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Introduction
• What is this about ?


• Security against side-channel attacks


• Masking schemes


• Formal proofs through probing security


• Our contributions


• New masking composition approach:


• Quasilinear IOS refresh gadget (variant of [BPCZ, CHES’16])


• Quasilinear masking scheme (improved version of [GJR, AC’18])

IOS refresh gadget + probing-secure gadgets 

 region probing security of the composition ⇒
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functional 
equivalence



Standard circuit compiler …
… with full  
refreshing 



Standard circuit compiler …

RefreshRefresh

Re
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sh

Refresh

… with full  
refreshing 

 
introduce a refresh gadget  
between any two gadgets 

   

⇒
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Encode

Decode

inputs

outputs

w1
w2

wt

⋮

-probing security: 
 can be  

perfectly simulated  
w/o any knowledge 

about the inputs    
   

t
(w1, …, wt)

 = function of inputs 

and internal randomness 

(w1, …, wt)



Region probing security

 probes per  
gadget (or region)

t

with t = r × |G |

rate

number of wires in G
 

-region probing security  
⇒

r
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-region probing security r

   -random probing security ⇒ p

   -noisy leakage security ⇒ δ

Each wire leak 
with probability  p

Each wire leak 
some noisy 
information 

Chernoff bound

Duc-Dziembowski-Faust [EC’14]

p ≈ r

δ ≈ p ≈ r
more realistic to capture  
power and EM leakages 
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⃗x
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 internal probest1
 output probest2 }

   SNI gadgets  -PS 

                         region PS   

⇒ (n − 1)
⇒
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 input shares  t1
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• We only require a composition property for the refresh gadget


• Other gadgets only need to be probing secure
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RefresRefres

Re
fre

s
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IOS property 
+ uniformity

simple probing 
security

 region probing security⇒
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t
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SNI (+uniformity)

PINI (+uniformity)

NI (+uniformity)

IOS (+uniformity)
⟹
⟹ ⟹

⟹

⟹

   IOS is weaker than previous composition notions   



Composition theorem

 probes per refresh gadget 
+  probes per operation gadget 

tR
top

can be perfectly simulated from

  probes per operation gadget top + 3tR

can be perfectly simulated

nothing 
assuming -PS  

of operation gadgets
(top + 3tR)

IOS refreshing



Composition theorem

 probes per refresh gadget 
+  probes per operation gadget 

tR
top

can be perfectly simulated from

  probes per operation gadget top + 3tR

can be perfectly simulated

nothing 
assuming -PS  

of operation gadgets
(top + 3tR)

IOS refreshing

uniform refreshing
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Composition theorem

with         and     tR < n (top + 3tR) ≤ tPS

 min ( tR
|GR |

,
top

|Gop | )
Obtained rate:

max
tR, top
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An IOS refresh gadget

$$
$ $

$$$

 input  
shares
n  output  

shares
n

Batistello-Coron-Prouff-Zeitoun 

refresh gadget [CHES’16]

multiplications  
by constants  

to handle 
-sharing⃗v

Only half of the 
layers for IOS

  layerslog n



Quasilinear masking
• We extend the Goudarzi-Joux-Rivain (GJR) scheme [AC’18]


• complexity  against  for many probing secure scheme


• proof of -random probing security with 


• defined over fields  with 


• Our extension enjoys


• base field  of any form


• proof in the (stronger) -region probing model (still with ) 


• we patch a flaw in the security proof thanks to the IOS approach

O(n log n) O(n2)

p p = O(1/log n)

𝔽p p = 2⌈log n⌉+1α + 1

𝕂

r r = O(1/log n)
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∑
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polynomial  
shares = coefficients
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Security
• We have sharewise addition / subtraction / copy gadgets


           inherently probing secure


• Multiplication gadgets composed of 


• sharewise blocks


• FFT blocks


• refresh blocks


• We can apply the IOS composition approach  

⇒

⚠ assuming the FFT blocks are probing-secure

Security reduction: PS FFT  region PS scheme⇒
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Application to AES and MiMC
• We apply 


• GJR+ (our variant with IOS composition) 


          complexity   /   leakage rate


• ISW+ (ISW mult. & BPCZ refresh)


          complexity   /   leakage rate


• To


• AES:     Gao-Mateer additive FFT


• MiMC:     Number Theoretic Transform (NTT)

⇒ O(n log n) O(1/log n)

⇒ O(n2) O(1/n)

𝕂 = 𝔽256 ⇒

𝕂 = 𝔽p ⇒



Application to AES and MiMC
— Results for AES — 



Application to AES and MiMC
— Results for AES — 

⚠ The field should be large for GJR+



Application to AES and MiMC
— Results for MiMC — 



Thank you for watching!

🙏

For any questions:


matthieu.rivain@cryptoexperts.com

mailto:matthieu.rivain@cryptoexperts.com

