
A Rational Protocol Treatment of

51% Attacks

Christian Badertscher

1

 Yun Lu

2

 Vassilis Zikas

3

1

IOHK,

2

University of Edinburgh,

3

Purdue University

https://eprint.iacr.org/2021/897

CRYPTO 2021

Crypto on the news

Crypto on the news

Crypto on the news

Exchanging Cryptocurrency for Fiat Currency

SadCoin Blockchain

100

Exchange

 $ 5000

Exchanging Cryptocurrency for Fiat Currency

Exchange 100 SadCoins for $5000?

SadCoin Blockchain

100

Exchange

 $ 5000

Exchanging Cryptocurrency for Fiat Currency

Exchange 100 SadCoins for $5000?

Deal!

SadCoin Blockchain

100

Exchange

 $ 5000

has 100

Exchanging Cryptocurrency for Fiat Currency

Exchange 100 SadCoins for $5000?

Deal!

SadCoin Blockchain

100

Exchange

 $ 5000

has 100

Exchanging Cryptocurrency for Fiat Currency

Exchange 100 SadCoins for $5000?

Deal!

SadCoin Blockchain

100

 $ 5000

Exchange

has 100

Exchanging Cryptocurrency for Fiat Currency

Exchange 100 SadCoins for $5000?

Deal!

SadCoin Blockchain

 $ 5000

100

Exchange

has 100

Exchanging Cryptocurrency for Fiat Currency

Exchange 100 SadCoins for $5000?

Deal!

SadCoin Blockchain

100

 $ 5000 Exchange

Double-spending

has 100

SadCoin Blockchain

A longer chain, made privately by who

has some majority of hashing power

(hence colloquial name “51%” attack)

100

 $ 5000 Exchange

Double-spending

has 100

SadCoin Blockchain

A longer chain, made privately by who

has some majority of hashing power

(hence colloquial name “51%” attack)

100

 $ 5000 Exchange

Double-spending

SadCoin Blockchain

100

100

 $ 5000 Exchange

What happened to consistency?

Blockchain consistency is supposed to prevent double-spending!

- e.g. [Nakamoto 2008], [GKL 2015], [PSS 2017], [BMTZ 2017].... etc.

Chain held by any honest party

What happened to consistency?

Blockchain consistency is supposed to prevent double-spending!

- e.g. [Nakamoto 2008], [GKL 2015], [PSS 2017], [BMTZ 2017].... etc.

cutOff = ω(log(𝜅)) blocksimmutable

except with negl(𝜅) probability

Chain held by any honest party

Breaking consistency

Two assumptions required for consistency:

- Bounded total hashing power

- Honest majority of hashing power (broken by 51% attacker)

When consistency is broken, we say there is a (deep) fork in the blockchain

Any attacker obtaining majority

power (not just 51%)

Overview of Contributions

● Model 51% attacks in the rational protocol design framework (RPD)

● The problem of unbounded incentives

● What makes a coin susceptible to 51% attacks?

● How can we protect a coin from 51% attacks?

Overview of Contributions

● Model 51% attacks in the rational protocol design framework (RPD)

● The problem of unbounded incentives

● What makes a coin susceptible to 51% attacks?

● How can we protect a coin from 51% attacks?

51% attacks: Rational treatment

Q: Why are some blockchains more vulnerable to 51% attacks than others?

51% attacks: Rational treatment

Q: Why are some blockchains more vulnerable to 51% attacks than others?

A: Attackers care about profit! Factors to consider:

- Amount to be double-spent (e.g., 100 SadCoins)

- Cost to attack (e.g., cost to buying or renting mining rigs, electricity costs)

- Block rewards

51% attacks: Rational treatment

Q: Why are some blockchains more vulnerable to 51% attacks than others?

A: Attackers care about profit! Factors to consider:

- Amount to be double-spent (e.g., 100 SadCoins)

- Cost to attack (e.g., cost to buying or renting mining rigs, electricity costs)

- Block rewards

See also:

- [Bud18] - economics analysis; [JL20] - random walk; [GKW+16] and [HSY+21] - Markov Decision Process model

- Other rational analyses of blockchains e.g., [Ros11, CKWN16, ES14, Eya15, SBBR16, SSZ16, LTKS15, TJS16, NKMS16,

PS17, GKW+16])

Rational protocol design (RPD) [GKMTZ13] (FOCS 2013)

Main advantages:

- Rational cryptographic model

- No restriction on adversary actions

- Composable

Rational protocol design (RPD)

Protocol Designer D

Blockchain

protocol Π

Rational protocol design (RPD)

Protocol Designer D

W
ants

 t
o im

ple
m

ent

Consistent ledger

functionality F

Blockchain

protocol Π

Rational protocol design (RPD)

Protocol Designer D
Consistent ledger

functionality F

Blockchain

protocol Π

W
ants

 t
o im

ple
m

ent

Can implement

(because no honest

majority)

Inconsistent ledger

functionality weak(F) that

allows blockchain forks

Rational protocol design (RPD)

Protocol Designer D

Can implement

(because no honest

majority)

Consistent ledger

functionality F

Inconsistent ledger

functionality weak(F) that

allows blockchain forks
Blockchain

protocol Π

W
ants

 t
o im

ple
m

ent

Goal: Prove that we don’t need the weaknesses in weak(F)

to simulate a rational attacker (acting according to his

utility function u

A

)

Rational protocol design (RPD)

Protocol Designer D

Can implement

(because no honest

majority)

Consistent ledger

functionality F

Inconsistent ledger

functionality weak(F) that

allows blockchain forks
Blockchain

protocol Π

Goal: Prove that we don’t need the weaknesses in weak(F)

to simulate a rational attacker (acting according to his

utility function u

A

)

W
ants

 t
o im

ple
m

ent

Attack-payoff security

Rational protocol design (RPD)

[BGMTZ18] (Eurocrypt 2018):

Bitcoin backbone protocol has strong attack-payoff security

- Attack-payoff security: Rational attacker don’t use weaknesses in

weak(F).

- Strong attack-payoff security: Front-running, honest-mining is a

dominant strategy

[BGMTZ18] (Eurocrypt 2018):

Bitcoin backbone protocol has strong attack-payoff security

- Attack-payoff security: Rational attacker don’t use weaknesses in

weak(F).

- Strong attack-payoff security: Front-running, honest-mining is a

dominant strategy

Rational protocol design (RPD)

Extending the utility with double-spending?

u

A

(Π, A(Π))

≈ ∑
(b, r)

 b · breward · Pr(I

b,r

) − ∑
(q, r)

 q · mcost · Pr(W

q,r

)

Extending the utility with double-spending?

u

A

(Π, A(Π))

≈ ∑
(b, r)

 b · breward · Pr(I

b,r

) − ∑
(q, r)

 q · mcost · Pr(W

q,r

)

Actually depends on the

simulator in the ideal world,

and the environment

Actually depends on the

simulator in the ideal world,

and the environment

Extending the utility with double-spending?

Reward for

making a block

Corrupt parties have b blocks

confirmed in ledger at round r

u

A

(Π, A(Π))

≈ ∑
(b, r)

 b · breward · Pr(I

b,r

) − ∑
(q, r)

 q · mcost · Pr(W

q,r

)

Actually depends on the

simulator in the ideal world,

and the environment

Extending the utility with double-spending?

Reward for

making a block

Corrupt parties have b blocks

confirmed in ledger at round r

Make q queries in

round r

Cost of making one

mining (hash) query

u

A

(Π, A(Π))

≈ ∑
(b, r)

 b · breward · Pr(I

b,r

) − ∑
(q, r)

 q · mcost · Pr(W

q,r

)

Actually depends on the

simulator in the ideal world,

and the environment

Extending the utility with double-spending?

Reward for

making a block

Corrupt parties have b blocks

confirmed in ledger at round r

Reward for forking/breaking

consistency (e.g. double-spend)

Probability of a fork

u

A

(Π, A(Π))

≈ ∑
(b, r)

 b · breward · Pr(I

b,r

) − ∑
(q, r)

 q · mcost · Pr(W

q,r

) + fpayoff · Pr(K)

Make q queries in

round r

Cost of making one

mining (hash) query

[BGMTZ18] => Still “secure”!

Lemma (informal): For arbitrarily large but poly-size fpayoff (e.g., payoff for

double-spending), blockchain is strongly attack payoff secure.

[BGMTZ18] => Still “secure”!

Lemma (informal): For arbitrarily large but poly-size fpayoff (e.g., payoff for

double-spending), blockchain is strongly attack payoff secure.

Proof (similar to [BGMTZ18]):

fpayoff
Utility, any strategy A

1

Mining rewards from q queries

[BGMTZ18] => Still “secure”!

Lemma (informal): For arbitrarily large but poly-size fpayoff (e.g., payoff for

double-spending), blockchain is strongly attack payoff secure.

Proof (similar to [BGMTZ18]):

fpayoff
Utility, any strategy A

1

Utility,

passive strategy A

2

Mining rewards from q queries

Mining rewards from q* = poly(q) queries > utility of A

1

Problem

Realistically, one must stop mining at some point.

Utility,

passive strategy A

2

Mining rewards from q* = poly(q) queries

e.g., Estimated End

of the Universe

Problem

Realistically, one must stop mining at some point.

- Cannot amplify amount of passive mining rewards forever

- Example of St. Petersburg paradox

Utility,

passive strategy A

2

Mining rewards from q* = poly(q) queries

e.g., Estimated End

of the Universe

Overview of Contributions

● Model 51% attacks in the rational protocol design framework (RPD)

● The problem of unbounded incentives

● What makes a coin susceptible to 51% attacks?

● How can we protect a coin from 51% attacks?

Unbounded incentives

“Unbounded incentives”:

Utility functions with unlimited growth of utility for passive adversaries.

Lemma (informal):

Any protocol (no matter how “good” or “bad” it is!) is strongly-attack payoff

secure, if the attacker’s utility function has unbounded incentives.

Limited horizons: avoiding “unbounded incentives”

- u

A

(Π, A(Π)) has limited horizons if breward(r) is a non-increasing function

and there is a round r such that after r:

E(block reward at round r) − E(mining costs at round r) < 0

- Easy to see limited horizons utility -> NOT unbounded

u

A

(Π, A(Π))

≈ ∑
(b, r)

 b · breward(r) · Pr(I

b,r

) − ∑
(q, r)

 q · mcost · Pr(W

q,r

) + fpayoff · Pr(K)

Overview of Contributions

● 51% attacks in the rational protocol design model (RPD)

● The problem of unbounded incentives

● What makes a coin susceptible to 51% attacks?

● How can we protect a coin from 51% attacks?

What makes a coin susceptible to 51% attacks?

Theorem: (Very roughly) For limited horizons utility function u

A

, both

attack-payoff security and strong attack-payoff security are impossible if

 ＞Lower bound utility of

forking adversary

Upper bound utility of optimal

front-running, passive-mining adversary

Upper bound optimal passive-mining utility

u

A

(Π, A(Π))

≈ ∑
(b, r)

 b · breward(r) · Pr(I

b,r

) − ∑
(q, r)

 q · mcost · Pr(W

q,r

) + fpayoff · Pr(K)

Upper bound optimal passive-mining utility

u

A

(Π, A(Π))

≈ ∑
(b, r)

 b · breward(r) · Pr(I

b,r

) − ∑
(q, r)

 q · mcost · Pr(W

q,r

) + fpayoff · Pr(K)

Main observations:

1. Pr(K) = negl(к)

Upper bound optimal passive-mining utility

u

A

(Π, A(Π))

≈ ∑
(b, r)

 b · breward(r) · Pr(I

b,r

) − ∑
(q, r)

 q · mcost · Pr(W

q,r

) + fpayoff · Pr(K)

Main observations:

1. Pr(K) = negl(к)

2. The term is hard to compute

(time of block enters the ledger = hard to predict)

but can be upper-bounded by using time of block broadcast.

∑
(b, r)

 b · breward(r) · Pr(I

b,r

)

Lower bound utility of forking adversary

Adversary only works on

this chain and keeps

successful blocks private

Honest parties continue

with this chain

Lower bound utility of forking adversary

Adversary has majority hashing power, so

his privately-kept chain grows faster

Lower bound utility of forking adversary

Releasing the (red) chain now

causes a fork (reverts supposedly

immutable (green) block)

cutOff = 3 blocks

Lower bound utility of forking adversary

cutOff = 3 blocks

How long this takes depends on growth speed of

lower chain -- Chain growth

Releasing the (red) chain now

causes a fork (reverts supposedly

immutable (green) block)

Lower bound utility of forking adversary

Let t

q

 = time it takes until a fork is possible using this adversarial strategy

u

A

 ≥ E(Block rewards − mining costs in t

q

) + fpayoff

Adversary forks with

overwhelming probability

Overview of Contributions

● Model 51% attacks in the rational protocol design framework (RPD)

● The problem of unbounded incentives

● What makes a coin susceptible to 51% attacks?

● How can we protect a coin from 51% attacks?

How to protect coins from 51% attacks?

- No restriction on adversarial strategy

- No assumption of honest majority, only that attackers are rational

- No restriction on adversarial strategy

- No assumption of honest majority, only that attackers are rational

Q: How much confirmation time for a block to be immutable in the blockchain?

How to protect coins from 51% attacks?

Modeling and restricting 51% attackers

We say an adversary spends budget B [BGKRZ20] if he makes a total of B mining queries

over majority of total hashing power.

- e.g. (very informally) if the total hashing power in the system is 100 mining queries/round,

and he makes 51 = 50%✕100 + 1 queries in one round, he spent budget B = 1 in this round.

Modeling and restricting 51% attackers

Limited horizons

utility function u

A

We say an adversary spends budget B [BGKRZ20] if he makes a total of B mining queries

over majority of total hashing power.

- e.g. (very informally) if the total hashing power in the system is 100 mining queries/round,

and he makes 51 = 50%✕100 + 1 queries in one round, he spent budget B = 1 in this round.

Proof idea:

Modeling and restricting 51% attackers

Limited horizons

utility function u

A

Upper bound utility u(B, t)

of adversary spending B

budget over t rounds

We say an adversary spends budget B [BGKRZ20] if he makes a total of B mining queries

over majority of total hashing power.

- e.g. (very informally) if the total hashing power in the system is 100 mining queries/round,

and he makes 51 = 50%✕100 + 1 queries in one round, he spent budget B = 1 in this round.

Proof idea:

Modeling and restricting 51% attackers

Limited horizons

utility function u

A

Upper bound utility u(B, t)

of adversary spending B

budget over t rounds

Find argmax

(B, t)

 u(B, t) > 0

(i.e., it’s even profitable to go

over majority hashing power)

We say an adversary spends budget B [BGKRZ20] if he makes a total of B mining queries

over majority of total hashing power.

- e.g. (very informally) if the total hashing power in the system is 100 mining queries/round,

and he makes 51 = 50%✕100 + 1 queries in one round, he spent budget B = 1 in this round.

Proof idea:

Modeling and restricting 51% attackers

Limited horizons

utility function u

A

Upper bound utility u(B, t)

of adversary spending B

budget over t rounds

Find argmax

(B, t)

 u(B, t) > 0

(i.e., it’s even profitable to go

over majority hashing power)

Amplify the cutOff parameter

to accommodate adversary spending

B budget over t rounds [BGKRZ20]

We say an adversary spends budget B [BGKRZ20] if he makes a total of B mining queries

over majority of total hashing power.

- e.g. (very informally) if the total hashing power in the system is 100 mining queries/round,

and he makes 51 = 50%✕100 + 1 queries in one round, he spent budget B = 1 in this round.

Proof idea:

USD cost of

renting 435MH/s

Length of attack*

(argmax

t

 u(· , t) > 0)

$ 0.0001 24 days

$ 0.0002 10.5 days

$ 0.0003 4.3 days

$ 0.0004 3.2 days

$ 0.0005 2.6 days

$ 0.0006 2.1 days

* Using parameters for Ethereum Classic from Feb, 2021. Using t = 3 days as max

interval where passive mining is on expectation profitable (for limited horizons).

Visualizing 51% attacks for Ethereum Classic

USD cost of

renting 435MH/s

Length of attack*

(argmax

t

 u(· , t) > 0)

$ 0.0001 24 days

$ 0.0002 10.5 days

$ 0.0003 4.3 days

$ 0.0004 3.2 days

$ 0.0005 2.6 days

$ 0.0006 2.1 days

Visualizing 51% attacks for Ethereum Classic

* Using parameters for Ethereum Classic from Feb, 2021. Using t = 3 days as max

interval where passive mining is on expectation profitable (for limited horizons).

This is the point when renting

for passively mining goes from

profitable to unprofitable

Summary

- Realistic utility functions must avoid unbounded incentives

- Limited horizons utility functions analyses both

1. When attack-payoff security is broken (forking is profitable over honestly-mining)

2. When attack-payoff security is maintained

Future work:

- Practical implementations

- Analyzing more complex utility functions

- Analyzing variable difficulty blockchain

(e.g., extending from analyses of [GKL20], [CEMMPS20])

References

[Nakamoto2008] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[GKL2015] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applications.

EUROCRYPT 2015

[PSS2017] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous networks.

EUROCRYPT 2017

[BMTZ2017] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction ledger: A

composable treatment. CRYPTO 2017

[Bud18] Eric Budish. The economic limits of bitcoin and the blockchain. Technical report, National Bureau of Economic

Research, 2018.

[JL20] Jehyuk Jang and Heung-No Lee. Profitable double-spending attacks. Applied Sciences

[GKW+16] Arthur Gervais, Ghassan O. Karame, Karl Wust, Vasileios Glykantzis, Hubert Ritzdorf, and Srdjan Capkun. On the

security and performance of proof of work blockchains. CCS 2016

References

[HSY+21] Runchao Han, Zhimei Sui, Jiangshan Yu, Joseph Liu, and Shiping Chen. Fact and fiction: Challenging the honest

majority assumption of permissionless blockchains. ASIA CCS 2021

[Ros11] Meni Rosenfeld. Analysis of bitcoin pooled mining reward systems. CoRR, 2011.

[CKWN16] Miles Carlsten, Harry A. Kalodner, S. Matthew Weinberg, and Arvind Narayanan. On the instability of bitcoin

without the block reward. CCS 2016.

[ES14] Ittay Eyal and Emin G un Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Nicolas Christin and

Reihaneh Safavi-Naini, editors, FC 2014.

[Eya15] Ittay Eyal. The miner’s dilemma. Security and Privacy 2015

[SBBR16] Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. Incentive compatibility of bitcoin mining

pool reward functions. FC 2016

[SSZ16] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining strategies in bitcoin. FC 2016

[LTKS15] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystifying incentives in the consensus computer.

CCS 2015

[TJS16] Jason Teutsch, Sanjay Jain, and Prateek Saxena. When cryptocurrencies mine their own business. FC 2016,

[NKMS16] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining: Generalizing selfish mining and

combining with an eclipse attack. In S&P, 2016

[PS17] Rafael Pass and Elaine Shi. FruitChains: A fair blockchain. PODC 2017

[GKMTZ13] Juan A. Garay, Jonathan Katz, Ueli Maurer, Bj orn Tackmann, and Vassilis Zikas. Rational protocol design:

Cryptography against incentive driven adversaries. FOCS 2013.

[BGMTZ18] Christian Badertscher, Juan A. Garay, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. But why does it work? A

rational protocol design treatment of bitcoin. EUROCRYPT 2018,

References

[BGKRZ20] Christian Badertscher, Peter Ga?i, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Consensus redux:

Distributed ledgers in the face of adversarial supremacy. Cryptology ePrint Archive

[GKL20] Juan Garay and Aggelos Kiayias and Nikos Leonardos. Full Analysis of Nakamoto Consensus in Bounded-Delay

Networks. Cryptology ePrint Archive

[CEMMPS20] T-H. Hubert Chan and Naomi Ephraim and Antonio Marcedone and Andrew Morgan and Rafael Pass and

Elaine Shi. Blockchain with Varying Number of Players. Cryptology ePrint Archive

References

