
Side-channel protections for Picnic signatures

CHES 2021

Diego F. Aranha1 Sebastian Berndt2 Thomas Eisenbarth2 Okan Seker2

Akira Takahashi1 Luca Wilke2 Greg Zaverucha3

1Aarhus University, Denmark

2University of Lübeck, Germany

3Microsoft Research, USA

Background & Motivation: NIST PQC Standardization Round 3

Finalists

• CRYSTALS-DILITHIUM

• Falcon

• Rainbow

Alternates

• GeMSS

• Picnic

• SPHINCS+

• Side-channel resilience is becoming more relevant

• Little study on side-channel resilience of Picnic/MPC-in-the-head paradigm

1

Picnic & side-channel security

• Fiat–Shamir-type signature from

MPC-in-the-head ZKP [IKOS07]

, No number-theoretic assumptions

• Block cipher

• Hash function (modeled as RO)

, Various parameters

Picnic1

/ Known to be vulnerable to DPA [GSE20]

/ Existing countermeasure breaks

interoperability with verification [SBWE20]

/ Also increases signature size

Picnic3

• Follows MPC-in-the-head with

preprocessing paradigm [KKW18]

• More compact signature

• No side-channel evaluation yet

2

Picnic & side-channel security

• Fiat–Shamir-type signature from

MPC-in-the-head ZKP [IKOS07]

, No number-theoretic assumptions

• Block cipher

• Hash function (modeled as RO)

, Various parameters

Picnic1

/ Known to be vulnerable to DPA [GSE20]

/ Existing countermeasure breaks

interoperability with verification [SBWE20]

/ Also increases signature size

Picnic3

• Follows MPC-in-the-head with

preprocessing paradigm [KKW18]

• More compact signature

• No side-channel evaluation yet

2

Picnic & side-channel security

• Fiat–Shamir-type signature from

MPC-in-the-head ZKP [IKOS07]

, No number-theoretic assumptions

• Block cipher

• Hash function (modeled as RO)

, Various parameters

Picnic1

/ Known to be vulnerable to DPA [GSE20]

/ Existing countermeasure breaks

interoperability with verification [SBWE20]

/ Also increases signature size

Picnic3

• Follows MPC-in-the-head with

preprocessing paradigm [KKW18]

• More compact signature

• No side-channel evaluation yet

2

Our goal

• Side-channel evaluation of Picnic3 / MPC-in-the-head with preprocessing

• Maintain interoperability and signature size while applying masking

countermeasures

3

This work

• Side-channel vulnerabilities of unprotected Picnic3

• Attack I extends [GSE20]

• Attack II is new

• Generic approach to mask ZKP using MPCitH with preprocessing

• Proof for 𝑡-probing security

• Supported by maskVerif formal verification tool [BBC+19]

• Possible to trade-off provable security for lower masking overhead

• First-order masked implementation of Picnic3 & SHA-3

• Practical electromagnetic (EM) leakage analysis

4

Side-channel Attacks on Picnic3

Zero-knowledge proof using the MPC-in-the-head [IKOS07, GMO16]

5

Zero-knowledge proof using the MPC-in-the-head [IKOS07, GMO16]

Compute

5

Zero-knowledge proof using the MPC-in-the-head [IKOS07, GMO16]

Compute

5

Zero-knowledge proof using the MPC-in-the-head [IKOS07, GMO16]

Compute

5

Zero-knowledge proof using the MPC-in-the-head [IKOS07, GMO16]

Compute

5

Zero-knowledge proof using the MPC-in-the-head [IKOS07, GMO16]

Compute

5

Zero-knowledge proof using the MPC-in-the-head [IKOS07, GMO16]

Compute

5

Zero-knowledge proof using the MPC-in-the-head [IKOS07, GMO16]

Compute

5

Attack I: Probing the unopened party (extending [GSE20])

Compute

Must be hidden!!

6

Attack I: Probing the unopened party (extending [GSE20])

Compute

Must be hidden!!

6

Picnic3: MPC-in-the-head with preprocessing [KKW18, KZ20]

Offline

7

Picnic3: MPC-in-the-head with preprocessing [KKW18, KZ20]

Offline

Online

7

Picnic3: MPC-in-the-head with preprocessing [KKW18, KZ20]

Offline

Online

7

Picnic3: MPC-in-the-head with preprocessing [KKW18, KZ20]

Offline

Online

7

Picnic3: MPC-in-the-head with preprocessing [KKW18, KZ20]

Offline

Online

7

Picnic3: MPC-in-the-head with preprocessing [KKW18, KZ20]

Offline

Online

7

Why preprocessing? – Multiplication with Beaver triples

Inputs ∶[𝑥] = (𝑥1, … , 𝑥𝑁) and [𝑦] = (𝑦1, … , 𝑦𝑁)
Output ∶[𝑧] = (𝑧1, … , 𝑧𝑁) such that 𝑧 = 𝑥𝑦

Offline

• Generate many random triples

([𝜆𝑥], [𝜆𝑦], [𝜆𝑥𝑦]) with 𝜆𝑥𝑦 = 𝜆𝑥𝜆𝑦

• Easy in MPCitH:

𝜆𝑥𝑦
𝑁 ∶= (

𝑁
∑
𝑖=1

𝜆𝑥
𝑖) (

𝑁
∑
𝑖=1

𝜆𝑦
𝑖)−

𝑁−1
∑
𝑖=1

𝜆𝑥𝑦
𝑖

Online

• Observation:

𝑥𝑦 = ((𝑥 + 𝜆𝑥) − 𝜆𝑥)((𝑦 + 𝜆𝑦) − 𝜆𝑦)
• Reconstruct ̂𝑥 ∶= 𝑥 + 𝜆𝑥 and ̂𝑦 ∶= 𝑦 + 𝜆𝑦

• Compute

[𝑧] = ̂𝑥 ̂𝑦 − ̂𝑥[𝜆𝑦] − ̂𝑦[𝜆𝑥] − [𝜆𝑥𝑦]

No non-linear operations in the online phase!

WARNING: New attack surface arises..
8

Why preprocessing? – Multiplication with Beaver triples

Inputs ∶[𝑥] = (𝑥1, … , 𝑥𝑁) and [𝑦] = (𝑦1, … , 𝑦𝑁)
Output ∶[𝑧] = (𝑧1, … , 𝑧𝑁) such that 𝑧 = 𝑥𝑦

Offline

• Generate many random triples

([𝜆𝑥], [𝜆𝑦], [𝜆𝑥𝑦]) with 𝜆𝑥𝑦 = 𝜆𝑥𝜆𝑦

• Easy in MPCitH:

𝜆𝑥𝑦
𝑁 ∶= (

𝑁
∑
𝑖=1

𝜆𝑥
𝑖) (

𝑁
∑
𝑖=1

𝜆𝑦
𝑖)−

𝑁−1
∑
𝑖=1

𝜆𝑥𝑦
𝑖

Online

• Observation:

𝑥𝑦 = ((𝑥 + 𝜆𝑥) − 𝜆𝑥)((𝑦 + 𝜆𝑦) − 𝜆𝑦)
• Reconstruct ̂𝑥 ∶= 𝑥 + 𝜆𝑥 and ̂𝑦 ∶= 𝑦 + 𝜆𝑦

• Compute

[𝑧] = ̂𝑥 ̂𝑦 − ̂𝑥[𝜆𝑦] − ̂𝑦[𝜆𝑥] − [𝜆𝑥𝑦]

No non-linear operations in the online phase!

WARNING: New attack surface arises..
8

Why preprocessing? – Multiplication with Beaver triples

Inputs ∶[𝑥] = (𝑥1, … , 𝑥𝑁) and [𝑦] = (𝑦1, … , 𝑦𝑁)
Output ∶[𝑧] = (𝑧1, … , 𝑧𝑁) such that 𝑧 = 𝑥𝑦

Offline

• Generate many random triples

([𝜆𝑥], [𝜆𝑦], [𝜆𝑥𝑦]) with 𝜆𝑥𝑦 = 𝜆𝑥𝜆𝑦

• Easy in MPCitH:

𝜆𝑥𝑦
𝑁 ∶= (

𝑁
∑
𝑖=1

𝜆𝑥
𝑖) (

𝑁
∑
𝑖=1

𝜆𝑦
𝑖)−

𝑁−1
∑
𝑖=1

𝜆𝑥𝑦
𝑖

Online

• Observation:

𝑥𝑦 = ((𝑥 + 𝜆𝑥) − 𝜆𝑥)((𝑦 + 𝜆𝑦) − 𝜆𝑦)
• Reconstruct ̂𝑥 ∶= 𝑥 + 𝜆𝑥 and ̂𝑦 ∶= 𝑦 + 𝜆𝑦

• Compute

[𝑧] = ̂𝑥 ̂𝑦 − ̂𝑥[𝜆𝑦] − ̂𝑦[𝜆𝑥] − [𝜆𝑥𝑦]

No non-linear operations in the online phase!

WARNING: New attack surface arises..
8

Why preprocessing? – Multiplication with Beaver triples

Inputs ∶[𝑥] = (𝑥1, … , 𝑥𝑁) and [𝑦] = (𝑦1, … , 𝑦𝑁)
Output ∶[𝑧] = (𝑧1, … , 𝑧𝑁) such that 𝑧 = 𝑥𝑦

Offline

• Generate many random triples

([𝜆𝑥], [𝜆𝑦], [𝜆𝑥𝑦]) with 𝜆𝑥𝑦 = 𝜆𝑥𝜆𝑦

• Easy in MPCitH:

𝜆𝑥𝑦
𝑁 ∶= (

𝑁
∑
𝑖=1

𝜆𝑥
𝑖) (

𝑁
∑
𝑖=1

𝜆𝑦
𝑖)−

𝑁−1
∑
𝑖=1

𝜆𝑥𝑦
𝑖

Online

• Observation:

𝑥𝑦 = ((𝑥 + 𝜆𝑥) − 𝜆𝑥)((𝑦 + 𝜆𝑦) − 𝜆𝑦)
• Reconstruct ̂𝑥 ∶= 𝑥 + 𝜆𝑥 and ̂𝑦 ∶= 𝑦 + 𝜆𝑦

• Compute

[𝑧] = ̂𝑥 ̂𝑦 − ̂𝑥[𝜆𝑦] − ̂𝑦[𝜆𝑥] − [𝜆𝑥𝑦]

No non-linear operations in the online phase!

WARNING: New attack surface arises..
8

Attack II: Probing the unopened online phase

Offline

Online

9

Attack II: Probing the unopened online phase

Offline

Online

Must be hidden!!

9

Attack II: Probing the unopened online phase

Offline

Online

Must be hidden!!

9

Masking Picnic3

Our approach: Masking inside each party

Compute

10

Our approach: Masking inside each party

Compute

10

Our approach: Masking inside each party

Compute

10

Our approach: Masking inside each party

Compute

10

Our approach: Masking inside each party

Compute

10

Our approach: Masking inside each party

Compute

10

Our approach: Masking inside each party

Compute

10

Our approach: Masking inside each party

Compute

10

Masking SHA-3

Masking seed expansion

• [tapes𝑖] ← SHA-3([seed𝑖])

Masking commitments

• [com_off𝑖] ← SHA-3([st𝑖])
• [com_on] ← SHA-3([online_msgs])

Masking everything is expensive..

Heuristic options

• Some hash inputs that are unique per

signature are not sensitive by regarding

SHA-3 as a random oracle and if

attacker only probes 𝑡 bits of input.

• Commitment outputs are not sensitive

• Unmask / selectively mask half of the

SHA-3 computations (without formal

𝑡-probing security)

• Empirically confirmed leakage resilience

11

Masking SHA-3

Masking seed expansion

• [tapes𝑖] ← SHA-3([seed𝑖])

Masking commitments

• [com_off𝑖] ← SHA-3([st𝑖])
• [com_on] ← SHA-3([online_msgs])

Masking everything is expensive..

Heuristic options

• Some hash inputs that are unique per

signature are not sensitive by regarding

SHA-3 as a random oracle and if

attacker only probes 𝑡 bits of input.

• Commitment outputs are not sensitive

• Unmask / selectively mask half of the

SHA-3 computations (without formal

𝑡-probing security)

• Empirically confirmed leakage resilience

11

Implementation & leakage analysis

Benchmarking for the First-order Protected Implementations

Picnic

Mask-

ing

SHAKE

Mask-

ing

Sign-

ing

cy-

cles

Hashing Masking

Over-

head

Stack Code Random

bytes(KB)

No None 304 71% 1.00 32,460 121,349 0

Yes None 460 50% 1.51 32,500 131,326 2,025

Yes All-SNI 1663 86% 5.47 32,724 166,216 158,172

Yes All-DOM 1289 81% 4.24 32,724 158,776 80,378

Yes All-IND 856 72% 2.82 32,724 148.712 2,585

Yes Selective 613 62% 2.01 32,460 148,712 2,025

Yes Sel. Half 546 57% 1.80 32,460 148,712 2,025

Table 1: Benchmarks in millions of Cortex-M4 cycles when 𝑡 = 1.

12

Benchmarking for the First-order Protected Implementations

Picnic

Mask-

ing

SHAKE

Mask-

ing

Sign-

ing

cy-

cles

Hashing Masking

Over-

head

Stack Code Random

bytes(KB)

No None 304 71% 1.00 32,460 121,349 0

Yes None 460 50% 1.51 32,500 131,326 2,025

Yes All-SNI 1663 86% 5.47 32,724 166,216 158,172

Yes All-DOM 1289 81% 4.24 32,724 158,776 80,378

Yes All-IND 856 72% 2.82 32,724 148.712 2,585

Yes Selective 613 62% 2.01 32,460 148,712 2,025

Yes Sel. Half 546 57% 1.80 32,460 148,712 2,025

Table 1: Benchmarks in millions of Cortex-M4 cycles when 𝑡 = 1.

12

A Practical Measurement Setup

• Capture: Tektronix MSO 6

• Short traces at 3.125 GS/s and long

traces at 625MS/s sampling rate

• Target device: STM32F4 Discovery board,

Arm Cortex M4, operated at 168 MHz

• Source: EM emanations on a blocking

cap (C29)

13

A Practical Measurement Setup

• Capture: Tektronix MSO 6

• Short traces at 3.125 GS/s and long

traces at 625MS/s sampling rate

• Target device: STM32F4 Discovery board,

Arm Cortex M4, operated at 168 MHz

• Source: EM emanations on a blocking

cap (C29)

13

Test Vector Leakage Assessment (TVLA)

A pass-fail test to decide if an

implementation has exploitable leakage

• fixed-vs-random (FvR): to detect all

possible first-order leakage.

• random-vs-random (RvR): to

identify a specific exploitable

leakage.

Goals

• Unprotected Picnic3 is vulnerable

(RvR)

• Protected Picnic3 eliminates such

vulnerabilities (FvR).
14

New Side-channel Attacks on Picnic3 (RvR)

Attack I: Probing the opened online phase

̂𝑥 = 𝑥 + 𝜆1 + ⋯ + 𝜆𝑁−1 + 𝜆𝑁
• Measurements from precomputation phase

• The leakage becomes clear after 6,000 traces.

0 0.5 1 1.5 2 2.5 3

10
5

0

5

10

0 4500 9000 13500 18000

6

8

10

15

New Side-channel Attacks on Picnic3 (RvR)

Attack II: Probing the unopened online phase

̂𝑥 = 𝑥 + 𝜆1 + ⋯ + 𝜆𝑁
• Measurements from online simulation,

• The leakage becomes clear after 2,725 traces.

0 0.5 1 1.5 2 2.5 3

10
4

0

2

4

6

8

0 1250 2500 3750 5000

4

5

6

7

8

16

Leakage Analysis (FvR)

Masked SHA-3 (All-IND)

• 71 % of the calculation is hashing

• Fixing the mask value to a constant results in a leaking implementation with

2,000 traces.

• Randomizing the mask results in a non-leaky implementation with 106 traces.

17

Leakage Analysis (FvR)

Masked SHA-3 (All-IND)

• 71 % of the calculation is hashing

• Fixing the mask value to a constant results in a leaking implementation with

2,000 traces.

• Randomizing the mask results in a non-leaky implementation with 106 traces.

0 1 2 3 4

10
4

0

5

10

15

0 1 2 3 4

10
4

0

5

10

15

17

Leakage Analysis (FvR)

Masked SHA-3 (All-IND)

• 71 % of the calculation is hashing

• Fixing the mask value to a constant results in a leaking implementation with

2,000 traces.

• Randomizing the mask results in a non-leaky implementation with 106 traces.

0 1 2 3 4

10
4

0

5

10

15

0 1 2 3 4

10
4

0

5

10

15

17

Leakage Analysis (FvR)

Masked Picnic3 (All-IND 4-round Masked SHA-3)

• Beginning of signature generation until the end of the first MPC instance

• Fixed vs Random secret key – fixed message – randomized signature.

• The |𝑡|-value remains below threshold using 100,000 traces.

• Max |𝑡|-value has a stable pattern.

18

Leakage Analysis (FvR)

Masked Picnic3 (All-IND 4-round Masked SHA-3)

• Beginning of signature generation until the end of the first MPC instance

• Fixed vs Random secret key – fixed message – randomized signature.

• The |𝑡|-value remains below threshold using 100,000 traces.

• Max |𝑡|-value has a stable pattern.

0 2 4 6 8

10
6

0

2

4

6

0 25000 50000 75000 100000
0

2

4

6

18

Leakage Analysis (FvR)

Masked Picnic3 (All-IND 4-round Masked SHA-3)

• Beginning of signature generation until the end of the first MPC instance

• Fixed vs Random secret key – fixed message – randomized signature.

• The |𝑡|-value remains below threshold using 100,000 traces.

• Max |𝑡|-value has a stable pattern.

0 2 4 6 8

10
6

0

2

4

6

0 25000 50000 75000 100000
0

2

4

6

18

Takeaways

• Side-channel attacks against MPCitH with preprocessing is a real threat: as

our two attacks demonstrate

• Generic masking countermeasures without breaking interoperability /

increasing signature size

• Application to Picnic3: an overhead in the range of 1.80-5.47.

• Masked implementation of SHA-3: optimized with M4 assembly and supports

a range of options, from slower but SNI-secure, to our much faster options.

Thank you!

Paper: https://ia.cr/2021/735

Implementation: https://github.com/dkales/picnic_m4/
19

https://ia.cr/2021/735
https://github.com/dkales/picnic_m4/

Takeaways

• Side-channel attacks against MPCitH with preprocessing is a real threat: as

our two attacks demonstrate

• Generic masking countermeasures without breaking interoperability /

increasing signature size

• Application to Picnic3: an overhead in the range of 1.80-5.47.

• Masked implementation of SHA-3: optimized with M4 assembly and supports

a range of options, from slower but SNI-secure, to our much faster options.

Thank you!

Paper: https://ia.cr/2021/735

Implementation: https://github.com/dkales/picnic_m4/
19

https://ia.cr/2021/735
https://github.com/dkales/picnic_m4/

Takeaways

• Side-channel attacks against MPCitH with preprocessing is a real threat: as

our two attacks demonstrate

• Generic masking countermeasures without breaking interoperability /

increasing signature size

• Application to Picnic3: an overhead in the range of 1.80-5.47.

• Masked implementation of SHA-3: optimized with M4 assembly and supports

a range of options, from slower but SNI-secure, to our much faster options.

Thank you!

Paper: https://ia.cr/2021/735

Implementation: https://github.com/dkales/picnic_m4/
19

https://ia.cr/2021/735
https://github.com/dkales/picnic_m4/

Takeaways

• Side-channel attacks against MPCitH with preprocessing is a real threat: as

our two attacks demonstrate

• Generic masking countermeasures without breaking interoperability /

increasing signature size

• Application to Picnic3: an overhead in the range of 1.80-5.47.

• Masked implementation of SHA-3: optimized with M4 assembly and supports

a range of options, from slower but SNI-secure, to our much faster options.

Thank you!

Paper: https://ia.cr/2021/735

Implementation: https://github.com/dkales/picnic_m4/
19

https://ia.cr/2021/735
https://github.com/dkales/picnic_m4/

Takeaways

• Side-channel attacks against MPCitH with preprocessing is a real threat: as

our two attacks demonstrate

• Generic masking countermeasures without breaking interoperability /

increasing signature size

• Application to Picnic3: an overhead in the range of 1.80-5.47.

• Masked implementation of SHA-3: optimized with M4 assembly and supports

a range of options, from slower but SNI-secure, to our much faster options.

Thank you!

Paper: https://ia.cr/2021/735

Implementation: https://github.com/dkales/picnic_m4/
19

https://ia.cr/2021/735
https://github.com/dkales/picnic_m4/

References i

Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin

Grégoire, and François-Xavier Standaert.

maskVerif: Automated verification of higher-order masking in presence of

physical defaults.

In Kazue Sako, Steve Schneider, and Peter Y. A. Ryan, editors, ESORICS 2019,

Part I, volume 11735 of LNCS, pages 300–318. Springer, Heidelberg, September

2019.

Freepik.

Icons made by Freepik from Flaticon.com.

http://www.flaticon.com.

http://www.flaticon.com

References ii

Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.

ZKBoo: Faster zero-knowledge for Boolean circuits.

In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages

1069–1083. USENIX Association, August 2016.

Tim Gellersen, Okan Seker, and Thomas Eisenbarth.

Differential power analysis of the Picnic signature scheme.

To appear at PQCrypto 2021. Cryptology ePrint Archive, Report 2020/267, 2020.

https://eprint.iacr.org/2020/267.

https://eprint.iacr.org/2020/267

References iii

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.

Zero-knowledge from secure multiparty computation.

In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM

Press, June 2007.

Yuval Ishai, Amit Sahai, and David Wagner.

Private circuits: Securing hardware against probing attacks.

In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 463–481.

Springer, Heidelberg, August 2003.

References iv

Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang.

Improved non-interactive zero knowledge with applications to

post-quantum signatures.

In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,

editors, ACM CCS 2018, pages 525–537. ACM Press, October 2018.

Daniel Kales and Greg Zaverucha.

Improving the performance of the Picnic signature scheme.

IACR TCHES, 2020(4):154–188, 2020.

https://tches.iacr.org/index.php/TCHES/article/view/8680.

https://tches.iacr.org/index.php/TCHES/article/view/8680

References v

Okan Seker, Sebastian Berndt, Luca Wilke, and Thomas Eisenbarth.

SNI-in-the-head: Protecting MPC-in-the-head protocols against

side-channel analysis.

In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS

20, pages 1033–1049. ACM Press, November 2020.

Previous countermeasure: SNI-in-the-head [SBWE20]

Compute

Previous countermeasure: SNI-in-the-head [SBWE20]

Compute

Previous countermeasure: SNI-in-the-head [SBWE20]

Compute

Previous countermeasure: SNI-in-the-head [SBWE20]

Compute

Masking MPC

SNI-secure Masked Online Multiplication

• Mask [̂𝑥] ∶= [𝑥 + 𝜆𝑥] and [̂𝑦] ∶= [𝑦 + 𝜆𝑦]
• Each 𝑃𝑖 computes

[𝑧𝑖] = 𝛿1,𝑖SMul([̂𝑥], [̂𝑦]) − SMul([̂𝑥], [𝜆𝑦
𝑖]) − SMul([̂𝑦], [𝜆𝑥

𝑖]) − [𝜆𝑥𝑦
𝑖]

✓ SMul: Standard SNI secure masked multiplier [ISW03]

✓ Never unmask [̂𝑥] and [̂𝑦] until the online phase can be safely revealed

✓ Applies to any MPCitH-PP-style signatures

✓ Securely composable with other gadgets thanks to the SNI property

Heuristics overview

• NI/SNI secure gadgets

• Input-sensitive, half-masked

• Output-sensitive, half-masked

• Unmasked

Msg sk

KDF

gen_seed

seed
∗

gen_seed

iSeed
(1)

iSeed
(2) …

iSeed
(𝑀) RefreshM

KDF KDF
…

KDF

seed1 seed2 seed𝑁

masked_offline

tapes1 tapes2 tapes𝑁

⊕𝜆sk sk

masked_online
̂sk

tapes1 tapes2 tapes𝑁

HH H

msgs1 msgs2 … msgs𝑁

com_oncom1 com𝑁

aux

	Side-channel Attacks on Picnic3
	Masking Picnic3
	Implementation & leakage analysis
	Appendix

