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Blockchain consistency is supposed to prevent double-spending!

- e.g. [Nakamoto 2008], [GKL 2015], [PSS 2017], [BMTZ 2017].... etc.

cutOff = ω(log(𝜅)) blocksimmutable 

except with negl(𝜅) probability

Chain held by any honest party



Breaking consistency

Two assumptions required for consistency:

- Bounded total hashing power

- Honest majority of hashing power (broken by 51% attacker)

When consistency is broken, we say there is a (deep) fork in the blockchain

Any attacker obtaining majority 

power (not just 51%)
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51% attacks: Rational treatment

Q: Why are some blockchains more vulnerable to 51% attacks than others?

A: Attackers care about profit! Factors to consider:

- Amount to be double-spent (e.g., 100 SadCoins)

- Cost to attack (e.g., cost to buying or renting mining rigs, electricity costs)

- Block rewards

See also: 

- [Bud18] - economics analysis; [JL20] - random walk; [GKW+16] and [HSY+21] - Markov Decision Process model

- Other rational analyses of blockchains e.g., [Ros11, CKWN16, ES14, Eya15, SBBR16, SSZ16, LTKS15, TJS16, NKMS16, 

PS17, GKW+16])



Rational protocol design (RPD) [GKMTZ13] (FOCS 2013)

Main advantages:

- Rational cryptographic model

- No restriction on adversary actions

- Composable
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Actually depends on the 

simulator in the ideal world, 

and the environment

Extending the utility with double-spending?

Reward for 

making a block

Corrupt parties have b blocks 

confirmed in ledger at round r

Reward for forking/breaking 

consistency (e.g. double-spend)

Probability of a fork 

u

A 

(Π,  A(Π)) 

≈  ∑
(b, r)

 b · breward · Pr(I

b,r

)  − ∑
(q, r)

 q · mcost · Pr(W

q,r

) + fpayoff · Pr(K)

Make q queries in 

round r

Cost of making one 

mining (hash) query
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Lemma (informal): For arbitrarily large but poly-size fpayoff (e.g., payoff for 

double-spending), blockchain is strongly attack payoff secure.

Proof (similar to [BGMTZ18]): 

fpayoff
Utility, any strategy A

1

Utility, 

passive strategy A

2

Mining rewards from q queries

Mining rewards from q* = poly(q) queries > utility of A

1
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Problem

Realistically, one must stop mining at some point.

- Cannot amplify amount of passive mining rewards forever

- Example of St. Petersburg paradox

Utility, 

passive strategy A

2

Mining rewards from q* = poly(q) queries

e.g., Estimated End 

of the Universe
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Unbounded incentives

“Unbounded incentives”: 

Utility functions with unlimited growth of utility for passive adversaries.

Lemma (informal): 

Any protocol (no matter how “good” or “bad” it is!) is strongly-attack payoff 

secure, if the attacker’s utility function has unbounded incentives.



Limited horizons: avoiding “unbounded incentives”
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What makes a coin susceptible to 51% attacks?

Theorem: (Very roughly) For limited horizons utility function u

A

, both 

attack-payoff security and strong attack-payoff security are impossible if 

 

 ＞Lower bound utility of 

forking adversary

Upper bound utility of optimal 

front-running, passive-mining adversary
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Upper bound optimal passive-mining utility 

u
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(Π,  A(Π)) 

≈  ∑
(b, r)

 b · breward(r) · Pr(I

b,r

)  − ∑
(q, r)

 q · mcost · Pr(W

q,r

) + fpayoff · Pr(K)

Main observations:

1. Pr(K) = negl(к)

2. The term      is hard to compute 

(time of block enters the ledger = hard to predict)

but can be upper-bounded by using time of block broadcast.

                                                    

∑
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cutOff = 3 blocks

How long this takes depends on growth speed of 

lower chain -- Chain growth

Releasing the (red) chain now 

causes a fork (reverts supposedly 

immutable (green) block)



Lower bound utility of forking adversary 

Let t

q

 = time it takes until a fork is possible using this adversarial strategy

u

A

 ≥ E(Block rewards − mining costs in t

q

) + fpayoff

Adversary forks with 

overwhelming probability



Overview of Contributions

● Model 51% attacks in the rational protocol design framework (RPD)

● The problem of unbounded incentives

● What makes a coin susceptible to 51% attacks?

● How can we protect a coin from 51% attacks?



How to protect coins from 51% attacks?

- No restriction on adversarial strategy

- No assumption of honest majority, only that attackers are rational
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- No assumption of honest majority, only that attackers are rational

Q: How much confirmation time for a block to be immutable in the blockchain?

How to protect coins from 51% attacks?
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to accommodate adversary spending 
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Visualizing 51% attacks for Ethereum Classic

* Using parameters for Ethereum Classic from Feb, 2021. Using t = 3 days as max 

interval where passive mining is on expectation profitable (for limited horizons).

This is the point when renting 

for passively mining goes from 

profitable to unprofitable



Summary

- Realistic utility functions must avoid unbounded incentives

- Limited horizons utility functions analyses both

1. When attack-payoff security is broken (forking is profitable over honestly-mining)

2. When attack-payoff security is maintained

Future work:

- Practical implementations

- Analyzing more complex utility functions

- Analyzing variable difficulty blockchain

(e.g., extending from analyses of [GKL20], [CEMMPS20])
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