Probing Security through Input-
Output Separation and Revisited
Quasilinear Masking

Dahmun Goudarzi, Thomas Prest,
Matthieu Rivain and Damien Vergnaud

— CHES 2021 —

O

f::jti*] [o .
Pﬂsmﬂn CRYPTOCEXPERTS s, @ G sCIENCES
I T WE INNOVATE TO SECURE YOUR BUSINESS b UNIVERSITE

Introduction

 What is this about ?
* Security against side-channel attacks
 Masking schemes

* Formal proofs through probing security

e Qur contributions

* New masking composition approach:

|IOS refresh gadget + probing-secure gadgets
= region probing security of the composition

* Quasilinear 10S refresh gadget (variant of [BPCZ, CHES’16])

* Quasilinear masking scheme (improved version of [GJR, AC’18])

Introduction

 What is this about ?
* Security against side-channel attacks
 Masking schemes

» Formal proofs through probing security ~__NewW simple property

e Qur contributions

- New masking compdSition approach:

gadget + probing-secure gadgets
="region probing security of the composition

* Quasilinear 10S refresh gadget (variant of [BPCZ, CHES’16])

* Quasilinear masking scheme (improved version of [GJR, AC’18])

Introduction

 What is this about ?
* Security against side-channel attacks
 Masking schemes

» Formal proofs through probing security ~__NewW simple property

- weaker than
* Our contributions — composition
* New masklng ‘rro approach: properties

efresh gadget +4 roblnscureadgets
reglon probing security of the composition

* Quasilinear 10S refresh gadget (variant of [BPCZ, CHES’16])

* Quasilinear masking scheme (improved version of [GJR, AC’18])

Introduction

 What is this about ?
* Security against side-channel attacks
 Masking schemes

» Formal proofs through probing security ~__NewW simple property

weaker than
- COMpOosition
properties

e Qur contributions

* New masklng zo approach:

efresh gadget +4 roblnscureadgets
="re |on problng securl v,,. the composmon stronger than
~ probing security

* Quasilinear 10S refresh gadget (variant of [BPCZ, CHES’16])

* Quasilinear masking scheme (improved version of [GJR, AC’18])

Masking

Encode —>

X — x =(X,...,X,)

X=X+ - +Xx, (onafeldlk)

Masking

shar iQ the shares

n : number of shares

Masking

shar iQ the shares

In this work:

x=v1-x1-|-"°+vn-xn

<7, x (on a field K)

Masking

shar iQ the shares

In this work:

x=V1‘xl+'”+Vn‘xn

(&) (on afield)

constant coefficients sharing

Masking

shar iQ the shares

x=V1‘xl+'”+Vn‘xn

constant coefficients sharing

Crypto computation modelled as an arithmetic circuit on K

= |nput gates

N output gates

Crypto computation modelled as an arithmetic circuit on K

= |nput gates

_.~ addition gates
-~ multiplication gates

I COpy gates

Crypto computation modelled as an arithmetic circuit on K

= |nput gates

_~ addition gates
-~ multiplication gates

I COpy gates

gadget : small circuit computing
an operation on sharings

sharing of x , Sharing of y

gadget : small circuit computing
an operation on sharings sharing of z

Refresh gadgets

Refresh gadgets

—

"

shar/ng of X

X'

Refresh gadgets

Refresh gadgets

fresh ,
randomness \

Refresh gadgets

fresh ,
randomness \

=
statistical
Independence of

(X |x)and (X'| x)

wire — n wires (sharing)
gate — gadget

o o
00

functional
equivalence

Standard circuit compiler ...

... With full YT o00

refreshing
<
%

= |

Introduce a refresh gadget Refresh Refresh

between any two gadgets D# n

\4 \ 4 v

Inputs

0 1.
x..

-+

-+

-+

outputs

outputs

outputs

(wy, ..., w,) = function of inputs
and Iinternal randomness

outputs

l (wy, ..., w,) = function of inputs
and Iinternal randomness

[-probing security:

(W, ..., w,) can be
|
— perfectly simulated

w/o any knowledge

outputs about the inputs

I probes per
gadget (or region)

witht =r X |G|

=
r-region probing security

\4 \4 \4

Why region probing security?

r-region probing security

= p-random probing security

= 0-noisy leakage security

Why region probing security?

Each wire leak

r-region probing security (o)

= p-random probing security

= 0-noisy leakage security

Why region probing security?

Each wire leak

r-region probing security (o)

= p-random probing security

7~ Each wire leak ™\
some noisy]
. Information A

= 0-noisy leakage serity

Why region probing security?

Each wire leak

r-region probing security (o)

| p-random probing security
~ pRT

7~ Each wire leak ™\
some noisy]
. Information A

Chernoff bound
= 0-noisy leakage security

Why region probing security?

Each wire leak

r-region probing security (o)

, p-random probing security

7~ Each wire leak
some noisy]
. Information A

Chernoff bound

=)} 0-noisy leakage security

Duc-Dziembowski-Faust [EC’14]

Why region probing security?

Each wire leak

r-region probing security (o)

(p-random probing security —
pRTr 7~ Each wire leak ™\
! some noisy

Chernoff bound

(= ¥.6-noisy leakage security)

I

-
N i,

| more realistic to capture
Duc-Dziembowski-Faust [EC’14] rower and EM leakages

information &

Composition

* Use gadgets achieving composition properties (stronger than PS)

* Obtain the (region) PS for the composition

Composition

* Use gadgets achieving composition properties (stronger than PS)
* Obtain the (region) PS for the composition

 Example: strong non-interference (SNI) notion

—

X

{, internal probes

[, output probes

y

Composition

* Use gadgets achieving composition properties (stronger than PS)
* Obtain the (region) PS for the composition

 Example: strong non-interference (SNI) notion

N
X
can be pertfectly
simulated from
the knowledge of

{, internal probes

[, output probes

t; Input shares

y

Composition

* Use gadgets achieving composition properties (stronger than PS)
* Obtain the (region) PS for the composition

 Example: strong non-interference (SNI) notion

N
X
can be pertfectly
simulated from
the knowledge of

{, Internal probes

[, output probes

t; Input shares

—

e ———— A ——— —— ==
1
y l

. SNI gadgets = (n — 1)-PS
= region PS {

_ R — —_— - ==

Our composition approach

* We only require a composition property for the refresh gadget

* Other gadgets only need to be probing secure

Our composition approach

* We only require a composition property for the refresh gadget
* Other gadgets only need to be probing secure

* We use full refreshing 000 000

Our composition approach

* We only require a composition property for the refresh gadget
* Other gadgets only need to be probing secure

* We use full refreshing 000 000

simple probing _
security

|OS Property ==
+ uniformity

/= region probing security 1‘

Input-Output Separation (10S)

—

X

! internal probes

y

Input-Output Separation (10S)

can be pertfectly
simulated from
the knowledge of

! Input shares
and

 output shares

Input-Output Separation (10S)

can be pertfectly
simulated from
the knowledge of

{ iInput shares
and

{ output shares

!
(?
I

NI (+uniformity)

= X

SNI (+uniformity) —> |IOS (+uniformity)

> /

PINI (+uniformity)

Composition theorem

[p probes per refresh gadget
+ top probes per operation gadget

can be perfectly simulated from IOS refreshing

tOP + 3 [p probes per operation gadget

Composition theorem

t,, + 3tg probes per operation gadget

can be perfectly simulated

| uniform refreshing
nothing '

assuming (1, + 31)-PS
of operation gadgets

Composition theorem

Obtained rate:

180000 ;
| GR ‘ | GOp |

Composition theorem

Obtained rate:

(T TeT)
max min ,
tR’ top ‘ GR ‘ | GOp ‘

with 7, <n and (7, + 3tg) < Ipg

logn layers

. D_>
—_— —

. - _’ 1 output
n input P
— shares
shares O

—— —»
 ———
T

An 10S refresh gadget

logn layers

I

n input
P shares

shares

Q000000

0000

—
—
—
—

e
Q —

BE
S

D-
-

0
Q0

An 10S refresh gadget

logn layers

n output
shares

.

n input
shares

Q000000

XEE

o
©

Batistello-Coron-Prouff-Zeitoun
refresh gadget [CHES’16]

An 10S refresh gadget

. multiplications logn layers
by constants |
to handle

—

v -sharin

—_— e, ————

n output

n input
P shares

shares

fl Q
'
. :t’
& 3
3_
e ¥
- g
| 3
u 0.
¢ £ 9
' “
N, ‘ ’
$ 9
‘v '\
‘“ 9
i3

Batistello-Coron-Prouff-Zeitoun
refresh gadget [CHES’16]

An 10S refresh gadget

' multiplications logn layers
by constants |
to handle

—

v -sharin

S — e = =

n output

n input
P shares

shares

ﬁ’ Q
£
. :t’
a k.
3_
g 3
b | g
| g
v J
¢ § 9
' “
) ‘ ‘ ’
») 9
‘v '\
‘“ 9
i3

Batistello-Coron-Prouff-Zeitoun Only half ‘
refresh gadget [CHES’16] layers for IOS |

. e -

Quasilinear masking

* We extend the Goudarzi-Joux-Rivain (GJR) scheme [AC’18]
» complexity O(nlog n) against O(n?) for many probing secure scheme
» proof of p-random probing security with p = O(1/log n)
- defined over fields [, with p = pllognl+ly 4 1
* QOur extension enjoys
 base field K of any form
» proof in the (stronger) r-region probing model (still with r = O(1/log n))

e we patch a flaw in the security proof thanks to the I0OS approach

Quasilinear masking

—

 GJR scheme uses v -sharings with

vV =,w, 0% ...,0" ")
* A sharing of x
X = (X9 X5 eees X, 1)
satisfies n—1

V.x)= Y x-wt=x
< ? > l

1=0

Quasilinear masking

+ GJR scheme uses Vv -sharings with

vV =,w, 0% ...,0" ")
* A sharing of x

X = (X9 X5 eves X 1)

satisfies

polynomial P— (w)
shares = coefficients

Multiplication gadget

e Let ?such that

P: (W) = P(W) - Py (W)

Multiplication gadget

e Let 7 such that
P; (W) = P (W) - P3(W)

* We get

2n—1

Y to'=Pi(w) =Py () Py(@)=x-y
=0

Multiplication gadget

e Let ?such that

A P: (W) = P(W) - Py (W)

. Weget |

'ia)i = P;(w) =Px(0)-Py(w)=x"-Yy

Multiplication gadget

e Let ?such that

A P: (W) = P~ (W) - P (W)

* We get |

o, @ D-sharing of x - y
|

Multiplication gadget

e Let ?such that

s Pr(W) = P (W) - P (W)

* We get

| o, @ D-sharing of x - y
k J |

 Compression:

Multiplication gadget

e Let ?such that

'y P: (W) = P+ (W) - P5 (W)

* We get

t. @' , P;(w) =P+ (w) - Py (@) =x-Yy

l

i

\

\
l

i o, @ D-sharing of x - y
L : |

 Compression: Z
(

Multiplication gadget

+ Let 7 such that Evaluation-
"\ Interpolation |
using FFT |

; (W)= P=(W)- Py .

¢« Weget

- g S _
N e -)
= SN
D R
s — 2 Ny
2o i o
. A .2 N\
&L g =
o - .] .

o' , (@) = P+ (@) - P+ (@) =x-y ™\ _

i o, @ D-sharing of x - y
— v

 Compression:
2

Multiplication gadget

+ Let 7 such that Evaluation-
"\ Interpolation |
using FFT |

; (W)= P=(W)- Py .

¢« Weget

- g S _
N e -)
= SN
D R
s — 2 Ny
2o i o
. A .2 N\
&L g =
o - .] .

o' , (@) = P+ (@) - P+ (@) =x-y ™\ _

i o, @ D-sharing of x - y
— v

 Compression:
2

Multiplication gadget

_)
e i sl i o
_)

Multiplication gadget

evaluation of
P— in 2n points

D—

evaluation of
P7 in 2n points

Multiplication gadget

evaluation of
P— in 2n points

) 4
+—| Refresh

Compress)

evaluation of
P— in 2n points point-wise multiplication
y of the evaluations

Multiplication gadget

evaluation of coefficients of
P~ in 2n points P+ - P

) 4
+—| Refresh

I
Compress I

evaluation of
P— in 2n points point-wise multiplication
y of the evaluations

Multiplication gadget

evaluation of coefficients of
P~ in 2n points P+ - P

) 4
+—| Refresh

_
Compress I

sharing of
XV

evaluation of
P— in 2n points point-wise multiplication
y of the evaluations

Security

 We have sharewise addition / subtraction / copy gadgets

= Iinherently probing secure
* Multiplication gadgets composed of
* sharewise blocks

e FFT blocks

e refresh blocks

Security

 We have sharewise addition / subtraction / copy gadgets

= Iinherently probing secure
* Multiplication gadgets composed of
* sharewise blocks
* FFT blocks
* refresh blocks

* We can apply the IOS composition approach

Security

 We have sharewise addition / subtraction / copy gadgets

= Iinherently probing secure
* Multiplication gadgets composed of
* sharewise blocks
* FFT blocks
* refresh blocks

* We can apply the IOS composition approach

A assuming the FFT blocks aeprbbing—scure

|
I e o S

Security

 We have sharewise addition / subtraction / copy gadgets

= Iinherently probing secure
* Multiplication gadgets composed of
* sharewise blocks
* FFT blocks
* refresh blocks

* We can apply the IOS composition approach

Statistical security (GJR)

e Pick a random w over K

Statistical security (GJR)

e Pick a random w over K

e Use a“linear” FFT

* e.g. NTT, Cantor / Gao-Mateer additive FFT

Statistical security (GJR)

e Pick a random w over K

e Use a“linear” FFT

* e.g. NTT, Cantor / Gao-Mateer additive FFT

* Any n — | probes can be perfectly simulated

n
with proba 1 — (over the random choice of @)

1Y

Statistical security (GJR)

e Pick a random w over K

e Use a“linear” FFT

* e.g. NTT, Cantor / Gao-Mateer additive FFT

* Any n — | probes can be perfectly simulated

with proba 1 over the random choice of w)

T — should be
negligible

Statistical security (GJR)

Pick a random @ over K

Use a “linear” FFT

* e.g. NTT, Cantor / Gao-Mateer additive FFT

Any n — 1 probes can be perfectly simulated

with proba 1

} (over the random choice of)

Constraint: | K| & n2* for A-bit security T should be
negligible

= (4 + log n)-bit field elements

Statistical security (GJR)

e Pick a random w over K

e Use a“linear” FFT

* e.g. NTT, Cantor / Gao-Mateer additive FFT

* Any n — | probes can be perfectly simulated

with proba 1

1 (over the random choice of w)

. Constraint: | K| ~ n2" for A-bit security T should be
negligible

= (4 + log n)-bit field elements

» Open problem: probing secure FFT on smaller fields

Application to AES and MIMC

 We apply
 GJR+ (our variant with |IOS composition)

= 0O(nlogn) complexity / O(1/logn) leakage rate

o ISW+ (ISW mult. & BPCZ refresh)

= 0(n?) complexity / O(1/n) leakage rate

* To
» AES: K =[5, = Gao-Mateer additive FFT

« MIMC: K = [Fp = Number Theoretic Transform (NTT)

Application to AES and MIMC

— Results for AES —

n Mul Add. Random

Full AES with ISW™ 64896 297088 123520

8 | Full AES with GJR™ 157056 257408 110080
Efficiency ratio (GJR™/ISWT) 2.43 0.87 0.9

Full AES with ISW™ 211712 926976 372480

16 | Full AES with GJR™ 396032 683776 286720
Efficiency ratio (GJRT/ISWT) 1.88 0.74 0.77

Full AES with ISW 751104 2847232 1077760

32 | Full AES with GJR™ 955904 1725952 706560
Efficiency ratio (GJR™/ISW™) 1.28 0.61 0.66

Full AES with ISW™ 2812928 | 8991744 3148800

64 | Full AES with GJR™ 2239488 | 4209664 1679360
Efficiency ratio (GJRT/ISW™) 0.8 0.47 0.54

Full AES with ISW™ 10868736 | 29820928 | 9594880

128 | Full AES with GJR™ 5134336 | 10016768 | 3891200
Efficiency ratio (GJR™/ISW™) 0.48 0.34 0.41

Application to AES and MIMC

— Results for AES —

n Mul Add. Random

Full AES with ISW™ 64896 297088 123520

8 | Full AES with GJR™* 157056 257408 110080
Efficiency ratio (GJR*/ISWT) 2.43 0.87 0.9

Full AES with ISW™ 211712 926976 372480

16 | Full AES with GJR™ 396032 683776 286720
Efficiency ratio (GJR*/ISWT) 1.88 0.74 0.77

Full AES with ISW 751104 2847232 1077760

32 | Full AES with GJR™ 955904 1725952 706560
Efficiency ratio (GJR'/ISW™) 1.28 0.61 0.66

Full AES with ISW™ 2812928 | 8991744 3148800

64 | Full AES with GJR™ 2239488 | 4209664 1679360
Efficiency ratio (GJR'/ISW™) 0.8 0.47 0.54

Full AES with ISW™ 10868736 | 29820928 | 9594880

128 | Full AES with GJR™ 5134336 | 10016768 | 3891200
Efficiency ratio (GJR™/ISW™) 0.48 0.34 0.41

Application to AES and MIMC

— Results for MIMC —

n Mul Add. Random
Full MiMC with ISW™ 10416.0 45408.0 17544.0
8 | Full MiMC with GJR* 40512.0 66128.0 20100.0
Efficiency ratio (GJR™/ISWT) 3.89 1.46 1.15
Full MiMC with ISWT 41600.0 153056.0 55856.0
16 | Full MiMC with GJR* 100796.0 | 165968.0 51872.0
Efficiency ratio (GJR™/ISW™) 2.43 1.09 0.93
Full MiMC with ISW™ 166208.0 | 513536.0 173984.0
32 | Full MiMC with GJR™ 240812.0 | 399360.0 127088.0
Efficiency ratio (GJR'/ISW™) 1.45 0.78 0.74
Full MiMC with ISW™ 664320.0 | 1773696.0 | 555456.0
64 | Full MiMC with GJR™ 559740.0 | 933568.0 | 300864.0
Efficiency ratio (GJR'/ISW™) 0.85 0.53 0.55
Full MiMC with ISW™ 2656000.0 | 6367744.0 | 1857664.0
128 | Full MiMC with GJR™ 1275388.0 | 2136832.0 | 695104.0
Efficiency ratio (GJRT/ISWT) 0.49 0.34 0.38

Thank you for watching!

J

For any questions:
matthieu.rivain@cryptoexperts.com

mailto:matthieu.rivain@cryptoexperts.com

