

On Tight Quantum Security of HMAC and NMAC in the Quantum Random Oracle Model

Akinori Hosoyamada (NTT Corporation / Nagoya University)

Tetsu Iwata (Nagoya University)

@Crypto 2021

Introduction

Types of MACs

- Block cipher based
 - CBC-MAC, PMAC,...
- Wegman-Carter & polynomial
 - GMAC, Poly1305,...
- Hash based
 - HMAC/NMAC, keyed-sponge,...

HMAC (Hash-based MAC)

- Most basic approach to convert Merkle-Damgård hash \rightarrow MAC
- Standardized in FIPS PUB 198 / Used in TLS, SSH, IPsec,...

NMAC

• Two-key variant of HMAC

Security of HMAC/NMAC

• Security against classical attacks:

Tight security bound... $O(2^{n/2})$ (n: output length) [GPR14]

• Security against quantum query attacks:

Secure up to $O(2^{n/5})$ (or $O(2^{n/8})$) queries^{*1} (in the standard model) [SY17]

Trivial attack... $O(2^{n/3})$ queries

[GPR14] Gazi, P., Pietrzak, K., Rybár, M.: The exact prf-security of NMAC and HMAC. (CRYPTO 2014) [SY17] Song, F., Yun, A.: Quantum security of NMAC and related constructions – PRF domain extension against quantum attacks. (CRYPTO2017)

*1 These security bounds are not explicitly provided in [SY17], but we can reasonably deduce the corresponding security in the QROM is $O(2^{n/5})$ (or $O(2^{n/8})$)

Security of HMAC/NMAC

• Security against classical attacks:

Tight security bound... $O(2^{n/2})$ (n: output length) [GPR14]

• Security against quantum query attacks:

Secure up to $O(2^{n/5})$ (or $O(2^{n/8})$) queries^{*1} (in the standard model) [SY17]

Trivial attack... $O(2^{n/3})$ queries

Q. Can we show the tight quantum security bound?

[GPR14] Gazi, P., Pietrzak, K., Rybár, M.: The exact prf-security of NMAC and HMAC. (CRYPTO 2014) [SY17] Song, F., Yun, A.: Quantum security of NMAC and related constructions – PRF domain extension against quantum attacks. (CRYPTO2017)

*1 These security bounds are not explicitly provided in [SY17], but we can reasonably deduce the corresponding security in the QROM is $O(2^{n/5})$ (or $O(2^{n/8})$)

Results

- Tight quantum security bound in the QROM (*h* : QRO)
- HMAC/NMAC are indistinguishable from a RF against quantum query attacks as long as $(q_h + Q) \cdot \ell^{\frac{3}{5}} \ge 2^{n/3}$
 - $-q_h$: max. num. of quantum queries to h
 - *Q*: max. num. of quantum queries to the keyed oracle of HMAC/NMAC
 - $-\ell$: maximum message length
- Tight when ℓ is not exponentially large
- Compressed oracle technique
- Hardest part: Proving the prob. of a bad event is low
 - We introduce a new idea to capture the uncertainty of outputs of a random function that the adversary cannot observe

Rough Overview of the Proof

Game G₀ (NMAC)

Game G₀ (NMAC)

Game G₁

 $h(K_1,\cdot) \Rightarrow f_1$ $h(K_2,\cdot) \Rightarrow f_{out}$

Game G₁

 $f_{out} \circ f_1 \Rightarrow g_1$

Game G'_1

NTT 🕐

 $h(f_1(\cdot),\cdot) \Rightarrow f_2(\cdot,\cdot)$

Game G₂

 $f_{out} \circ f_2 \Rightarrow g_2$

- From G_i to G'_i : $f_{out} \circ f_i \Rightarrow g_i$
- From G'_i to G_{i+1} : $h(f_i(\cdot), \cdot) \Rightarrow f_{i+1}(\cdot, \cdot)$
- $f_{out}, f_1, f_2, ..., g_1, g_2, ...$ are independent random functions
- G'_{ℓ} : The ideal game (random function)

- From G_i to G'_i: f_{out} ∘ f_i ⇒ g_i The hardest part
 From G'_i to G_{i+1}: h(f_i(·),·) ⇒ f_{i+1}(·,·)
 f_{out}, f₁, f₂, ..., g₁, g₂, ... are independent random functions
- G'_{ℓ} : The ideal game (random function)

The hardest part: Classical proof

The hardest part (simplified)

f, f', h are independent random functions

f, g, h are independent random functions

NTT

f, g, h are independent random functions

- (F_1^h, h) and (F_2, h) are indistinguishable if **coll** and **hit** do not occur
- **coll** : a new output of *f* collides with a previous input to h **hit** : a new direct query to h collides with a previous output of *f*

- (F_1^h, h) and (F_2, h) are indistinguishable if **coll** and **hit** do not occur
- **coll** : a new output of *f* collides with a previous input to h **hit** : a new direct query to h collides with a previous output of *f*

- (F_1^h, h) and (F_2, h) are indistinguishable if **coll** and **hit** do not occur
- **coll** : a new output of *f* collides with a previous input to h **hit** : a new direct query to h collides with a previous output of *f*

- (F_1^h, h) and (F_2, h) are indistinguishable if **coll** and **hit** do not occur
- **coll** : a new output of *f* collides with a previous input to h **hit** : a new direct query to h collides with a previous output of *f*

- (F_1^h, h) and (F_2, h) are indistinguishable if **coll** and **hit** do not occur
- **coll** : a new output of *f* collides with a previous input to h **hit** : a new direct query to h collides with a previous output of *f*

- (F_1^h, h) and (F_2, h) are indistinguishable if **coll** and **hit** do not occur
- **coll** : a new output of *f* collides with a previous input to h **hit** : a new direct query to h collides with a previous output of *f*

- (F_1^h, h) and (F_2, h) are indistinguishable if **coll** and **hit** do not occur
- **coll** : a new output of *f* collides with a previous input to h **hit** : a new direct query to h collides with a previous output of *f*

 \neg (coll \lor hit) \Rightarrow outputs of F_1^h and F_2 seem completely random

- (F_1^h, h) and (F_2, h) are indistinguishable if **coll** and **hit** do not occur
- **coll** : a new output of *f* collides with a previous input to h **hit** : a new direct query to h collides with a previous output of *f*

 \neg (coll \lor hit) \Rightarrow outputs of F_1^h and F_2 seem completely random

- What we have to prove: Pr[coll] and Pr[hit] are small
 - Pr[coll] can easily be upper bounded by using the randomness of f
 - Pr[hit]...the randomness of *f* cannot be directly used and we do not know what the adversary will query
 - \rightarrow some techniques needed (e.g., coefficient-H) to deal with hit

Compressed Oracle Technique

Compressed Oracle Technique

- Classical proofs often rely on the fact that queries/answers can be recorded
- However, in the quantum setting "recording queries" in naïve ways disturb quantum states → lots of classical proofs are invalid in the quantum setting
- Zhandry's compressed oracle technique enables us to record queries of random functions to some extent [Zha19]

Compressed Oracle Technique (cont'd)

- The compressed oracle holds databases of queries/answers in quantum superposition
- Quantum states of the adversary and the oracle look like

$$\sum_{a,b,c,x_1,\dots,y_q} \alpha_{a,b,c,x_1,\dots,y_q} |a,b,c\rangle \otimes |(x_1,y_1),\dots,(x_q,y_q)\rangle$$

adversary Oracle's database

- It behaves like the classical lazy-sampling (to some extent)
 - A fresh query $x \rightarrow$ uniform superposition of y is added: $\sum_{y \sqrt{2^n}} |y\rangle$
 - Sometimes records are forgotten or overwritten

Proof in the Quantum setting

The first proof idea in the quantum setting

The first idea: classical proof idea + compressed oracle

The joint quantum states of

- Adversary A and the oracles (F_1^h, h) , and
- Adversary A and the oracles (F_2, h)

will be indistinguishable as long as coll and hit do not happen in the databases & for *A*'s query

What we have to prove: "Pr[coll]" and "Pr[hit]" are small

- Pr[coll] can easily be upper bounded by using the randomness of f
- Pr[hit]... the randomness of f cannot be directly used and we do not know what the adversary will query <u>and classical proof techniques cannot be used</u>

 \rightarrow **<u>new technique</u>** needed to deal with <u>hit</u>

hit...the event that the adversary A succeeds to guess an output of f

NTT

 F_1^h

NTT (

Suppose the adversary A makes a fresh query (u,v) to F_1^h

NTT

Suppose the adversary A makes a fresh query (u,v) to F_1^h 1. $\alpha = f(u)$ is sampled

Database for f $|(u, \alpha)\rangle$

- Suppose the adversary A makes a fresh query (u,v) to F_1^h 1. $\alpha = f(u)$ is sampled
- 2. $w = h(\alpha, v)$ is sampled and returned to A

Database for f Database for h $|(u, \alpha)\rangle \otimes |(\alpha||v, w)\rangle$

- Suppose the adversary A makes a fresh query (u,v) to F_1^h 1. $\alpha = f(u)$ is sampled
- 2. $w = h(\alpha, v)$ is sampled and returned to A

- Suppose the adversary A makes a fresh query (u,v) to F_1^h
- 1. $\alpha = f(u)$ is sampled
- 2. $w = h(\alpha, v)$ is sampled and returned to A
- The adversary knows w but does not know anything about $\alpha = f(u)$

- Suppose the adversary A makes a fresh query (u,v) to F_1^h
- 1. $\alpha = f(u)$ is sampled
- 2. $w = h(\alpha, v)$ is sampled and returned to A
- The adversary knows w but does not know anything about $\alpha = f(u)$

We say databases are *equivalent* if they are indistinguishable from the adversary

NTT

We say databases are *equivalent* if they are indistinguishable from the adversary

For arbitrary z (the adversary's guess of an output of f),

 $\Pr[z \text{ is indeed an output of } f] = \frac{\# \{\text{equivalent DBs s.t. } f(u) = z \text{ for some } u\}}{\# \{\text{equivalent DBs}\}}$

$$\approx O\left(\frac{i}{2^n}\right)$$
 (after making i queries)

We say databases are *equivalent* if they are indistinguishable from the adversary

For arbitrary z (the adversary's guess of an output of f),

 $\Pr[z \text{ is indeed an output of } f] = \frac{\# \{\text{equivalent DBs s.t. } f(u) = z \text{ for some } u\}}{\# \{\text{equivalent DBs}\}}$

$$\approx O\left(\frac{i}{2^n}\right)$$
 (after making i queries)

 $\Pr[\text{hit occurs at the } i\text{-th query}] \approx O\left(\frac{i}{2^n}\right)$

NTT

 $|\phi_{\text{hit}}\rangle \coloneqq$ The vector that corresponds to "hit happens after q queries" $|\phi_{\text{hit}}^{(i)}\rangle \coloneqq$ The vector that corresponds to "hit happens at the i-th query"

$$\||\boldsymbol{\phi}_{\text{hit}}\rangle\| \le \sum_{1\le i\le q} \left\| |\boldsymbol{\phi}_{\text{hit}}^{(i)}\rangle \right\| \le \sum_{1\le i\le q} \sqrt{\Pr[\text{hit occurs at the }i\text{-th query}]} \le q \cdot O\left(\sqrt{\frac{q}{2^n}}\right) \le O\left(\sqrt{\frac{q^3}{2^n}}\right)$$

The norm of
$$|\phi_{\rm hit}\rangle$$
 is small as long as $q \ll 2^{\frac{\mu}{3}}$

$$\left(\||\boldsymbol{\phi}_{\rm hit}\rangle\| = \sqrt{\Pr[\rm{hit}]}\right)$$

NTT

Remarks

More precisely, we show

- $|\phi_{\rm hit}\rangle$ is small as long as $q \ll 2^{\frac{\mu}{3}}$
- $|\phi_{\text{coll}}\rangle$ is small as long as $q \ll 2^{\frac{n}{3}}$
- The quantum states are "equal" (there is an isometry) if \neg (hit V coll)
- Quantum coefficients for equivalent databases are exactly equal by tracing coefficient of each vector in detail

- From G_i to G'_i : $f_{out} \circ f_i \Rightarrow g_i$
- From G'_i to G_{i+1} : $h(f_i(\cdot), \cdot) \Rightarrow f_{i+1}(\cdot, \cdot)$
- $f_{out}, f_1, f_2, ..., g_1, g_2, ...$ are independent random functions
- G_0 : The real game (NMAC)
- G'_{ℓ} : The ideal game (random function)

- From G_i to G'_i : $f_{out} \circ f_i \Rightarrow g_i$
- From G'_i to G_{i+1}: $h(f_i(\cdot), \cdot) \Rightarrow f_{i+1}(\cdot, \cdot)$ indistinguishable up to $2^{n/3}$ queries
- $f_{out}, f_1, f_2, ..., g_1, g_2, ...$ are independent random functions
- G_0 : The real game (NMAC)
- G'_{ℓ} : The ideal game (random function)

- From G_i to G'_i : $f_{out} \circ f_i \Rightarrow g_i$ indistinguishable up to $2^{n/3}$ queries
- From G'_i to G_{i+1}: $h(f_i(\cdot), \cdot) \Rightarrow f_{i+1}(\cdot, \cdot)$ indistinguishable up to $2^{n/3}$ queries
- $f_{out}, f_1, f_2, ..., g_1, g_2, ...$ are independent random functions
- G_0 : The real game (NMAC)
- G'_{ℓ} : The ideal game (random function)

- From G_i to G'_i : $f_{out} \circ f_i \Rightarrow g_i$ indistinguishable up to $2^{n/3}$ queries
- From G'_i to G_{i+1} : $h(f_i(\cdot), \cdot) \Rightarrow f_{i+1}(\cdot, \cdot)$ indistinguishable up to $2^{n/3}$ queries
- $f_{out}, f_1, f_2, ..., g_1, g_2, ...$ are independent random functions
- G_0 : The real game (NMAC)

• G_0 : The real game (INIVIAC) • G'_{ℓ} : The ideal game (random function) indistinguishable up to $2^{n/3}$ queries (when ℓ is small)

- From G_i to G'_i : $f_{out} \circ f_i \Rightarrow g_i$ indistinguishable up to $2^{n/3}$ queries
- From G'_i to G_{i+1} : $h(f_i(\cdot), \cdot) \Rightarrow f_{i+1}(\cdot, \cdot)$ indistinguishable up to $2^{n/3}$ queries
- $f_{out}, f_1, f_2, ..., g_1, g_2, ...$ are independent random functions
- G_0 : The real game (NMAC)

• G'_{ℓ} : The ideal game (INIVIAC) • G'_{ℓ} : The ideal game (random function) indistinguishable up to $2^{n/3}$ queries (when ℓ is small)

Proof for HMAC is almost the same

Summary

Summary

- Tight quantum security bound in the QROM (*h* : QRO)
- HMAC/NMAC are indistinguishable from a RF against quantum query attacks as long as $(q_h + Q) \cdot \ell^{\frac{3}{5}} \ge 2^{n/3}$
 - q_h : max. num. of quantum queries to h, Q: max. num. of quantum queries to the keyed oracle of HMAC/NMAC, ℓ : maximum message length
- Tight when ℓ is not exponentially large
- Compressed oracle technique
- Hardest part: Proving the adversary's guess success prob. is low
 - We introduced "equivalent databases" to capture the uncertainty of outputs of a random function that the adversary cannot observe directly

