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What happened to consistency?

Chain held by any honest party

immutable cutOff = o(log(x)) blocks
except with negl(x) probability

Blockchain consistency is supposed to prevent double-spending!
- eg. [Nakamoto 2008], [GKL 2015], [PSS 2017], [BMTZ 2017].... etc.



Breaking consistency

Any attacker obtaining majority

'Two assumptions required for consistency: power (not just 51%)

- Bounded total hashing power

- Honestmajority-ofhashing-power (broken by 51% attacker)

When consistency is broken, we say there is a (deep) fork in the blockchain
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51% attacks: Rational treatment

Q: Why are some blockchains more vulnerable to 51% attacks than others?
A: Attackers care about profit! Factors to consider:
- Amount to be double-spent (e.g., 100 SadCoins)
- Cost to attack (e.g., cost to buying or renting mining rigs, electricity costs)
- Block rewards
See also:
- [Bud18] - economics analysis; [JL20] - random walk; [GKW+16] and [HSY~+21] - Markov Decision Process model

- Other rational analyses of blockchains e.g., [Rosll, CKWN16, ES14, Eyal5, SBBR16, SSZ16, LTKS15, TJS16, NKMSI16,
PS17, GKW+16])



Rational protocol design (RPD) [GKMTZ13] (FOCS 2013)

Main advantages:
- Rational cryptographic model
- No restriction on adversary actions
- Composable
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Rational protocol design (RPD)

Protocol Designer D Consistent ledger
o impleme™  functionality F

Inconsistent ledger
—  functionality weak(F) that

Blockchain Can implement allg— '
protocol II (because no honest Attack-payoff security
majority)

Z—

Goal: Prove that we don’t need the weaknesses in weak(F)
to simulate a rational attacker (acting according to his
utility function u, )




Rational protocol design (RPD)

[BGMTZ18] (Eurocrypt 2018):
Bitcoin backbone protocol has strong attack-payoff security

- Attack-payoff security: Rational attacker don’t use weaknesses in

weak(F).

- Strong attack-payoff security: Front-running, honest-mining is a

dominant strategy



Rational protocol design (RPD)

[BGMTZ18] (Eurocrypt 2018):
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Actually depends on the
simulator in the ideal world,
and the environment




Extending the utility with double-spending?

u, (IT, A(ID))

= Z(b’ ., b -breward - Pr(I; ) — E(q’ n g - mcost- Pr(Wq’r)
_4/_%

Reward for
making a block

Corrupt parties have b blocks
confirmed in ledger at round r




Extending the utility with double-spending?

u, (IT, A(ID))

= Z(b’ ., b -breward - Pr(I; ) — E(q’ n g - mcost- Pr(Wq’r)

Cost of making one Make q queries in
mining (hash) query || roundr




Extending the utility with double-spending?

Reward for forking/breaking
consistency (e.g. double-spend)

= Z(b’ N b - breward - Pr(Ib’r) — Z(q’ ,, q - mcost - pr(wq’r) + fpayoff - Pr(K)

Probability of a fork
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[ BGMTZ18] => Still “secure”!

Lemma (informal): For arbitrarily large but poly-size fpayoft (e.g., payoft for
double-spending), blockchain is strongly attack payoff secure.

Proof (similar to [ BGMTZ18]1):

Mining rewards from q queries

Utility, any strategy A1 fpayoft

Utility,
passive strategy A2

Mining rewards from q* = poly(q) queries > utility of A
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Realistically, one must stop mining at some point.

Utility,
passive strategy A2

Mining rewards from q* = poly(q) queries

e.g., Estimated End
of the Universe



Problem

Realistically, one must stop mining at some point.

Utility,
passive strategy A2

Mining rewards from q* = poly(q) queries

e.g., Estimated End
of the Universe

- Cannot amplify amount of passive mining rewards forever

- Example of St. Petersburg paradox
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Unbounded incentives

“Unbounded incentives”:

Utility functions with unlimited growth of utility for passive adversaries.

Lemma (informal):
Any protocol (no matter how “good” or “bad” it is!) is strongly-attack payoff

secure, if the attacker’s utility function has unbounded incentives.



Limited horizons: avoiding “unbounded incentives”

u, (I1, A(II))

= Z(b, N b . breward(l’) . Pr(Ib,r) - Z(q’ D q - mcost - Pr(Wq,r) + fpayoﬂ‘ Pr(K)

- u, (II, A(IT)) has limited horizons if breward(r) is a non-increasing function

and there is a round r such that after r:

E(block reward at round r) — E(mining costs at round r) <0

- Easy to see limited horizons utility -> NOT unbounded



Overview of Contributions

e What makes a coin susceptible to 51% attacks?



What makes a coin susceptible to 51% attacks?

Theorem: (Very roughly) For limited horizons utility function u,, both

attack-payoff security and strong attack-payoft security are impossible if

Lower bound utility of > Upper bound utility of optimal
forking adversary front-running, passive-mining adversary
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Upper bound optimal passive-mining utility

u, (1, A(T))
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Main observations:

1. Pr(K) = negl(x)



Upper bound optimal passive-mining utility

u, (1, A(T))

= Z(b, 9 b - breward(r) - Pr(Ib’r) — Z(q, , 4 mcost - Pr(Wq’r) +fpayoff—Prdc

Main observations:

1. Pr(K) =negl(x)

2. The term

Z(b, 5 b - breward(r) - Pr(Ib’r)

is hard to compute

(time of block enters the ledger = hard to predict)

but can be upper-bounded by using time of block broadcast.




Lower bound utility of forking adversary

Adversary only works on

this chain and keeps
/ successful blocks private

Honest parties continue
with this chain




Lower bound utility of forking adversary

Adversary has majority hashing power, so
his privately-kept chain grows faster




Lower bound utility of forking adversary

Releasing the (red) chain now
causes a fork (reverts supposedly
immutable (green) block)

cutOfT = 3 blocks



Lower bound utility of forking adversary

Releasing the (red) chain now
causes a fork (reverts supposedly

LI immutable (green) block)

i

cutOfT = 3 blocks

How long this takes depends on growth speed of
lower chain -- Chain growth



Lower bound utility of forking adversary

Let t = time it takes until a fork is possible using this adversarial strategy

u, > E(Block rewards — mining costs in t ) + fpayoft

Adversary forks with
overwhelming probability




Overview of Contributions

e How can we protect a coin from 51% attacks?



How to protect coins from 51% attacks?

- No restriction on adversarial strategy

- No assumption of honest majority, only that attackers are rational



How to protect coins from 51% attacks?

- No restriction on adversarial strategy

- No assumption of honest majority, only that attackers are rational

Q: How much confirmation time for a block to be immutable in the blockchain?



Modeling and restricting 51% attackers

We say an adversary spends budget B [BGKRZ20] if he makes a total of B mining queries
over majority of total hashing power.

- eg. (very informally) if the total hashing power in the system is 100 mining queries/round,
and he makes 51 = 50% X100 + 1 queries in one round, he spent budget B =1 in this round.
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Modeling and restricting 51% attackers

We say an adversary spends budget B [BGKRZ20] if he makes a total of B mining queries
over majority of total hashing power.

- eg. (very informally) if the total hashing power in the system is 100 mining queries/round,

and he makes 51 = 50% X100 + 1 queries in one round, he spent budget B =1 in this round.

Proof idea:

Upper bound utility u(B, t)

Limited horizons
utility function u,

Amplify the cutOff parameter

of adversary spending B to accommodate adversary spending
budget over t rounds \ / B budget over t rounds [BGKRZ20]

Find argmax

(B, 1)
(ie., it’s even profitable to go

over majority hashing power)

u(B,t) >0




Visualizing 51% attacks for Ethereum Classic

USD cost of
renting 435MH]/s
$ 0.0001
$ 0.0002
$ 0.0003
$ 0.0004
$ 0.0005
$ 0.0006

Length of attack*
(argmax, u(-, t) > 0)
24 days
10.5 days
4.3 days
3.2 days
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2.1 days
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Rent price per unit (435MH) of hashing power (Cents in USD)

* Using parameters for Ethereum Classic from Feb, 2021. Using t = 3 days as max
interval where passive mining is on expectation profitable (for limited horizons).




Visualizing 51% attacks for Ethereum Classic

N
ol

USD cost of Length of attack* g ’
renting 435MH]/s (argmax, u(-, t) > 0) S 20- .. This is the point when renting
'“E . for passively mining goes from
$ 0.0001 24 days g - ° profitable to unprofitable
$ 0.0002 105 days . 7
$ 0.0003 4.3 days
= 54 ®eo o.....
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0.01 0.02 0.03 0.04 0.05 0.06
$ 00005 26 days Rent price per unit (435MH) of hashing power (Cents in USD)
$ 0.0006 2.1 days

* Using parameters for Ethereum Classic from Feb, 2021. Using t = 3 days as max
interval where passive mining is on expectation profitable (for limited horizons).



Summary

- Realistic utility functions must avoid unbounded incentives
- Limited horizons utility functions analyses both
1. When attack-payoff security is broken (forking is profitable over honestly-mining)

2. When attack-payoff security is maintained

Future work:

- Practical implementations
- Analyzing more complex utility functions
- Analyzing variable difficulty blockchain
(e.g., extending from analyses of [ GKL20], [CEMMPS201])
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Thanke for watching!



