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Introduction



• Block cipher based

– CBC-MAC, PMAC,…

• Wegman-Carter & polynomial

– GMAC, Poly1305,…

• Hash based

– HMAC/NMAC, keyed-sponge,…

Types of MACs



• Most basic approach to convert Merkle-Damgård hash → MAC

• Standardized in FIPS PUB 198 / Used in TLS, SSH, IPsec,…
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HMAC (Hash-based MAC)

𝐾 
$
0,1 𝑘 (𝑘 ≤ 𝑚)

𝐾𝑖𝑛 = 𝐾⊕ ipad
𝐾𝑜𝑢𝑡 = 𝐾⊕ opad

(ipad, opad: constants)

𝑚

𝑛 𝑛



• Two-key variant of HMAC
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NMAC

𝐾1, 𝐾2 
$
0,1 𝑛

𝑚

𝑛 𝑛



• Security against classical attacks:

Tight security bound…𝑂 2𝑛/2 (n: output length) [GPR14]

• Security against quantum query attacks:

Secure up to 𝑂 2𝑛/5 (or 𝑂 2𝑛/8 ) queries (in the standard model) [SY17]

Trivial attack…𝑂 2𝑛/3 queries
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Security of HMAC/NMAC

[GPR14] Gazi, P., Pietrzak, K., Rybár, M.: The exact prf-security of NMAC and HMAC. (CRYPTO 2014)

[SY17] Song, F., Yun, A.: Quantum security of NMAC and related constructions – PRF domain extension against quantum attacks. (CRYPTO2017)

*1

*1 These security bounds are not explicitly provided in [SY17], but we can reasonably deduce the corresponding security in the QROM  is 𝑂 2𝑛/5 (or 𝑂 2𝑛/8 )
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Security of HMAC/NMAC

[GPR14] Gazi, P., Pietrzak, K., Rybár, M.: The exact prf-security of NMAC and HMAC. (CRYPTO 2014)

[SY17] Song, F., Yun, A.: Quantum security of NMAC and related constructions – PRF domain extension against quantum attacks. (CRYPTO2017)

Q. Can we show the tight quantum security bound?

*1 These security bounds are not explicitly provided in [SY17], but we can reasonably deduce the corresponding security in the QROM  is 𝑂 2𝑛/5 (or 𝑂 2𝑛/8 )

*1



• Tight quantum security bound in the QROM (ℎ : QRO)

• HMAC/NMAC are indistinguishable from a RF against quantum 

query attacks as long as 𝑞ℎ + 𝑄 ⋅ ℓ
3

5 ≥ 2𝑛/3

– 𝑞ℎ: max. num. of quantum queries to ℎ

– 𝑄: max. num. of quantum queries to the keyed oracle of HMAC/NMAC

– ℓ: maximum message length

• Tight when ℓ is not exponentially large

• Compressed oracle technique

• Hardest part: Proving the prob. of a bad event is low

– We introduce a new idea to capture the uncertainty of outputs of a random 

function that the adversary cannot observe
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Results



Rough Overview of the Proof
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Game 𝐆𝟏
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Game 𝐆′𝟏
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Game 𝐆′𝟐
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• From G𝑖 to G′𝑖 :      𝑓𝑜𝑢𝑡 ∘ 𝑓𝑖 ⇒ 𝑔𝑖

• From G′𝑖 to G𝑖+1:  ℎ 𝑓𝑖 ⋅ ,⋅ ⇒ 𝑓𝑖+1(⋅,⋅)

• 𝑓𝑜𝑢𝑡, 𝑓1, 𝑓2, …, 𝑔1, 𝑔2, … are independent random functions 

• G′ℓ: The ideal game (random function)
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Game transitions



• From G𝑖 to G′𝑖 :      𝑓𝑜𝑢𝑡 ∘ 𝑓𝑖 ⇒ 𝑔𝑖

• From G′𝑖 to G𝑖+1:  ℎ 𝑓𝑖 ⋅ ,⋅ ⇒ 𝑓𝑖+1(⋅,⋅)

• 𝑓𝑜𝑢𝑡, 𝑓1, 𝑓2, …, 𝑔1, 𝑔2, … are independent random functions 

• G′ℓ: The ideal game (random function)
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Game transitions

The hardest part



The hardest part: Classical proof
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The hardest part (simplified)

`h

𝑣𝑢

𝑓

𝑣𝑢

𝑓′

𝑓, 𝑓′, ℎ are independent random functions

𝑛 𝑚

𝑛 𝑛 𝑛

𝑛 𝑚

Indistinguishable?`h `h
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The hardest part (equivalent ver.)

`h

𝑣𝑢

𝑓

𝑓, 𝑔, ℎ are independent random functions

𝑛 𝑚

𝑛 𝑛

g̀
𝑣𝑢

𝑓

𝑛 𝑚

𝑛 𝑛

Indistinguishable?`h `h
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The hardest part (equivalent ver.)

`h

𝑣𝑢

𝑓

𝑓, 𝑔, ℎ are independent random functions

𝑛 𝑚

𝑛 𝑛

g̀
𝑣𝑢

𝑓

𝑛 𝑚

𝑛 𝑛
𝐹1
ℎ 𝑢, 𝑣 𝐹2 𝑢, 𝑣

Indistinguishable?`h `h



• 𝐹1
ℎ, ℎ and 𝐹2, ℎ are indistinguishable if coll and hit do not occur

coll : a new output of 𝑓 collides with a previous input to h

hit : a new direct query to h collides with a previous output of 𝑓

￢ coll ∨ hit ⇒ outputs of 𝐹1
ℎ and 𝐹2 seem completely random

25

Classical proof idea
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Classical proof idea
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Classical proof idea



• 𝐹1
ℎ, ℎ and 𝐹2, ℎ are indistinguishable if coll and hit do not occur
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Classical proof idea



• 𝐹1
ℎ, ℎ and 𝐹2, ℎ are indistinguishable if coll and hit do not occur

coll : a new output of 𝑓 collides with a previous input to h

hit : a new direct query to h collides with a previous output of 𝑓

￢ coll ∨ hit ⇒ outputs of 𝐹1
ℎ and 𝐹2 seem completely random

What we have to prove:  Pr coll and Pr hit are small

– Pr coll can easily be upper bounded by using the randomness of 𝑓

– Pr hit …the randomness of 𝑓 cannot be directly used and we do not know what 

the adversary will query 

→ some techniques needed (e.g., coefficient-H) to deal with hit
32

Classical proof idea



Compressed Oracle Technique

33



• Classical proofs often rely on the fact that queries/answers can be 

recorded

• However, in the quantum setting “recording queries” in naïve ways 

disturb quantum states → lots of classical proofs are invalid in the 

quantum setting

• Zhandry’s compressed oracle technique enables us to record 

queries of random functions to some extent [Zha19]
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Compressed Oracle Technique

[Zha19] Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. CRYPTO 2019.



• The compressed oracle holds databases of queries/answers in 

quantum superposition

• Quantum states of the adversary and the oracle look like

 

𝑎,𝑏,𝑐,𝑥1,…,𝑦𝑞

𝛼𝑎,𝑏,𝑐,𝑥1,…,𝑦𝑞 𝑎, 𝑏, 𝑐 ⊗ 𝑥1, 𝑦1 , … , 𝑥𝑞 , 𝑦𝑞

• It behaves like the classical lazy-sampling (to some extent)

– A fresh query  𝑥 → uniform superposition of y is added:  𝑦
1

2𝑛
𝑦

– Sometimes records are forgotten or overwritten
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Compressed Oracle Technique (cont’d)

adversary Oracle’s database



Proof in the Quantum setting

36



The first idea: classical proof idea + compressed oracle

The joint quantum states of

– Adversary 𝐴 and the oracles 𝐹1
ℎ, ℎ , and

– Adversary 𝐴 and the oracles 𝐹2, ℎ

will be indistinguishable as long as coll and hit do not happen in the 

databases & for 𝐴’s query

What we have to prove:  “Pr coll ” and “Pr hit ” are small

– Pr coll can easily be upper bounded by using the randomness of 𝑓

– Pr hit … the randomness of 𝑓 cannot be directly used and we do not know 

what the adversary will query and classical proof techniques cannot be used

→ new technique needed to deal with hit
37

The first proof idea in the quantum setting



hit…the event that the adversary 𝐴 succeeds to guess an output of 𝑓
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How to deal with 𝐡𝐢𝐭 in the quantum setting



Suppose the adversary 𝐴 makes the first query (u,v) to 𝐹1
ℎ

1. 𝛼 = 𝑓 𝑢 is sampled

2. 𝑤 = ℎ(𝛼, 𝑣) is sampled and returned to 𝐴
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How to deal with 𝐡𝐢𝐭 in the quantum setting

`h𝑓

Adversary A

𝐹1
ℎ



Suppose the adversary 𝐴 makes a fresh query (u,v) to 𝐹1
ℎ

1. 𝛼 = 𝑓 𝑢 is sampled

2. 𝑤 = ℎ(𝛼, 𝑣) is sampled and returned to 𝐴
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How to deal with 𝐡𝐢𝐭 in the quantum setting
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ℎ
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How to deal with 𝐡𝐢𝐭 in the quantum setting
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How to deal with 𝐡𝐢𝐭 in the quantum setting

`h

𝑣𝑢

𝑓

Adversary A

𝐹1
ℎ

(u,v)
𝑤

𝑤

𝑢, 𝛼 ⊗ 𝛼||𝑣, 𝑤

Database for f Database for h

𝛼



Suppose the adversary 𝐴 makes a fresh query (u,v) to 𝐹1
ℎ

1. 𝛼 = 𝑓 𝑢 is sampled

2. 𝑤 = ℎ(𝛼, 𝑣) is sampled and returned to 𝐴

The adversary knows w but does not anything about 𝛼 = 𝑓 𝑢
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How to deal with 𝐡𝐢𝐭 in the quantum setting
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𝑤
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Database for f Database for h

𝛼

Guess…

z?
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How to deal with 𝐡𝐢𝐭 in the quantum setting

`h

𝑣𝑢

𝑓
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ℎ

(u,v)
𝑤

𝑤

𝑢, 𝛼 ⊗ 𝛼||𝑣, 𝑤
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𝑢, 𝛽 ⊗ 𝛽||𝑣, 𝑤

𝑢, 𝛾 ⊗ 𝛾||𝑣, 𝑤

indistinguishable

??

Guess…

z?



We say databases are equivalent if they are indistinguishable from the 

adversary

For arbitrary 𝑧 (the adversary’s guess of an output of 𝑓),

Pr 𝑧 is indeed an output of 𝑓 =
# equivalent DBs s.t. 𝑓 𝑢 =𝑧 for some 𝑢

# equivalent DBs

= 𝑂
𝑖

2𝑛
(after making i queries)
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How to deal with 𝐡𝐢𝐭 in the quantum setting



We say databases are equivalent if they are indistinguishable from the 

adversary

For arbitrary 𝑧 (the adversary’s guess of an output of 𝑓),

Pr 𝑧 is indeed an output of 𝑓 =
# equivalent DBs s.t. 𝑓 𝑢 =𝑧 for some 𝑢

# equivalent DBs

≈ 𝑂
𝑖

2𝑛
(after making i queries)

Pr hit occurs at the 𝑖‐ th query ≈ 𝑂
𝑖

2𝑛
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How to deal with 𝐡𝐢𝐭 in the quantum setting



𝜙hit ≔The vector that corresponds to “𝐡𝐢𝐭 happens after q queries”

𝜙hit
(𝑖)
≔The vector that corresponds to “𝐡𝐢𝐭 happens at the i-th query”

𝜙hit ≤  

1≤𝑖≤𝑞

𝜙hit
𝑖
≤  

1≤𝑖≤𝑞

Pr hit occurs at the 𝑖‐ th query ≤ 𝑞 ⋅ 𝑂
𝑞

2𝑛
≤ 𝑂

𝑞3

2𝑛

The norm of 𝜙hit is small as long as 𝑞 ≪ 2
𝑛

3

𝜙hit = Pr hit
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How to deal with 𝐡𝐢𝐭 in the quantum setting



More precisely, we show

• 𝜙hit is small as long as 𝑞 ≪ 2
𝑛

3

• 𝜙coll is small as long as 𝑞 ≪ 2
𝑛

3

• The quantum states are “equal” (there is an isometry) if ￢(hit∨coll) 

• Quantum coefficients for equivalent databases are exactly equal

by tracing coefficient of each vector in detail

50

Remarks



• From G𝑖 to G′𝑖 :      𝑓𝑜𝑢𝑡 ∘ 𝑓𝑖 ⇒ 𝑔𝑖 indistinguishable up to 2𝑛/3 queries

• From G′𝑖 to G𝑖+1:  ℎ 𝑓𝑖 ⋅ ,⋅ ⇒ 𝑓𝑖+1(⋅,⋅) indistinguishable up to 2𝑛/3 queries

• 𝑓𝑜𝑢𝑡, 𝑓1, 𝑓2, …, 𝑔1, 𝑔2, … are independent random functions 

• G0: The real game (NMAC)

• G′ℓ: The ideal game (random function)
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Game transitions
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• From G𝑖 to G′𝑖 :      𝑓𝑜𝑢𝑡 ∘ 𝑓𝑖 ⇒ 𝑔𝑖 indistinguishable up to 2𝑛/3 queries

• From G′𝑖 to G𝑖+1:  ℎ 𝑓𝑖 ⋅ ,⋅ ⇒ 𝑓𝑖+1(⋅,⋅) indistinguishable up to 2𝑛/3 queries

• 𝑓𝑜𝑢𝑡, 𝑓1, 𝑓2, …, 𝑔1, 𝑔2, … are independent random functions 

• G0: The real game (NMAC)

• G′ℓ: The ideal game (random function)
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Game transitions

indistinguishable up to 2𝑛/3 queries

(when ℓ is small)



• From G𝑖 to G′𝑖 :      𝑓𝑜𝑢𝑡 ∘ 𝑓𝑖 ⇒ 𝑔𝑖 indistinguishable up to 2𝑛/3 queries

• From G′𝑖 to G𝑖+1:  ℎ 𝑓𝑖 ⋅ ,⋅ ⇒ 𝑓𝑖+1(⋅,⋅) indistinguishable up to 2𝑛/3 queries

• 𝑓𝑜𝑢𝑡, 𝑓1, 𝑓2, …, 𝑔1, 𝑔2, … are independent random functions 

• G0: The real game (NMAC)

• G′ℓ: The ideal game (random function)

Proof for HMAC is almost the same
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Game transitions

indistinguishable up to 2𝑛/3 queries

(when ℓ is small)



Summary
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• Tight quantum security bound in the QROM (ℎ : QRO)

• HMAC/NMAC are indistinguishable from a RF against quantum 

query attacks as long as 𝑞ℎ + 𝑄 ⋅ ℓ
3

5 ≥ 2𝑛/3

– 𝑞ℎ: max. num. of quantum queries to ℎ, 𝑄: max. num. of quantum queries to 

the keyed oracle of HMAC/NMAC, ℓ: maximum message length

• Tight when ℓ is not exponentially large

• Compressed oracle technique

• Hardest part: Proving the adversary’s guess success prob. is low

– We introduced “equivalent databases” to capture the uncertainty of outputs of 

a random function that the adversary cannot observe directly
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Summary

Thank you!


