(1/n) leakage rate

* To
» AES: K =[5, = Gao-Mateer additive FFT

« MIMC: K = [Fp = Number Theoretic Transform (NTT)



Application to AES and MIMC

— Results for AES —

n Mul Add. Random

Full AES with ISW™ 64896 297088 123520

8 | Full AES with GJR™ 157056 257408 110080
Efficiency ratio (GJR™/ISWT) 2.43 0.87 0.9

Full AES with ISW™ 211712 926976 372480

16 | Full AES with GJR™ 396032 683776 286720
Efficiency ratio (GJRT/ISWT) 1.88 0.74 0.77

Full AES with ISW 751104 2847232 1077760

32 | Full AES with GJR™ 955904 1725952 706560
Efficiency ratio (GJR™/ISW™) 1.28 0.61 0.66

Full AES with ISW™ 2812928 | 8991744 3148800

64 | Full AES with GJR™ 2239488 | 4209664 1679360
Efficiency ratio (GJRT/ISW™) 0.8 0.47 0.54

Full AES with ISW™ 10868736 | 29820928 | 9594880

128 | Full AES with GJR™ 5134336 | 10016768 | 3891200
Efficiency ratio (GJR™/ISW™) 0.48 0.34 0.41
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Application to AES and MIMC

— Results for MIMC —

n Mul Add. Random
Full MiMC with ISW™ 10416.0 45408.0 17544.0
8 | Full MiMC with GJR* 40512.0 66128.0 20100.0
Efficiency ratio (GJR™/ISWT) 3.89 1.46 1.15
Full MiMC with ISWT 41600.0 153056.0 55856.0
16 | Full MiMC with GJR* 100796.0 | 165968.0 51872.0
Efficiency ratio (GJR™/ISW™) 2.43 1.09 0.93
Full MiMC with ISW™ 166208.0 | 513536.0 173984.0
32 | Full MiMC with GJR™ 240812.0 | 399360.0 127088.0
Efficiency ratio (GJR'/ISW™) 1.45 0.78 0.74
Full MiMC with ISW™ 664320.0 | 1773696.0 | 555456.0
64 | Full MiMC with GJR™ 559740.0 | 933568.0 | 300864.0
Efficiency ratio (GJR'/ISW™) 0.85 0.53 0.55
Full MiMC with ISW™ 2656000.0 | 6367744.0 | 1857664.0
128 | Full MiMC with GJR™ 1275388.0 | 2136832.0 | 695104.0
Efficiency ratio (GJRT/ISWT) 0.49 0.34 0.38




Thank you for watching!
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For any questions:
matthieu.rivain@cryptoexperts.com
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