Dahmun Goudarzi, Thomas Prest, Matthieu Rivain and Damien Vergnaud

Probing Security through Input-Output Separation and Revisited Quasilinear Masking

- CHES 2021 -

- What is this about ?
 - Security against side-channel attacks
 - Masking schemes
 - Formal proofs through probing security
- Our contributions
 - New masking composition approach:

 - IOS refresh gadget + probing-secure gadgets \Rightarrow region probing security of the composition
 - Quasilinear IOS refresh gadget (variant of [BPCZ, CHES'16])
 - Quasilinear masking scheme (improved version of [GJR, AC'18])

- What is this about ?
 - Security against side-channel attacks
 - Masking schemes
 - Formal proofs through probing security
- Our contributions
 - New masking composition approach:

- Quasilinear IOS refresh gadget (variant of [BPCZ, CHES'16])
- Quasilinear masking scheme (improved version of [GJR, AC'18])

IOS refresh gadget + probing-secure gadgets \Rightarrow region probing security of the composition

- What is this about ?
 - Security against side-channel attacks
 - Masking schemes
 - Formal proofs through probing security
- Our contributions
 - New masking composition approach:

- Quasilinear IOS refresh gadget (variant of [BPCZ, CHES'16])
- Quasilinear masking scheme (improved version of [GJR, AC'18])

- What is this about ?
 - Security against side-channel attacks
 - Masking schemes
 - Formal proofs through probing security
- Our contributions
 - New masking composition approach:

- Quasilinear IOS refresh gadget (variant of [BPCZ, CHES'16])
- Quasilinear masking scheme (improved version of [GJR, AC'18])

Masking

$x = x_1 + \dots + x_n$ (on a field \mathbb{K})

n : number of shares

In this work:

 $=\langle \overrightarrow{v}, \overrightarrow{x} \rangle$

Masking

the shares

(on a field \mathbb{K})

In this work:

 \mathcal{X}

constant coefficients

Masking

the shares

$x = v_1 \cdot x_1 + \dots + v_n \cdot x_n$ (on a field \mathbb{K}) sharing

In this work:

 \mathcal{X}

constant coefficients

the shares

Crypto computation modelled as an arithmetic circuit on \mathbb{K}

Circuit model

Crypto computation modelled as an arithmetic circuit on \mathbb{K}

Circuit model

Crypto computation modelled as an arithmetic circuit on \mathbb{K}

input gates addition gates multiplication gates copy gates

Circuit model

Crypto computation modelled as an arithmetic circuit on \mathbb{K}

input gates addition gates *multiplication gates* copy gates

+ random gates (\$

output gates

gadget : small circuit computing an operation on sharings

Gadgets

fresh randomness

fresh randomness

statistical independence of $(\overrightarrow{x} | x)$ and $(\overrightarrow{x'} | x)$

 \Rightarrow

Standard circuit compiler

wire $\rightarrow n$ wires (sharing) gate \rightarrow gadget

Standard circuit compiler

wire $\rightarrow n$ wires (sharing) gate \rightarrow gadget

functional

equivalence

T Amprilante Standard Brien

Standard circuit compiler ...

... with full refreshing

Standard circuit compiler with full eee eee

introduce a refresh gadget between any two gadgets

Probing security

Probing security

 W_1

 W_2

 \mathcal{W}_{1}

$(w_1, ..., w_t) = function of inputs$ and internal randomness

t-probing security: (w₁, ..., w_t) can be perfectly simulated w/o any knowledge about the inputs

Region probing security

t probes per gadget (or region)

with $t = r \times |G|$ rate

number of wires in G

r-region probing security

r-region probing security

 $\Rightarrow \delta$ -noisy leakage security

 \Rightarrow *p*-random probing security

r-region probing security

 $\Rightarrow \delta$ -noisy leakage security

 \Rightarrow *p*-random probing security

r-region probing security

Chernoff bound

Duc-Dziembowski-Faust [EC'14]

Each wire leak with probability *p p*-random probing security $p \approx r$ Each wire leak some noisy information δ -noisy leakage security. $\partial \approx p \approx r$

Why region probing security? *r*-region probing security

Chernoff bound

Duc-Dziembowski-Faust [EC'14]

more realistic to capture power and EM leakages

- Use gadgets achieving composition properties (stronger than PS)
- Obtain the (region) PS for the composition

- Use gadgets achieving composition properties (stronger than PS)
- Obtain the (region) PS for the composition
- Example: strong non-interference (SNI) notion

 t_1 internal probes t_2 output probes

Composition

- Use gadgets achieving composition properties (stronger than PS)
- Obtain the (region) PS for the composition
- Example: strong non-interference (SNI) notion

Composition

- Use gadgets achieving composition properties (stronger than PS)
- Obtain the (region) PS for the composition
- Example: strong non-interference (SNI) notion

Composition

- We only require a composition property for the refresh gadget
- Other gadgets only need to be probing secure

Our composition approach

- We only require a composition property for the refresh gadget
- Other gadgets only need to be probing secure
- We use full refreshing

Our composition approach

- We only require a composition property for the refresh gadget
- Other gadgets only need to be probing secure
- We use full refreshing

simple probing security

> **IOS** property + uniformity

 \Rightarrow region probing security

Our composition approach

Input-Output Separation (IOS)

t internal probes

Input-Output Separation (IOS)

can be perfectly simulated from the knowledge of t input shares and t output shares

SNI (+uniformity)

Input-Output Separation (IOS)

can be perfectly simulated from the knowledge of t input shares and t output shares

IOS is weaker than previous composition notions

NI (+uniformity)

IOS (+uniformity)

PINI (+uniformity)

t_R probes per refresh gadget + t_{op} probes per operation gadget

can be perfectly simulated from

 $t_{op} + 3t_R$ probes per operation gadget

Composition theorem

IOS refreshing

t_R probes per refresh gadget + t_{op} probes per operation gadget

can be perfectly simulated from

 $t_{op} + 3t_R$ probes per operation gadget

can be perfectly simulated

nothing assuming $(t_{op} + 3t_R)$ -PS of operation gadgets

Composition theorem

Obtained rate:

Composition theorem

 $\min\left(\frac{t_R}{|G_R|}, \frac{t_{op}}{|G_{op}|}\right)$

 $\max_{t_R, t_{op}} \min\left(\frac{t_1}{|G|}\right)$

Composition theorem

Obtained rate:

$$t_R \left(\begin{array}{c} t_{op} \\ G_R \end{array} \right), \begin{array}{c} f_{op} \\ G_{op} \end{array} \right)$$

with $t_R < n$ and $(t_{op} + 3t_R) \le t_{PS}$

log *n* layers

n output shares

log *n* layers

Batistello-Coron-Prouff-Zeitoun refresh gadget [CHES'16]

Batistello-Coron-Prouff-Zeitoun refresh gadget [CHES'16]

Batistello-Coron-Prouff-Zeitoun refresh gadget [CHES'16]

Only half of the layers for IOS

Quasilinear masking

- We extend the Goudarzi-Joux-Rivain (GJR) scheme [AC'18]
 - complexity $O(n \log n)$ against $O(n^2)$ for many probing secure scheme
 - proof of *p*-random probing security with $p = O(1/\log n)$
 - defined over fields \mathbb{F}_p with $p = 2^{\lceil \log n \rceil + 1} \alpha + 1$
- Our extension enjoys
 - base field $\mathbb K$ of any form
 - proof in the (stronger) *r*-region probing model (still with $r = O(1/\log n)$)
 - we patch a flaw in the security proof thanks to the IOS approach

Quasilinear masking

• GJR scheme uses \overrightarrow{v} -sharings with

• A sharing of *x*

satisfies

$$\overrightarrow{v} = (1, \omega, \omega^2, \dots, \omega^{n-1})$$

$$\vec{x} = (x_0, x_1, \dots, x_{n-1})$$

$$\langle \overrightarrow{v}, \overrightarrow{x} \rangle = \sum_{i=0}^{n-1} x_i \cdot \omega^i = x$$

Quasilinear masking

• GJR scheme uses \overrightarrow{v} -sharings with

• A sharing of *x*

polynomial $P_{\overrightarrow{x}}(\omega)$ shares = coefficients

 $\overrightarrow{v} = (1, \omega, \omega^2, \dots, \omega^{n-1})$

- $\vec{x} = (x_0, x_1, \dots, x_{n-1})$
- $\langle \overrightarrow{v}, \overrightarrow{x} \rangle = \sum_{i=0}^{n-1} x_i \cdot \omega^i = x$

- Let \vec{t} such that
- $P_{\vec{t}}(W) = P_{\overrightarrow{x}}(W) \cdot P_{\overrightarrow{y}}(W)$

• Let
$$\vec{t}$$
 such that

$$P_{\vec{t}}(W) = P_{\overrightarrow{x}}(W)$$

• We get

$$\sum_{i=0}^{2n-1} t_i \omega^i = P_{\vec{t}}(\omega) =$$

 $(W) \cdot P_{\overrightarrow{y}}(W)$

 $P_{\overrightarrow{x}}(\omega) \cdot P_{\overrightarrow{y}}(\omega) = x \cdot y$

Let
$$\vec{t}$$
 such that

$$P_{\vec{t}}(W) = P_{\vec{x}}(W) \cdot P_{\vec{y}}(W)$$
We get

$$\sum_{i=0}^{2n-1} t_i \omega^i = P_{\vec{t}}(\omega) = P_{\vec{x}}(\omega) \cdot P_{\vec{y}}(\omega) = x \cdot y$$

$$\vec{t} \text{ is a } (1, \dots, \omega^{n-1}, \omega^n, \dots, \omega^{2n-1}) \text{-sharing of } x \cdot y$$

$$\vec{y}$$

• Let
$$\vec{t}$$
 such that

$$P_{\vec{t}}(W) = P_{\vec{x}}(W) \cdot P_{\vec{y}}(W)$$
• We get

$$\sum_{i=0}^{2n-1} t_i \omega^i = P_{\vec{t}}(\omega) = P_{\vec{x}}(\omega) \cdot P_{\vec{y}}(\omega) = x \cdot y$$

$$\vec{t} \text{ is a } (1, \dots, \omega^{n-1}, \omega^n, \dots, \omega^{2n-1}) \text{-sharing of } x \cdot y$$

$$\vec{y}$$

Compression:

$$\vec{z} = (t_0, \dots, t_{n-1}) + \omega^n \cdot (t_n, \dots, t_{2n-1})$$

• Compression:

$$\begin{split} \dot{z} \omega^{i} &= P_{\vec{t}}(\omega) = P_{\vec{x}}(\omega) \cdot P_{\vec{y}}(\omega) = x \cdot y \\ a \quad \underbrace{(1, \dots, \omega^{n-1}, \omega^{n}, \dots, \omega^{2n-1}) \text{-sharing of } x \cdot y}_{\vec{y}} \\ \vec{z} &= (t_{0}, \dots, t_{n-1}) + \omega^{n} \cdot (t_{n}, \dots, t_{2n-1}) \quad \sum_{i=0}^{n-1} (t_{i} + t_{n+i} \omega^{n}) \, \omega^{i} \end{split}$$

Multiplication gadget Evaluationinterpolation $P_{\vec{t}}(W) = P_{\vec{x}}(W) \cdot P_{\vec{y}}(W)$ using FFT $\sum t_i \omega^i = P_{\vec{t}}(\omega) = P_{\vec{x}}(\omega) \cdot P_{\vec{y}}(\omega) = x \cdot y$ \vec{t} is a $(1,...,\omega^{n-1},\omega^n,...,\omega^{2n-1})$ -sharing of $x \cdot y$ \overrightarrow{v} n-1 $\sum_{i=0}^{n} (t_i + t_{n+i} \omega^n) \omega^i$ = 0

• Compression:

$$\vec{z} = (t_0, \dots, t_{n-1})$$

Multiplication gadget Evaluationinterpolation $P_{\vec{t}}(W) = P_{\vec{x}}(W) \cdot P_{\vec{y}}(W)$ using FFT $\sum t_i \omega^i = P_{\vec{t}}(\omega) = P_{\vec{x}}(\omega) \cdot P_{\vec{y}}(\omega) = x \cdot y$ \vec{t} is a $(1,...,\omega^{n-1},\omega^n,...,\omega^{2n-1})$ -sharing of $x \cdot y$ \overrightarrow{v} n-1 $\sum_{i=0}^{n} (t_i + t_{n+i} \omega^n) \omega^i$ = 0

• Compression:

$$\vec{z} = (t_0, \dots, t_{n-1})$$

of the evaluations

Multiplication gadget

of the evaluations

Multiplication gadget

of the evaluations

- We have sharewise addition / subtraction / copy gadgets
 - \Rightarrow inherently probing secure
- Multiplication gadgets composed of
 - sharewise blocks
 - FFT blocks
 - refresh blocks

- We have sharewise addition / subtraction / copy gadgets
 - \Rightarrow inherently probing secure
- Multiplication gadgets composed of
 - sharewise blocks
 - FFT blocks
 - refresh blocks
- We can apply the IOS composition approach

- We have sharewise addition / subtraction / copy gadgets
 - \Rightarrow inherently probing secure
- Multiplication gadgets composed of
 - sharewise blocks
 - FFT blocks
 - refresh blocks
- We can apply the IOS composition approach

A assuming the FFT blocks are probing-secure

- We have sharewise addition / subtraction / copy gadgets
 - \Rightarrow inherently probing secure
- Multiplication gadgets composed of
 - sharewise blocks
 - FFT blocks
 - refresh blocks
- We can apply the IOS composition approach

A assuming the FFT blocks are probing-secure

Security reduction: PS FFT \Rightarrow region PS scheme

• Pick a random ω over \mathbb{K}

Statistical security (GJR)

- Pick a random ω over \mathbb{K}
- Use a "linear" FFT
 - e.g. NTT, Cantor / Gao-Mateer additive FFT

- Pick a random ω over K
- Use a "linear" FFT
 - e.g. NTT, Cantor / Gao-Mateer additive FFT
- Any n-1 probes can be perfectly simulated

with proba $1 - \frac{n}{|\mathbb{K}|}$ (over the random choice of ω)

- Pick a random ω over K
- Use a "linear" FFT
 - e.g. NTT, Cantor / Gao-Mateer additive FFT
- Any n-1 probes can be perfectly simulated

with proba $1 - \frac{n}{|\mathbb{K}|}$ (over the random choice of ω)

should be negligible

- Pick a random ω over \mathbb{K}
- Use a "linear" FFT
 - e.g. NTT, Cantor / Gao-Mateer additive FFT
- Any n-1 probes can be perfectly simulated
- Constraint: $|\mathbb{K}| \approx n2^{\lambda}$ for λ -bit security
 - $\Rightarrow (\lambda + \log n)$ -bit field elements

- with proba $1 \frac{n}{|\mathbb{K}|}$ (over the random choice of ω)
 - should be negligible

- Pick a random ω over K
- Use a "linear" FFT
 - e.g. NTT, Cantor / Gao-Mateer additive FFT
- Any n-1 probes can be perfectly simulated
- Constraint: $|\mathbb{K}| \approx n2^{\lambda}$ for λ -bit security
 - $\Rightarrow (\lambda + \log n)$ -bit field elements
- Open problem: probing secure FFT on smaller fields

with proba $1 - \frac{n}{|\mathbb{K}|}$ (over the random choice of ω)

should be negligible

- We apply
 - GJR+ (our variant with IOS composition)

ISW+ (ISW mult. & BPCZ refresh)

- To
 - AES: $\mathbb{K} = \mathbb{F}_{256} \Rightarrow$ Gao-Mateer additive FFT
 - MiMC: $\mathbb{K} = \mathbb{F}_p \Rightarrow$ Number Theoretic Transform (NTT)

 $\Rightarrow O(n \log n)$ complexity / $O(1/\log n)$ leakage rate

 $\Rightarrow O(n^2)$ complexity / O(1/n) leakage rate

Results for AES —

n		Mul	Add.	Random
8	Full AES with ISW ⁺	64896	297088	123520
	Full AES with GJR ⁺	157056	257408	110080
	Efficiency ratio (GJR^+/ISW^+)	2.43	0.87	0.9
16	Full AES with ISW ⁺	211712	926976	372480
	Full AES with GJR ⁺	396032	683776	286720
	Efficiency ratio (GJR^+/ISW^+)	1.88	0.74	0.77
32	Full AES with ISW ⁺	751104	2847232	1077760
	Full AES with GJR ⁺	955904	1725952	706560
	Efficiency ratio (GJR^+/ISW^+)	1.28	0.61	0.66
64	Full AES with ISW ⁺	2812928	8991744	3148800
	Full AES with GJR ⁺	2239488	4209664	1679360
	Efficiency ratio (GJR^+/ISW^+)	0.8	0.47	0.54
128	Full AES with ISW ⁺	10868736	29820928	9594880
	Full AES with GJR ⁺	5134336	10016768	3891200
	Efficiency ratio (GJR^+/ISW^+)	0.48	0.34	0.41

Results for AES —

n		Mul	Add.	Random
8	Full AES with ISW ⁺	64896	297088	123520
	Full AES with GJR ⁺	157056	257408	110080
	Efficiency ratio (GJR^+/ISW^+)	2.43	0.87	0.9
16	Full AES with ISW ⁺	211712	926976	372480
	Full AES with GJR ⁺	396032	683776	286720
	Efficiency ratio (GJR^+/ISW^+)	1.88	0.74	0.77
32	Full AES with ISW ⁺	751104	2847232	1077760
	Full AES with GJR ⁺	955904	1725952	706560
	Efficiency ratio (GJR^+/ISW^+)	1.28	0.61	0.66
64	Full AES with ISW ⁺	2812928	8991744	3148800
	Full AES with GJR ⁺	2239488	4209664	1679360
	Efficiency ratio (GJR^+/ISW^+)	0.8	0.47	0.54
128	Full AES with ISW ⁺	10868736	29820928	9594880
	Full AES with GJR ⁺	5134336	10016768	3891200
	Efficiency ratio (GJR^+/ISW^+)	0.48	0.34	0.41

The field should be large for GJR+

Results for MiMC —

n		Mul	Add.	Random
8	Full MiMC with ISW ⁺	10416.0	45408.0	17544.0
	Full MiMC with GJR ⁺	40512.0	66128.0	20100.0
	Efficiency ratio (GJR^+/ISW^+)	3.89	1.46	1.15
16	Full MiMC with ISW ⁺	41600.0	153056.0	55856.0
	Full MiMC with GJR ⁺	100796.0	165968.0	51872.0
	Efficiency ratio (GJR^+/ISW^+)	2.43	1.09	0.93
32	Full MiMC with ISW ⁺	166208.0	513536.0	173984.0
	Full MiMC with GJR ⁺	240812.0	399360.0	127088.0
	Efficiency ratio (GJR^+/ISW^+)	1.45	0.78	0.74
64	Full MiMC with ISW ⁺	664320.0	1773696.0	555456.0
	Full MiMC with GJR ⁺	559740.0	933568.0	300864.0
	Efficiency ratio (GJR^+/ISW^+)	0.85	0.53	0.55
128	Full MiMC with ISW ⁺	2656000.0	6367744.0	1857664.0
	Full MiMC with GJR ⁺	1275388.0	2136832.0	695104.0
	Efficiency ratio (GJR^+/ISW^+)	0.49	0.34	0.38

Thank you for watching!

For any questions: <u>matthieu.rivain@cryptoexperts.com</u>

