

Quantum Collision Attacks on Reduced SHA-256 and SHA-512

Akinori Hosoyamada (NTT Corporation / Nagoya University) Yu Sasaki (NTT Corporation)

@Crypto 2021

Results

- First dedicated quantum collision attacks on SHA-2
 - 38-step attack on SHA-256 & 39-step attack on SHA-512
 - Classical collision attacks: 31-step for SHA-256 & 27-step for SHA-512
 - Still far from full-step attacks (64 steps / 80 steps)
- We convert <u>classical semi-free-start collisions</u> on 38-step SHA-256
 & 39-step SHA-512 into collisions in the quantum setting
- Our attacks are valid in the setting of time-space tradeoff
 Invalid in other quantum settings

Basics of Classical Collision Attacks

Valid Classical Collision Attacks

- Generic Attack: Birthday Attack (Time $2^{n/2}$)
- A dedicated attack is valid iff $T < 2^{n/2}$

 When an original primitive is hard to break, usually symmetric-key cryptanalysts try to break its reduced-step variants

• What is important: <u>How many steps can we break?</u> (rather than the actual complexity)

Valid Classical Collision Attacks

- Generic Attack: Birthday Attack (Time $2^{n/2}$)
- A dedicated attack is valid iff $T < 2^{n/2}$

Valid Classical Collision Attacks

NTT

- Generic Attack: Birthday Attack (Time $2^{n/2}$)
- A dedicated attack is valid iff $T < 2^{n/2}$
- Basic approach: Differential cryptanalysis
- A suitable differential trail of which probability is p

 \rightarrow Collision attack of time T = 1/p

The differential trail leads to a valid attack only if $p > 2^{-n/2}$

NTT 🕐

Some Observations on Dedicated Quantum Collision Attacks at Eurocrypt 2020 [HY20]

[HY20] Akinori Hosoyamada, Yu Sasaki: Finding Hash Collisions with Quantum Computers by Using Differential Trails with Smaller Probability than Birthday Bound. Eurocrypt 2020.

Generic Quantum Collision Attacks

Three settings depending on available computational resources

- **1. Small quantum computer + Large qRAM** Best algorithm: BHT ($T = 2^{n/3}$ & qRAM $2^{n/3}$) [BHT98]
- 2. Efficiency is measured by Time-Space tradeoff (No qRAM) Quantum computer of size S + Classical computer of size S Best algorithm: Parallel rho (Tradeoff $T = 2^{n/2}/S$) [Ber09]
- **3. Small quantum computer + Large classical memory (No qRAM)** Best algorithm: CNS ($T = 2^{2n/5}$, $2^{n/5}$ classical memory) [CNS17]
- [BHT98] Gilles Brassard, Peter Høyer, Alain Tapp: Quantum Cryptanalysis of Hash and Claw-Free Functions. LATIN 1998
- [Ber09] D. J. Bernstein: Cost analysis of hash collisions: Will quantum computers make SHARCS obsolete?. SHARCS 2009.
- [CNS17] A. Chailloux, M. Naya-Plasencia, A. Schrottenloher: An efficient quantum collision search algorithm and implications on symmetric cryptography. Asiacrypt 2017.

Generic Quantum Collision Attacks

Three settings depending on available computational resources

- **1. Small quantum computer + Large qRAM** Best algorithm: BHT ($T = 2^{n/3}$ & qRAM $2^{n/3}$) [BHT98]
- 2. Efficiency is measured by Time-Space tradeoff (No qRAM) Quantum computer of size S + Classical computer of size S Best algorithm: Parallel rho (Tradeoff $T = 2^{n/2}/S$) [Ber09]
- **3. Small quantum computer + Large classical memory (No qRAM)** Best algorithm: CNS ($T = 2^{2n/5}$, $2^{n/5}$ classical memory) [CNS17]

[BHT98]Gilles Brassard, Pe[Ber09]D. J. Bernstein: Co[CNS17]A. Chailloux, M. NAsiacrypt 2017.

Quantum speed-up for generic collision attack is always <u>less-than-quadratic</u>

ic cryptography.

Speed-up for Differential Cryptanalysis

Very roughly speaking, the time to find a collision with a differential path of prob. *p* is

Classical... T = 1/pQuantum... $T = \sqrt{1/p}$ (with the Grover search)[KLLN16]

Quadratic speed-up for Differential Cryptanalysis

[KLLN16] M. Kaplan, G. Leurent, A. Leverrier, M. Naya-Plasencia: Improved rebound attack on the finalist Grostl. IACR Trans. Symmetric Cryptol., 2016(1) pp. 71-94, 2016.

Our Observation @ EC2020: Speed-up gap

NTT

Differential cryptanalysis becomes relatively stronger in the quantum setting The validity condition $p > 2^{-n/2}$ can be relaxed

Example: Small quantum computer + Large qRAM

• Generic algorithm (BHT): $T = 2^{n/3}$

Differential cryptanalysis: $T = \sqrt{1/p}$

- Collision attack based on differential cryptanalysis is valid only if $\sqrt{1/p} < 2^{n/3} \iff p > 2^{-2n/3}$

Relaxed from the classical condition $p > 2^{-n/2}$ p may lead to a valid attack even if $2^{-n/2} \ge p$

NTT

Example: Time-Space Tradeoff

• Generic algorithm (parallel rho): $T = 2^{n/2}/S$

- Differential cryptanalysis: $T = \sqrt{1/p}$
- Collision attack based on differential cryptanalysis that requires space S is valid only if

$$\sqrt{1/p} < 2^{n/2}/S \Leftrightarrow \mathbf{p} > \mathbf{2}^{-n} \cdot \mathbf{S}^2$$

p may lead to a valid attack even if p is very close to 2^{-n}

Results @ EC2020

- The condition for p is relaxed \rightarrow dedicated quantum collision attacks can reach more steps than classical attacks
 - We indeed showed dedicated quantum collision attacks on AES-MMO and Whirlpool that break more steps than classical attacks

Results @ EC2020

- The condition for p is relaxed \rightarrow dedicated quantum collision attacks can reach more steps than classical attacks
 - We indeed showed dedicated quantum collision attacks on AES-MMO and Whirlpool that break more steps than classical attacks

Q. Can we similarly extend the number of attacked steps of SHA-2 in the quantum setting??

Basics of SHA-2

SHA-2

- Current most popular hash function family standardized by NIST
- Consists of several functions:
 - SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256
 - SHA-224 is a truncated version of SHA-256
 - SHA-384, SHA-512/224, SHA-512/256 are truncated versions of SHA-512
- Davies-Meyer + Merkle-Damgaard

Merkle-Damgaard construction

How to make compression functions

Davies-Meyer Construction

Construction of SHA-2: Summary

3. Hash function

Semi-Free-Start Collision

Collision of a Hash Function

Collision and Semi-Free-Start Collision

<u>Collision</u>

IVs are equal to the specified value

<u>Semi-Free-Start Collision</u>
 IVs are the same but not equal to the specified value

Previous Work on SHA-256

Previous Classical Work on SHA-256

- Mendel et al. showed
 - 31-step collision attack on SHA-256
 - 38-step semi-free-start collision attack on SHA-256
- The attacks are based on differential cryptanalysis
 - Differential characteristic, (some parts of) conforming message pairs / internal states are searched <u>simultaneously</u> with automated tools
 - Characteristic is very complicated

[MNS13] Florian Mendel and Tomislav Nad and Martin Schläffer: Improving Local Collisions: New Attacks on Reduced SHA-256 (Eurocrypt 2013)

The 31-step characteristic by Mendel et al.

i	ΔA_i	ΔE_i	ΔW_i
-4			
-3			
-2			
-1			
0			
1			
2			
3	0-	-00	
4	00	-11011- 0010	
5	-nnn -n-n -11nnu -10n-	Onnn nluu -0-1 101n -1nu0- 11-1 -0n1	u uununn
6	unnn n0-	n-n1 0111 nu 11u0 0n10 uln- nnln -luu	nn1- n nu-n n1 u0 -un0n0 -nn-
7	n n n	101u 0nn1 0-11 011u -n11 1n11 0un1 -nnn	00nn 0n10 1-n1 nnn1 u0nn -n01 1u-1 n0
8		1-uu 1111 00 u101 10n- 1010 1010 -0n0	0001 u000 1-00 0nuu unin 01nn -01n uuuu
9		1011 00uu 1111 11nu 1110 01 0111 10nn	1u n 011 un
10	uu	1-00 ullo 1001 101u n00000 1u 1n00	01-
11		0101 00u0 nulu uuuu uloo 1000 000n lulo	
12		111n uuuu uuuu uuuu u001 1111 0110 0n00	
13		1 01-1 1-1 1 0 -0	
14		1 00001 1111 u 1u	
15		00	
16		11	unn nunn nnnn nnnn nn
17			
18			nnn
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			

NTT 🕐

The 31-step characteristic by Mendel et al.

Conditions for Internal states

$^{i}_{-4}$	ΔA_i	ΔE_i	ΔW_i	
r				Conditi
S	0	-00 -1 011- 0010		Messag
7 - 8 - 0	nnn n nnn n	0nnn niud -0-1 101n -1nu -0- 11-1 -0n1 n-n1 0111 nu 11u0 0n10 uln- nnln -1uu 101u 0nn1 0-11 011u -n11 1n11 0un1 -nnn 1-uu 1111 00 u101 10n- 1010 1010 -000 1011 0	nnl- n nu-n nl u0 -un0n0 -nn- 00nn 0nl0 l-nl nnnl u0nn -n0l lu-l n0 000l u000 l-00 0nuu unln 0lnn -0ln uuuu	
10 11 12 13		1011 0000 1111 1110 110 01 0111 1011 1-00 ull0 1001 101u n00000 1u 1n00 0101 00u0 nulu uuuu ul00 1000 000n lul0 111n uuuu uuuu uuuu u001 1111 0110 0n00 1 01-1 1-1 1 0-0		
14 15 16 17		1 00001 1111 u 1u 00 		
18 19 20 21		 	nnnn	
22 23 24 25				
26 27 28				
29 - 30 -				

onditions for lessage words

NTT

Previous Classical Work on SHA-256

- Mendel et al. showed
 - 31-step collision attack on SHA-256
 - 38-step semi-free-start collision attack on SHA-256
- The attacks are based on differential cryptanalysis
 - Differential characteristic, (some parts of) conforming message pairs / internal states are searched simultaneously with automated tools
 - Characteristic is very complicated

[MNS13] Florian Mendel and Tomislav Nad and Martin Schläffer: Improving Local Collisions: New Attacks on Reduced SHA-256 (Eurocrypt 2013)

Previous Classical Work on SHA-256

- Mendel et al. showed
 - 31-step collision attack on SHA-256
 - 38-step semi-free-start collision attack on SHA-256
- The attacks are based on differential cryptanalysis
 - Differential characteristic, (some parts of) conforming message pairs / internal states are searched simultaneously with automated tools
 - Characteristic is very complicated
- <u>The 31-step collision attack is mounted by converting 31-step</u> <u>semi-free-start collisions into a collision</u>

[MNS13] Florian Mendel and Tomislav Nad and Martin Schläffer: Improving Local Collisions: New Attacks on Reduced SHA-256 (Eurocrypt 2013)

• We can make many <u>semi-free-start collisions</u> of the compression function from the differential characteristic

• We can make many <u>semi-free-start collisions</u> of the compression function from the differential characteristic

• However, IV' is not equal to the original IV...

 Convert the semi-free-start collision into a 2-block collision by using the degrees of freedom

• When we test $2^{256-160} = 2^{96}$ random M_0 ,

• When we test $2^{256-160} = 2^{96}$ random M_0 , one of the outputs will match an IV' of the second block (among 2^{160} choices of IV')

• We can find a 2-block collision in time $2^{96} < 2^{\frac{256}{2}} = 2^{128}$ (actually the attack is more complicated...)

Generalization of the 2-block collision attack NTT

• If we can make many semi-free-start collisions for 2^{X} choices of IV's, then we can find a 2-block collision in time 2^{n-X} (in the classical setting)

Generalization of the 2-block collision attack NTT O

• If we can make many semi-free-start collisions for 2^X choices of IV's, then we can find a 2-block collision in time 2^{n-X} (in the classical setting)

The attack is valid only if $2^{n-X} < 2^{n/2}$, i.e., X > n/2

 Mendel et al. showed not only the 31-step collision attack but also a 38-step semi-free-start collision attack in the same paper, but it is not converted into a collision attack

 \rightarrow <u>The parameter X for the 38-step attack is not large enough</u>

Generalization of the 2-block collision attack NTT O

• If we can make many semi-free-start collisions for 2^X choices of IV's, then we can find a 2-block collision in time 2^{n-X} (in the classical setting)

The attack is valid only if $2^{n-X} < 2^{n/2}$, i.e., X > n/2

 Mendel et al. showed not only the 31-step collision attack but also a 38-step semi-free-start collision attack in the same paper, but it is not converted into a collision attack

 \rightarrow The parameter X for the 38-step attack is not large enough

Idea:

The validity condition may be relaxed in the quantum setting

Conversion of Semi-Free-Start Collisions into Collisions in the Quantum Setting

Generic Quantum Collision Attacks

Three settings depending on available computational resources

- **1. Small quantum computer + Large qRAM** Best algorithm: BHT ($T = 2^{n/3}$ & qRAM $2^{n/3}$) [BHT98]
- 2. Efficiency is measured by Time-Space tradeoff (No qRAM) Quantum computer of size S + Classical computer of size S Best algorithm: Parallel rho (Tradeoff $T = 2^{n/2}/S$) [Ber09]
- **3. Small quantum computer + Large classical memory (No qRAM)** Best algorithm: CNS ($T = 2^{2n/5}$, $2^{n/5}$ classical memory) [CNS17]
- [BHT98] Gilles Brassard, Peter Høyer, Alain Tapp: Quantum Cryptanalysis of Hash and Claw-Free Functions. LATIN 1998
- [Ber09] D. J. Bernstein: Cost analysis of hash collisions: Will quantum computers make SHARCS obsolete?. SHARCS 2009.
- [CNS17] A. Chailloux, M. Naya-Plasencia, A. Schrottenloher: An efficient quantum collision search algorithm and implications on symmetric cryptography. Asiacrypt 2017.

Generic Quantum Collision Attacks

Our

Focus

Three settings depending on available computational resources

1. Small quantum computer + Large qRAM Best algorithm: BHT ($T = 2^{n/3}$ & qRAM $2^{n/3}$) [BHT98]

2. Efficiency is measured by Time-Space tradeoff (No qRAM) Quantum computer of size S + Classical computer of size S Best algorithm: Parallel rho (Tradeoff $T = 2^{n/2}/S$) [Ber09]

- **3. Small quantum computer + Large classical memory (No qRAM)** Best algorithm: CNS ($T = 2^{2n/5}$, $2^{n/5}$ classical memory) [CNS17]
- [BHT98] Gilles Brassard, Peter Høyer, Alain Tapp: Quantum Cryptanalysis of Hash and Claw-Free Functions. LATIN 1998
- [Ber09] D. J. Bernstein: Cost analysis of hash collisions: Will quantum computers make SHARCS obsolete?. SHARCS 2009.
- [CNS17] A. Chailloux, M. Naya-Plasencia, A. Schrottenloher: An efficient quantum collision search algorithm and implications on symmetric cryptography. Asiacrypt 2017.

Classical 2-block collision attack

 If we can make many semi-free-start collisions for 2^X choices of IV's, then we can find a 2-block collision in time 2^{n-X}

Quantum 2-block collision attack

• If we can make many semi-free-start collisions for 2^X choices of IV's, then we can find a 2-block collision in **time** $\sqrt{2^{n-X}}$ (Grover)

NTT

Quantum 2-block collision attack

- If S-qubits are available, the attack can be parallelized: $T = \sqrt{2^{n-X}/S}$
- Generic attack... $T = \sqrt{2^n}/S$
- The attack is valid if $\sqrt{2^{n-X}/S} < \sqrt{2^n}/S$, i.e., X > 0 (for $S < 2^X$)
- Actually the condition for X will be stronger because here I'm ignoring many things: qubits required to implement Grover, time for sub-procedures, etc.
- Still, the new condition X > 0 seems much weaker than X > n/2

Main Results

Results on SHA-256 and SHA-512

- We convert the 38-step semi-free-start collision attack on SHA-256 by Mendel et al. [MNS13] and 39-step semi-free-start collision attack on SHA-512 by Dobraunig et al. [DEM15] into a 2-block collision.
- With some analysis and computer experiments, we confirmed that the attacks are valid in the quantum setting:

Attack Target	Time Complexity	(Generic Complexity)
38-step SHA-256	$2^{121}/\sqrt{S}$ (2.4 < S < 2 ¹⁴)	2 ¹²⁸ /S
39-step SHA-512	$2^{252.2}/\sqrt{S}$ (2.5 < S < 2 ^{7.6})	$2^{256}/S$

Note: classical best collision attacks are 31-step for SHA-256 and 27-step for SHA-512 Remark: the attacks are invalid in other settings

[MNS13] Florian Mendel and Tomislav Nad and Martin Schläffer: Improving Local Collisions: New Attacks on Reduced SHA-256 (Eurocrypt 2013) [DEM15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel: Analysis of SHA-512/224 and SHA-512/256. (Asiacrypt 2015)

Summary & Future Directions

Summary & Future Directions

- First dedicated quantum collision attacks on SHA-2
 - 38-step attack on SHA-256 & 39-step attack on SHA-512
 - Classical collision attacks: 31-step for SHA-256 & 27-step for SHA-512
 - Still far from full-step attacks (64 steps / 80 steps)
- We convert <u>classical semi-free-start collisions</u> on 38-step SHA-256
 & 39-step SHA-512 into collisions in the quantum setting
- There are many functions which is similar to SHA-2 (RIPEMD-128, RIPEMD-160, SM3, HAS-160, etc.....), but so far we haven't found any quantum collision attacks on them: Existing characteristics are not suitable for our idea
- We should revisit differential characteristics search activities
 - Possibility of quantum attacks should be taken into account Thank you!