
Probing Security through Input-
Output Separation and Revisited

Quasilinear Masking

Dahmun Goudarzi, Thomas Prest,

Matthieu Rivain and Damien Vergnaud

— CHES 2021 —

Introduction
• What is this about ?

• Security against side-channel attacks

• Masking schemes

• Formal proofs through probing security

• Our contributions

• New masking composition approach:

• Quasilinear IOS refresh gadget (variant of [BPCZ, CHES’16])

• Quasilinear masking scheme (improved version of [GJR, AC’18])

IOS refresh gadget + probing-secure gadgets

 region probing security of the composition ⇒

Introduction
• What is this about ?

• Security against side-channel attacks

• Masking schemes

• Formal proofs through probing security

• Our contributions

• New masking composition approach:

• Quasilinear IOS refresh gadget (variant of [BPCZ, CHES’16])

• Quasilinear masking scheme (improved version of [GJR, AC’18])

IOS refresh gadget + probing-secure gadgets

 region probing security of the composition ⇒

new simple property

Introduction
• What is this about ?

• Security against side-channel attacks

• Masking schemes

• Formal proofs through probing security

• Our contributions

• New masking composition approach:

• Quasilinear IOS refresh gadget (variant of [BPCZ, CHES’16])

• Quasilinear masking scheme (improved version of [GJR, AC’18])

IOS refresh gadget + probing-secure gadgets

 region probing security of the composition ⇒

new simple property
weaker than
composition
properties

Introduction
• What is this about ?

• Security against side-channel attacks

• Masking schemes

• Formal proofs through probing security

• Our contributions

• New masking composition approach:

• Quasilinear IOS refresh gadget (variant of [BPCZ, CHES’16])

• Quasilinear masking scheme (improved version of [GJR, AC’18])

IOS refresh gadget + probing-secure gadgets

 region probing security of the composition ⇒

new simple property
weaker than
composition
properties

stronger than  
probing security

x ⃗x = (x1, …, xn)
Encode

x = x1 + ⋯ + xn (on a field)𝕂

Masking

x ⃗x = (x1, …, xn)
Encode

x = x1 + ⋯ + xn (on a field)𝕂

the shares

 : number of shares n

sharing

Masking

x ⃗x = (x1, …, xn)
Encode

x = v1 ⋅ x1 + ⋯ + vn ⋅ xn

= ⟨ ⃗v , ⃗x ⟩

the shares sharing

Masking

In this work:

(on a field)𝕂

x ⃗x = (x1, …, xn)
Encode

x = v1 ⋅ x1 + ⋯ + vn ⋅ xn

= ⟨ ⃗v , ⃗x ⟩

the shares sharing

Masking

In this work:

constant coefficients sharing

(on a field)𝕂

x ⃗x = (x1, …, xn)
Encode

x = v1 ⋅ x1 + ⋯ + vn ⋅ xn

= ⟨ ⃗v , ⃗x ⟩

the shares sharing

Masking

In this work:

constant coefficients sharing

(on a field)𝕂

 -sharing of ⃗v x

Circuit model
Crypto computation modelled as an arithmetic circuit on 𝕂

Circuit model
Crypto computation modelled as an arithmetic circuit on 𝕂

input gates

output gates

Circuit model
Crypto computation modelled as an arithmetic circuit on 𝕂

input gates

output gates

addition gates

multiplication gates

copy gates

Circuit model
Crypto computation modelled as an arithmetic circuit on 𝕂

input gates

output gates

addition gates

multiplication gates

copy gates

$+ random gates

Gadgets

x y

z

⃗x ⃗y

⃗z
gadget : small circuit computing

an operation on sharings

Gadgets

x y

z

⃗x ⃗y

⃗z

sharing of z

sharing of x sharing of y

gadget : small circuit computing
an operation on sharings

Refresh gadgets

⃗x

⃗x ′￼

Refresh gadgets

⃗x

⃗x ′￼

sharing of x

Refresh gadgets

⃗x

⃗x ′￼

sharing of x

Refresh gadgets

⃗x

⃗x ′￼

fresh
randomness sharing of x

Refresh gadgets

⃗x

⃗x ′￼

fresh
randomness

statistical

independence of
 and

⇒

(⃗x |x) (⃗x ′￼|x)

sharing of x

Standard circuit compiler
wire wires (sharing)→ n
gate gadget→

Standard circuit compiler
wire wires (sharing)→ n
gate gadget→

Encode Encode

Decode Decode

functional
equivalence

Standard circuit compiler …
… with full
refreshing

Standard circuit compiler …

RefreshRefresh

Re
fre

sh

Refresh

… with full
refreshing

introduce a refresh gadget
between any two gadgets

⇒

Probing security

Encode

Decode

inputs

outputs

Probing security

Encode

Decode

inputs

outputs

⋮

Probing security

Encode

Decode

inputs

outputs

w1
w2

wt

⋮

Probing security

Encode

Decode

inputs

outputs

w1
w2

wt

⋮

 = function of inputs

and internal randomness

(w1, …, wt)

Probing security

Encode

Decode

inputs

outputs

w1
w2

wt

⋮

-probing security:
 can be

perfectly simulated
w/o any knowledge

about the inputs

t
(w1, …, wt)

 = function of inputs

and internal randomness

(w1, …, wt)

Region probing security

 probes per
gadget (or region)

t

with t = r × |G |

rate

number of wires in G

-region probing security
⇒

r

Why region probing security?

-region probing security r

 -random probing security ⇒ p

 -noisy leakage security ⇒ δ

Why region probing security?

-region probing security r

 -random probing security ⇒ p

 -noisy leakage security ⇒ δ

Each wire leak
with probability p

Why region probing security?

-region probing security r

 -random probing security ⇒ p

 -noisy leakage security ⇒ δ

Each wire leak
with probability p

Each wire leak
some noisy
information

Why region probing security?

-region probing security r

 -random probing security ⇒ p

 -noisy leakage security ⇒ δ

Each wire leak
with probability p

Each wire leak
some noisy
information

Chernoff bound

p ≈ r

Why region probing security?

-region probing security r

 -random probing security ⇒ p

 -noisy leakage security ⇒ δ

Each wire leak
with probability p

Each wire leak
some noisy
information

Chernoff bound

Duc-Dziembowski-Faust [EC’14]

p ≈ r

δ ≈ p ≈ r

Why region probing security?

-region probing security r

 -random probing security ⇒ p

 -noisy leakage security ⇒ δ

Each wire leak
with probability p

Each wire leak
some noisy
information

Chernoff bound

Duc-Dziembowski-Faust [EC’14]

p ≈ r

δ ≈ p ≈ r
more realistic to capture  
power and EM leakages

Composition
• Use gadgets achieving composition properties (stronger than PS)

• Obtain the (region) PS for the composition

• Example: strong non-interference (SNI) notion

Composition
• Use gadgets achieving composition properties (stronger than PS)

• Obtain the (region) PS for the composition

• Example: strong non-interference (SNI) notion

⃗x

⃗y

 internal probest1
 output probest2

Composition
• Use gadgets achieving composition properties (stronger than PS)

• Obtain the (region) PS for the composition

• Example: strong non-interference (SNI) notion

⃗x

⃗y

 internal probest1
 output probest2 }

can be perfectly  
simulated from 

the knowledge of
 input shares t1

Composition
• Use gadgets achieving composition properties (stronger than PS)

• Obtain the (region) PS for the composition

• Example: strong non-interference (SNI) notion

⃗x

⃗y

 internal probest1
 output probest2 }

 SNI gadgets -PS 

 region PS

⇒ (n − 1)
⇒

can be perfectly  
simulated from 

the knowledge of
 input shares t1

Our composition approach

• We only require a composition property for the refresh gadget

• Other gadgets only need to be probing secure

• We use full refreshing

Our composition approach

• We only require a composition property for the refresh gadget

• Other gadgets only need to be probing secure

• We use full refreshing

RefresRefres

Re
fre

s

Refres

Our composition approach

• We only require a composition property for the refresh gadget

• Other gadgets only need to be probing secure

• We use full refreshing

RefresRefres

Re
fre

s

Refres

IOS property 
+ uniformity

simple probing
security

 region probing security⇒

Input-Output Separation (IOS)

⃗x

⃗y

 internal probest

Input-Output Separation (IOS)

⃗x

⃗y

 internal probest

can be perfectly  
simulated from 

the knowledge of
 input shares

and
 output shares

t

t

Input-Output Separation (IOS)

⃗x

⃗y

 internal probest

can be perfectly  
simulated from 

the knowledge of
 input shares

and
 output shares

t

t

SNI (+uniformity)

PINI (+uniformity)

NI (+uniformity)

IOS (+uniformity)
⟹
⟹ ⟹

⟹

⟹

 IOS is weaker than previous composition notions

Composition theorem

 probes per refresh gadget 
+ probes per operation gadget

tR
top

can be perfectly simulated from

 probes per operation gadget top + 3tR

can be perfectly simulated

nothing
assuming -PS

of operation gadgets
(top + 3tR)

IOS refreshing

Composition theorem

 probes per refresh gadget 
+ probes per operation gadget

tR
top

can be perfectly simulated from

 probes per operation gadget top + 3tR

can be perfectly simulated

nothing
assuming -PS

of operation gadgets
(top + 3tR)

IOS refreshing

uniform refreshing

Composition theorem

 min (tR
|GR |

,
top

|Gop |)
Obtained rate:

Composition theorem

with and tR < n (top + 3tR) ≤ tPS

 min (tR
|GR |

,
top

|Gop |)
Obtained rate:

max
tR, top

An IOS refresh gadget

$

 input
shares
n output

shares
n

 layerslog n

An IOS refresh gadget

$

 input
shares
n output

shares
n

 layerslog n

An IOS refresh gadget

$$$

 input
shares
n output

shares
n

 layerslog n

An IOS refresh gadget

$$
$ $

$$$

 input
shares
n output

shares
n

 layerslog n

An IOS refresh gadget

$$
$ $

$$$

 input
shares
n output

shares
n

Batistello-Coron-Prouff-Zeitoun

refresh gadget [CHES’16]

 layerslog n

An IOS refresh gadget

$$
$ $

$$$

 input
shares
n output

shares
n

Batistello-Coron-Prouff-Zeitoun

refresh gadget [CHES’16]

multiplications
by constants  

to handle
-sharing⃗v

 layerslog n

An IOS refresh gadget

$$
$ $

$$$

 input
shares
n output

shares
n

Batistello-Coron-Prouff-Zeitoun

refresh gadget [CHES’16]

multiplications
by constants  

to handle
-sharing⃗v

Only half of the
layers for IOS

 layerslog n

Quasilinear masking
• We extend the Goudarzi-Joux-Rivain (GJR) scheme [AC’18]

• complexity against for many probing secure scheme

• proof of -random probing security with

• defined over fields with

• Our extension enjoys

• base field of any form

• proof in the (stronger) -region probing model (still with)

• we patch a flaw in the security proof thanks to the IOS approach

O(n log n) O(n2)

p p = O(1/log n)

𝔽p p = 2⌈log n⌉+1α + 1

𝕂

r r = O(1/log n)

Quasilinear masking
• GJR scheme uses -sharings with

• A sharing of

 satisfies

⃗v

x

⃗v = (1,ω, ω2, …, ωn−1)

⃗x = (x0, x1, …, xn−1)

⟨ ⃗v , ⃗x ⟩ =
n−1

∑
i=0

xi ⋅ ωi = x

• GJR scheme uses -sharings with

• A sharing of

 satisfies

⃗v

x

⃗v = (1,ω, ω2, …, ωn−1)

⃗x = (x0, x1, …, xn−1)

⟨ ⃗v , ⃗x ⟩ =
n−1

∑
i=0

xi ⋅ ωi = x

polynomial
shares = coefficients

P ⃗x (ω)

Quasilinear masking

• Let such that

• We get

• Compression:

⃗t

P ⃗t (W) = P ⃗x (W) ⋅ P ⃗y (W)

2n−1

∑
i=0

ti ωi = P ⃗t (ω) = P ⃗x (ω) ⋅ P ⃗y (ω) = x ⋅ y

⃗z = (t0, …, tn−1) + ωn ⋅ (tn, …, t2n−1)

Multiplication gadget

• Let such that

• We get

• Compression:

⃗t

P ⃗t (W) = P ⃗x (W) ⋅ P ⃗y (W)

2n−1

∑
i=0

ti ωi = P ⃗t (ω) = P ⃗x (ω) ⋅ P ⃗y (ω) = x ⋅ y

⃗z = (t0, …, tn−1) + ωn ⋅ (tn, …, t2n−1)

Multiplication gadget

• Let such that

• We get

• Compression:

⃗t

P ⃗t (W) = P ⃗x (W) ⋅ P ⃗y (W)

2n−1

∑
i=0

ti ωi = P ⃗t (ω) = P ⃗x (ω) ⋅ P ⃗y (ω) = x ⋅ y

⃗z = (t0, …, tn−1) + ωn ⋅ (tn, …, t2n−1)

Multiplication gadget

⚠

• Let such that

• We get

• Compression:

⃗t

P ⃗t (W) = P ⃗x (W) ⋅ P ⃗y (W)

2n−1

∑
i=0

ti ωi = P ⃗t (ω) = P ⃗x (ω) ⋅ P ⃗y (ω) = x ⋅ y

⃗z = (t0, …, tn−1) + ωn ⋅ (tn, …, t2n−1)

 is a -sharing of ⃗t (1,…, ωn−1

⃗v

, ωn, …, ω2n−1) x ⋅ y

Multiplication gadget

⚠

• Let such that

• We get

• Compression:

⃗t

P ⃗t (W) = P ⃗x (W) ⋅ P ⃗y (W)

2n−1

∑
i=0

ti ωi = P ⃗t (ω) = P ⃗x (ω) ⋅ P ⃗y (ω) = x ⋅ y

⃗z = (t0, …, tn−1) + ωn ⋅ (tn, …, t2n−1)

 is a -sharing of ⃗t (1,…, ωn−1

⃗v

, ωn, …, ω2n−1) x ⋅ y

Multiplication gadget

⚠

• Let such that

• We get

• Compression:

⃗t

P ⃗t (W) = P ⃗x (W) ⋅ P ⃗y (W)

2n−1

∑
i=0

ti ωi = P ⃗t (ω) = P ⃗x (ω) ⋅ P ⃗y (ω) = x ⋅ y

⃗z = (t0, …, tn−1) + ωn ⋅ (tn, …, t2n−1)

 is a -sharing of ⃗t (1,…, ωn−1

⃗v

, ωn, …, ω2n−1) x ⋅ y

n−1

∑
i=0

(ti + tn+i ωn) ωi

Multiplication gadget

⚠

• Let such that

• We get

• Compression:

⃗t

P ⃗t (W) = P ⃗x (W) ⋅ P ⃗y (W)

2n−1

∑
i=0

ti ωi = P ⃗t (ω) = P ⃗x (ω) ⋅ P ⃗y (ω) = x ⋅ y

⃗z = (t0, …, tn−1) + ωn ⋅ (tn, …, t2n−1)

 is a -sharing of ⃗t (1,…, ωn−1

⃗v

, ωn, …, ω2n−1) x ⋅ y

n−1

∑
i=0

(ti + tn+i ωn) ωi

Multiplication gadget

⚠

Evaluation-
interpolation

using FFT

• Let such that

• We get

• Compression:

⃗t

P ⃗t (W) = P ⃗x (W) ⋅ P ⃗y (W)

2n−1

∑
i=0

ti ωi = P ⃗t (ω) = P ⃗x (ω) ⋅ P ⃗y (ω) = x ⋅ y

⃗z = (t0, …, tn−1) + ωn ⋅ (tn, …, t2n−1)

 is a -sharing of ⃗t (1,…, ωn−1

⃗v

, ωn, …, ω2n−1) x ⋅ y

n−1

∑
i=0

(ti + tn+i ωn) ωi

Multiplication gadget

⚠

Evaluation-
interpolation

using FFT

Multiplication gadget

Multiplication gadget
evaluation of

 in pointsP ⃗x 2n

evaluation of
 in pointsP ⃗y 2n

Multiplication gadget
evaluation of

 in pointsP ⃗x 2n

evaluation of
 in pointsP ⃗y 2n point-wise multiplication 

of the evaluations

Multiplication gadget
evaluation of

 in pointsP ⃗x 2n

evaluation of
 in pointsP ⃗y 2n point-wise multiplication 

of the evaluations

coefficients of 
 P ⃗x ⋅ P ⃗y

Multiplication gadget
evaluation of

 in pointsP ⃗x 2n

evaluation of
 in pointsP ⃗y 2n point-wise multiplication 

of the evaluations

coefficients of 
 P ⃗x ⋅ P ⃗y

sharing of  
x ⋅ y

Security
• We have sharewise addition / subtraction / copy gadgets

 inherently probing secure

• Multiplication gadgets composed of

• sharewise blocks

• FFT blocks

• refresh blocks

• We can apply the IOS composition approach

⇒

Security
• We have sharewise addition / subtraction / copy gadgets

 inherently probing secure

• Multiplication gadgets composed of

• sharewise blocks

• FFT blocks

• refresh blocks

• We can apply the IOS composition approach

⇒

Security
• We have sharewise addition / subtraction / copy gadgets

 inherently probing secure

• Multiplication gadgets composed of

• sharewise blocks

• FFT blocks

• refresh blocks

• We can apply the IOS composition approach

⇒

⚠ assuming the FFT blocks are probing-secure

Security
• We have sharewise addition / subtraction / copy gadgets

 inherently probing secure

• Multiplication gadgets composed of

• sharewise blocks

• FFT blocks

• refresh blocks

• We can apply the IOS composition approach

⇒

⚠ assuming the FFT blocks are probing-secure

Security reduction: PS FFT region PS scheme⇒

Statistical security (GJR)
• Pick a random over

• Use a “linear” FFT

• e.g. NTT, Cantor / Gao-Mateer additive FFT

• Any probes can be perfectly simulated

 with proba (over the random choice of)

• Constraint: for -bit security

 -bit field elements

• Open problem: probing secure FFT on smaller fields

ω 𝕂

n − 1

1 −
n

|𝕂 |
ω

|𝕂 | ≈ n2λ λ

⇒ (λ + log n)

Statistical security (GJR)
• Pick a random over

• Use a “linear” FFT

• e.g. NTT, Cantor / Gao-Mateer additive FFT

• Any probes can be perfectly simulated

 with proba (over the random choice of)

• Constraint: for -bit security

 -bit field elements

• Open problem: probing secure FFT on smaller fields

ω 𝕂

n − 1

1 −
n

|𝕂 |
ω

|𝕂 | ≈ n2λ λ

⇒ (λ + log n)

Statistical security (GJR)
• Pick a random over

• Use a “linear” FFT

• e.g. NTT, Cantor / Gao-Mateer additive FFT

• Any probes can be perfectly simulated

 with proba (over the random choice of)

• Constraint: for -bit security

 -bit field elements

• Open problem: probing secure FFT on smaller fields

ω 𝕂

n − 1

1 −
n

|𝕂 |
ω

|𝕂 | ≈ n2λ λ

⇒ (λ + log n)

Statistical security (GJR)
• Pick a random over

• Use a “linear” FFT

• e.g. NTT, Cantor / Gao-Mateer additive FFT

• Any probes can be perfectly simulated

 with proba (over the random choice of)

• Constraint: for -bit security

 -bit field elements

• Open problem: probing secure FFT on smaller fields

ω 𝕂

n − 1

1 −
n

|𝕂 |
ω

|𝕂 | ≈ n2λ λ

⇒ (λ + log n)

should be  
negligible

Statistical security (GJR)
• Pick a random over

• Use a “linear” FFT

• e.g. NTT, Cantor / Gao-Mateer additive FFT

• Any probes can be perfectly simulated

 with proba (over the random choice of)

• Constraint: for -bit security

 -bit field elements

• Open problem: probing secure FFT on smaller fields

ω 𝕂

n − 1

1 −
n

|𝕂 |
ω

|𝕂 | ≈ n2λ λ

⇒ (λ + log n)

should be  
negligible

Statistical security (GJR)
• Pick a random over

• Use a “linear” FFT

• e.g. NTT, Cantor / Gao-Mateer additive FFT

• Any probes can be perfectly simulated

 with proba (over the random choice of)

• Constraint: for -bit security

 -bit field elements

• Open problem: probing secure FFT on smaller fields

ω 𝕂

n − 1

1 −
n

|𝕂 |
ω

|𝕂 | ≈ n2λ λ

⇒ (λ + log n)

should be  
negligible

Application to AES and MiMC
• We apply

• GJR+ (our variant with IOS composition)

 complexity / leakage rate

• ISW+ (ISW mult. & BPCZ refresh)

 complexity / leakage rate

• To

• AES: Gao-Mateer additive FFT

• MiMC: Number Theoretic Transform (NTT)

⇒ O(n log n) O(1/log n)

⇒ O(n2) O(1/n)

𝕂 = 𝔽256 ⇒

𝕂 = 𝔽p ⇒

Application to AES and MiMC
— Results for AES —

Application to AES and MiMC
— Results for AES —

⚠ The field should be large for GJR+

Application to AES and MiMC
— Results for MiMC —

Thank you for watching!

🙏

For any questions:

matthieu.rivain@cryptoexperts.com

mailto:matthieu.rivain@cryptoexperts.com

