

Lower bounds on lattice sieving and information set decoding

Elena Kirshanova, Thijs Laarhoven

mail@thijs.com
https://www.thijs.com/

Crypto 2021, virtual (August 17, 2021)

Abstract

• Post-quantum cryptography: Lattice-based, code-based cryptography.

- Post-quantum cryptography: Lattice-based, code-based cryptography.
 - ▶ NIST standardization: Dominated by lattices and codes.

- Post-quantum cryptography: Lattice-based, code-based cryptography.
 - ▶ NIST standardization: Dominated by lattices and codes.
 - Security relies on hardness of lattice problems, decoding problems.

- Post-quantum cryptography: Lattice-based, code-based cryptography.
 - ► NIST standardization: Dominated by lattices and codes.
 - Security relies on hardness of lattice problems, decoding problems.
 - ► Long-term security ⇒ Conservative bounds.

- Post-quantum cryptography: Lattice-based, code-based cryptography.
 - ► NIST standardization: Dominated by lattices and codes.
 - Security relies on hardness of lattice problems, decoding problems.
 - ightharpoonup Long-term security \Longrightarrow Conservative bounds.
- State-of-the-art cryptanalysis: Lattice sieving, information set decoding.

- Post-quantum cryptography: Lattice-based, code-based cryptography.
 - ▶ NIST standardization: Dominated by lattices and codes.
 - Security relies on hardness of lattice problems, decoding problems.
 - ightharpoonup Long-term security \Longrightarrow Conservative bounds.
- State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
 - Sample large database of "long" vectors.

- Post-quantum cryptography: Lattice-based, code-based cryptography.
 - ▶ NIST standardization: Dominated by lattices and codes.
 - Security relies on hardness of lattice problems, decoding problems.
 - ightharpoonup Long-term security \Longrightarrow Conservative bounds.
- State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
 - Sample large database of "long" vectors.
 - Combine "nearby" vectors to obtain shorter vectors.

- **Post-quantum cryptography**: Lattice-based, code-based cryptography.
 - ▶ NIST standardization: Dominated by lattices and codes.
 - Security relies on hardness of lattice problems, decoding problems.
 - ightharpoonup Long-term security \Longrightarrow Conservative bounds.
- State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
 - Sample large database of "long" vectors.
 - Combine "nearby" vectors to obtain shorter vectors.
 - ► Repeat until sufficiently "short" vectors are found.

- Post-quantum cryptography: Lattice-based, code-based cryptography.
 - ▶ NIST standardization: Dominated by lattices and codes.
 - Security relies on hardness of lattice problems, decoding problems.
 - ightharpoonup Long-term security \Longrightarrow Conservative bounds.
- State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
 - Sample large database of "long" vectors.
 - Combine "nearby" vectors to obtain shorter vectors.
 - ► Repeat until sufficiently "short" vectors are found.
- Closest pairs problem: Key subroutine for efficiently combining vectors.

- Post-quantum cryptography: Lattice-based, code-based cryptography.
 - ▶ NIST standardization: Dominated by lattices and codes.
 - ► Security relies on hardness of lattice problems, decoding problems.
 - ightharpoonup Long-term security \Longrightarrow Conservative bounds.
- State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
 - Sample large database of "long" vectors.
 - Combine "nearby" vectors to obtain shorter vectors.
 - ► Repeat until sufficiently "short" vectors are found.
- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.

- Post-quantum cryptography: Lattice-based, code-based cryptography.
 - ▶ NIST standardization: Dominated by lattices and codes.
 - Security relies on hardness of lattice problems, decoding problems.
 - ightharpoonup Long-term security \Longrightarrow Conservative bounds.
- State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
 - Sample large database of "long" vectors.
 - Combine "nearby" vectors to obtain shorter vectors.
 - ► Repeat until sufficiently "short" vectors are found.
- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.

- Post-quantum cryptography: Lattice-based, code-based cryptography.
 - ▶ NIST standardization: Dominated by lattices and codes.
 - Security relies on hardness of lattice problems, decoding problems.
 - ightharpoonup Long-term security \Longrightarrow Conservative bounds.
- State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
 - Sample large database of "long" vectors.
 - Combine "nearby" vectors to obtain shorter vectors.
 - ► Repeat until sufficiently "short" vectors are found.
- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.
 - Hash-based approaches: Subquadratic time complexity.

- Post-quantum cryptography: Lattice-based, code-based cryptography.
 - ▶ NIST standardization: Dominated by lattices and codes.
 - Security relies on hardness of lattice problems, decoding problems.
 - ightharpoonup Long-term security \Longrightarrow Conservative bounds.
- State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
 - Sample large database of "long" vectors.
 - Combine "nearby" vectors to obtain shorter vectors.
 - ► Repeat until sufficiently "short" vectors are found.
- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.
 - Hash-based approaches: Subquadratic time complexity.
 - ► No matching lower bounds ⇒ Improvements still possible?

- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.
 - ► Hash-based approaches: Subquadratic time complexity.
 - ► No matching lower bounds ⇒ Improvements still possible?

- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.
 - Hash-based approaches: Subquadratic time complexity.
 - ▶ No matching lower bounds ⇒ Improvements still possible?

- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.
 - Hash-based approaches: Subquadratic time complexity.
 - ► No matching lower bounds ⇒ Improvements still possible?
- **Contributions**: Lower bounds for corresponding nearest neighbor problems.

- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.
 - ► Hash-based approaches: Subquadratic time complexity.
 - ► No matching lower bounds ⇒ Improvements still possible?
- **Contributions**: Lower bounds for corresponding nearest neighbor problems.
 - Conditional: Applies to "hash-based" model.

- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.
 - Hash-based approaches: Subquadratic time complexity.
 - ► No matching lower bounds ⇒ Improvements still possible?
- **Contributions**: Lower bounds for corresponding nearest neighbor problems.
 - Conditional: Applies to "hash-based" model.
 - ▶ Tight lower bound for lattice sieving \implies [BDGL16] optimal.

- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.
 - ► Hash-based approaches: Subquadratic time complexity.
 - ► No matching lower bounds ⇒ Improvements still possible?
- **Contributions**: Lower bounds for corresponding nearest neighbor problems.
 - Conditional: Applies to "hash-based" model.
 - ▶ Tight lower bound for lattice sieving \implies [BDGL16] optimal.
 - ▶ Non-tight lower bound for ISD \implies [MO15] possibly suboptimal?

- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.
 - ► Hash-based approaches: Subquadratic time complexity.
 - ► No matching lower bounds ⇒ Improvements still possible?
- **Contributions**: Lower bounds for corresponding nearest neighbor problems.
 - Conditional: Applies to "hash-based" model.
 - ▶ Tight lower bound for lattice sieving \implies [BDGL16] optimal.
 - ► Non-tight lower bound for ISD ⇒ [MO15] possibly suboptimal?
- **Cryptographic implications**: Better understanding of hardness.

- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.
 - ► Hash-based approaches: Subquadratic time complexity.
 - ► No matching lower bounds ⇒ Improvements still possible?
- **Contributions**: Lower bounds for corresponding nearest neighbor problems.
 - Conditional: Applies to "hash-based" model.
 - ▶ Tight lower bound for lattice sieving \implies [BDGL16] optimal.
 - ▶ Non-tight lower bound for ISD \implies [MO15] possibly suboptimal?
- **Cryptographic implications**: Better understanding of hardness.
 - ► Cryptanalysis: Search for improvements elsewhere [Duc18, A+19].

- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.
 - ► Hash-based approaches: Subquadratic time complexity.
 - ► No matching lower bounds ⇒ Improvements still possible?
- **Contributions**: Lower bounds for corresponding nearest neighbor problems.
 - ► Conditional: Applies to "hash-based" model.
 - ▶ Tight lower bound for lattice sieving \implies [BDGL16] optimal.
 - ▶ Non-tight lower bound for ISD \implies [MO15] possibly suboptimal?
- **Cryptographic implications**: Better understanding of hardness.
 - ► Cryptanalysis: Search for improvements elsewhere [Duc18, A+19].
 - ► Motivates focus on best lattice sieve [AGPS20, DSvW21].

- Closest pairs problem: Key subroutine for efficiently combining vectors.
 - Subroutine dominates overall algorithm complexities.
 - ► Naive approach: Quadratic for pairs of vectors.
 - ► Hash-based approaches: Subquadratic time complexity.
 - ► No matching lower bounds ⇒ Improvements still possible?
- **Contributions**: Lower bounds for corresponding nearest neighbor problems.
 - Conditional: Applies to "hash-based" model.
 - ▶ Tight lower bound for lattice sieving \implies [BDGL16] optimal.
 - ► Non-tight lower bound for ISD ⇒ [MO15] possibly suboptimal?
- **Cryptographic implications**: Better understanding of hardness.
 - ► Cryptanalysis: Search for improvements elsewhere [Duc18, A+19].
 - ► Motivates focus on best lattice sieve [AGPS20, DSvW21].
 - Parameter selection: Conditional security guarantees.

Hash-based model

Closest pairs problem:

Let (M, d) be a bounded metric space, and let $r \ge 0$ be a given target distance. Let $L \subset M$ be a subset of M, with elements drawn uniformly at random from M. Find "almost all" pairs $\mathbf{x}, \mathbf{y} \in L$ satisfying $d(\mathbf{x}, \mathbf{y}) \le r$.

Hash-based model

Closest pairs problem:

Let (M, d) be a bounded metric space, and let $r \ge 0$ be a given target distance. Let $L \subset M$ be a subset of M, with elements drawn uniformly at random from M. Find "almost all" pairs $\mathbf{x}, \mathbf{y} \in L$ satisfying $d(\mathbf{x}, \mathbf{y}) \le r$.

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim M\\d(\mathbf{x},\mathbf{y})\leq r}}\left[h(\mathbf{x})=h(\mathbf{y})\right]\gg \Pr_{\substack{\mathbf{x},\mathbf{y}\sim M}}\left[h(\mathbf{x})=h(\mathbf{y})\right].$$

- Closest pairs problem:
 - Let (M, d) be a bounded metric space, and let $r \ge 0$ be a given target distance. Let $L \subset M$ be a subset of M, with elements drawn uniformly at random from M. Find "almost all" pairs $\mathbf{x}, \mathbf{y} \in L$ satisfying $d(\mathbf{x}, \mathbf{y}) \le r$.
- Locality-sensitive hash functions: Functions *h* satisfying:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim M\\d(\mathbf{x},\mathbf{y})\leq r}}\left[h(\mathbf{x})=h(\mathbf{y})\right]\gg \Pr_{\substack{\mathbf{x},\mathbf{y}\sim M}}\left[h(\mathbf{x})=h(\mathbf{y})\right].$$

• Locality-sensitive hashing: Build and populate hash tables using "nice" hash functions, and combine pairs of vectors within hash buckets.

- Closest pairs problem:
 - Let (M, d) be a bounded metric space, and let $r \ge 0$ be a given target distance. Let $L \subset M$ be a subset of M, with elements drawn uniformly at random from M. Find "almost all" pairs $\mathbf{x}, \mathbf{y} \in L$ satisfying $d(\mathbf{x}, \mathbf{y}) \le r$.
- Locality-sensitive hash functions: Functions *h* satisfying:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim M\\d(\mathbf{x},\mathbf{y})\leq r}} \left[h(\mathbf{x}) = h(\mathbf{y})\right] \gg \Pr_{\substack{\mathbf{x},\mathbf{y}\sim M}} \left[h(\mathbf{x}) = h(\mathbf{y})\right].$$

- Locality-sensitive hashing: Build and populate hash tables using "nice" hash functions, and combine pairs of vectors within hash buckets.
 - ► Lattice sieving: $M = S^{d-1}$, $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} \mathbf{y}||_2$, $|L| = 2^{\Theta(d)}$.

- Closest pairs problem:
 - Let (M, d) be a bounded metric space, and let $r \ge 0$ be a given target distance. Let $L \subset M$ be a subset of M, with elements drawn uniformly at random from M. Find "almost all" pairs $\mathbf{x}, \mathbf{y} \in L$ satisfying $d(\mathbf{x}, \mathbf{y}) \le r$.
- Locality-sensitive hash functions: Functions *h* satisfying:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim M\\d(\mathbf{x},\mathbf{y})\leq r}} \left[h(\mathbf{x}) = h(\mathbf{y})\right] \gg \Pr_{\substack{\mathbf{x},\mathbf{y}\sim M}} \left[h(\mathbf{x}) = h(\mathbf{y})\right].$$

- Locality-sensitive hashing: Build and populate hash tables using "nice" hash functions, and combine pairs of vectors within hash buckets.
 - ► Lattice sieving: $M = S^{d-1}$, $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} \mathbf{y}||_2$, $|L| = 2^{\Theta(d)}$.
 - ► **ISD setting**: $M = \{0, 1\}^d$, $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} \mathbf{y}||_1$, $|L| = 2^{\Theta(d)}$.

- Closest pairs problem:
 - Let (M, d) be a bounded metric space, and let $r \ge 0$ be a given target distance. Let $L \subset M$ be a subset of M, with elements drawn uniformly at random from M. Find "almost all" pairs $\mathbf{x}, \mathbf{y} \in L$ satisfying $d(\mathbf{x}, \mathbf{y}) \le r$.
- Locality-sensitive hash functions: Functions *h* satisfying:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim M\\d(\mathbf{x},\mathbf{y})\leq r}} \left[h(\mathbf{x}) = h(\mathbf{y})\right] \gg \Pr_{\substack{\mathbf{x},\mathbf{y}\sim M}} \left[h(\mathbf{x}) = h(\mathbf{y})\right].$$

- Locality-sensitive hashing: Build and populate hash tables using "nice" hash functions, and combine pairs of vectors within hash buckets.
 - ► Lattice sieving: $M = S^{d-1}$, $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} \mathbf{y}||_2$, $|L| = 2^{\Theta(d)}$.
 - ► **ISD setting**: $M = \{0, 1\}^d$, $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} \mathbf{y}||_1$, $|L| = 2^{\Theta(d)}$.
 - Nearest neighbor literature: Various (M, d), focus on $|L| = 2^{o(d)}$.

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim M\\d(\mathbf{x},\mathbf{y})\leq r}}\left[h(\mathbf{x})=h(\mathbf{y})\right]\gg \Pr_{\substack{\mathbf{x},\mathbf{y}\sim M}}\left[h(\mathbf{x})=h(\mathbf{y})\right].$$

Lower bounds (Euclidean sphere)

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim M\\d(\mathbf{x},\mathbf{y})\leq r}} \left[h(\mathbf{x}) = h(\mathbf{y})\right] \gg \Pr_{\substack{\mathbf{x},\mathbf{y}\sim M}} \left[h(\mathbf{x}) = h(\mathbf{y})\right].$$

Lower bounds (Euclidean sphere)

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}[h(\mathbf{x})=h(\mathbf{y})]\gg \Pr_{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}}[h(\mathbf{x})=h(\mathbf{y})].$$

Lower bounds (Euclidean sphere)

$$\sum_{\substack{n \ \mathbf{x}, \mathbf{y} \sim \mathcal{S}^{d-1} \\ \mathbf{x}, \mathbf{y} \geq \gamma}} \Pr[h(\mathbf{x}) = h(\mathbf{y}) = n] \gg \sum_{\substack{n \ \mathbf{x}, \mathbf{y} \sim \mathcal{S}^{d-1}}} \Pr[h(\mathbf{x}) = h(\mathbf{y}) = n].$$

Lower bounds (Euclidean sphere)

$$\sum_{\substack{n \\ \mathbf{x}, \mathbf{y} \sim \mathcal{S}^{d-1} \\ \mathbf{x}, \mathbf{y} \geq \gamma}} \Pr \left[\mathbf{x}, \mathbf{y} \in h^{-1}(n) \right] \gg \sum_{\substack{n \\ \mathbf{x}, \mathbf{y} \sim \mathcal{S}^{d-1}}} \Pr \left[\mathbf{x}, \mathbf{y} \in h^{-1}(n) \right].$$

Lower bounds (Euclidean sphere)

• Locality-sensitive hash functions: Functions *h* satisfying:

$$\sum_{\substack{n \\ \mathbf{x}, \mathbf{y} \sim \mathcal{S}^{d-1} \\ \mathbf{x} \cdot \mathbf{v} \geq \gamma}} \Pr \left[\mathbf{x}, \mathbf{y} \in h^{-1}(n) \right] \gg \sum_{\substack{n \\ \mathbf{x}, \mathbf{y} \sim \mathcal{S}^{d-1}}} \Pr \left[\mathbf{x}, \mathbf{y} \in h^{-1}(n) \right].$$

• Usually $h^{-1}(n)$ has similar shapes for all n.

Lower bounds (Euclidean sphere)

• Locality-sensitive hash functions: Functions *h* satisfying:

$$n \cdot \Pr_{\substack{\mathbf{x}, \mathbf{y} \sim \mathcal{S}^{d-1} \\ \mathbf{x} \cdot \mathbf{y} \geq \gamma}} \left[\mathbf{x}, \mathbf{y} \in h^{-1}(0) \right] \gg n \cdot \Pr_{\mathbf{x}, \mathbf{y} \sim \mathcal{S}^{d-1}} \left[\mathbf{x}, \mathbf{y} \in h^{-1}(0) \right].$$

Lower bounds (Euclidean sphere)

• **Locality-sensitive hash functions**: Functions *h* satisfying:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}\left[\mathbf{x},\mathbf{y}\in h^{-1}(0)\right]\gg \Pr_{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}}\left[\mathbf{x},\mathbf{y}\in h^{-1}(0)\right].$$

Lower bounds (Euclidean sphere)

• **Locality-sensitive hash functions**: Functions *h* satisfying:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}[\mathbf{x},\mathbf{y}\in A]\gg \Pr_{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}}[\mathbf{x},\mathbf{y}\in A].$$

Lower bounds (Euclidean sphere)

• Locality-sensitive hash functions: Functions *h* satisfying:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}[\mathbf{x},\mathbf{y}\in A]\gg\sigma(A)^2.$$

Lower bounds (Euclidean sphere)

• Locality-sensitive hash functions: Functions *h* satisfying:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}[\mathbf{x},\mathbf{y}\in A]\gg\sigma(A)^2.$$

- Usually $h^{-1}(n)$ has similar shapes for all n.
- **Problem**: For fixed $\sigma(A)$, find $A \subset S^{d-1}$ which maximizes:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}\left[\mathbf{x},\mathbf{y}\in A\right].$$

Lower bounds (Euclidean sphere)

Lemma (Baernstein–Taylor inequality for S^{d-1} [BT76])

$$\iint_{S^{d-1}\times S^{d-1}} f(\mathbf{x})g(\mathbf{y})h(\mathbf{x}\cdot\mathbf{y})\,\mathrm{d}\sigma(\mathbf{x})\,\mathrm{d}\sigma(\mathbf{y}) \leq \iint_{S^{d-1}\times S^{d-1}} f^*(\mathbf{x})g^*(\mathbf{y})h(\mathbf{x}\cdot\mathbf{y})\,\mathrm{d}\sigma(\mathbf{x})\,\mathrm{d}\sigma(\mathbf{y}).$$

Lower bounds (Euclidean sphere)

Lemma (Baernstein–Taylor inequality for S^{d-1} [BT76])

$$\iint_{S^{d-1}\times S^{d-1}} f(\mathbf{x})g(\mathbf{y})h(\mathbf{x}\cdot\mathbf{y})\,\mathrm{d}\sigma(\mathbf{x})\,\mathrm{d}\sigma(\mathbf{y}) \leq \iint_{S^{d-1}\times S^{d-1}} f^*(\mathbf{x})g^*(\mathbf{y})h(\mathbf{x}\cdot\mathbf{y})\,\mathrm{d}\sigma(\mathbf{x})\,\mathrm{d}\sigma(\mathbf{y}).$$

$$f(\mathbf{x}) = \mathbb{1}\{\mathbf{x}\in A\}$$

$$g(\mathbf{y}) = \mathbb{1}\{\mathbf{y}\in A\}$$

$$h(\mathbf{x}\cdot\mathbf{y}) = \mathbb{1}\{\mathbf{x}\cdot\mathbf{y}\geq\gamma\}$$

Lower bounds (Euclidean sphere)

Lemma (Baernstein–Taylor inequality for S^{d-1} [BT76])

$$\iint_{S^{d-1}\times S^{d-1}} f(\mathbf{x})g(\mathbf{y})h(\mathbf{x}\cdot\mathbf{y}) d\sigma(\mathbf{x}) d\sigma(\mathbf{y}) \leq \iint_{S^{d-1}\times S^{d-1}} f^*(\mathbf{x})g^*(\mathbf{y})h(\mathbf{x}\cdot\mathbf{y}) d\sigma(\mathbf{x}) d\sigma(\mathbf{y}).$$

$$f(\mathbf{x}) = \mathbb{1}\{\mathbf{x}\in A\} \quad \to \quad f^*(\mathbf{x}) = \mathbb{1}\{\mathbf{x}\in C_A\}$$

$$g(\mathbf{y}) = \mathbb{1}\{\mathbf{y}\in A\} \quad \to \quad g^*(\mathbf{y}) = \mathbb{1}\{\mathbf{y}\in C_A\}$$

$$h(\mathbf{x}\cdot\mathbf{y}) = \mathbb{1}\{\mathbf{x}\cdot\mathbf{y}\geq\gamma\} \qquad (\sigma(A) = \sigma(C_A))$$

Lower bounds (Euclidean sphere)

Lemma (Baernstein–Taylor inequality for S^{d-1} [BT76])

$$\iint_{S^{d-1}\times S^{d-1}} \mathbb{1}\{\mathbf{x}\in A\} \mathbb{1}\{\mathbf{y}\in A\} \mathbb{1}\{\mathbf{x}\cdot \mathbf{y}\geq \gamma\} d\sigma^{2} \leq \iint_{S^{d-1}\times S^{d-1}} \mathbb{1}\{\mathbf{x}\in C_{A}\} \mathbb{1}\{\mathbf{y}\in C_{A}\} \mathbb{1}\{\mathbf{x}\cdot \mathbf{y}\geq \gamma\} d\sigma^{2}.$$

$$f(\mathbf{x}) = \mathbb{1}\{\mathbf{x}\in A\} \quad \rightarrow \quad f^{*}(\mathbf{x}) = \mathbb{1}\{\mathbf{x}\in C_{A}\}$$

$$g(\mathbf{y}) = \mathbb{1}\{\mathbf{y}\in A\} \quad \rightarrow \quad g^{*}(\mathbf{y}) = \mathbb{1}\{\mathbf{y}\in C_{A}\}$$

$$h(\mathbf{x}\cdot \mathbf{y}) = \mathbb{1}\{\mathbf{x}\cdot \mathbf{y}\geq \gamma\} \qquad (\sigma(A) = \sigma(C_{A}))$$

Lower bounds (Euclidean sphere)

Lemma (Baernstein–Taylor inequality for S^{d-1} [BT76])

$$\iint_{S^{d-1}\times S^{d-1}} \mathbb{1}\{\mathbf{x}\in A\} \mathbb{1}\{\mathbf{y}\in A\} \mathbb{1}\{\mathbf{x}\cdot \mathbf{y}\geq \gamma\} d\sigma^2 \leq \iint_{S^{d-1}\times S^{d-1}} \mathbb{1}\{\mathbf{x}\in C_A\} \mathbb{1}\{\mathbf{y}\in C_A\} \mathbb{1}\{\mathbf{x}\cdot \mathbf{y}\geq \gamma\} d\sigma^2.$$

Lower bounds (Euclidean sphere)

Lemma (Baernstein–Taylor inequality for S^{d-1} [BT76])

$$\Pr_{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}}\left[\mathbf{x},\mathbf{y}\in A,\mathbf{x}\cdot\mathbf{y}\geq\gamma\right]\leq\Pr_{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}}\left[\mathbf{x},\mathbf{y}\in\mathcal{C}_A,\mathbf{x}\cdot\mathbf{y}\geq\gamma\right].$$

Lower bounds (Euclidean sphere)

Lemma (Baernstein–Taylor inequality for S^{d-1} [BT76])

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}\left[\mathbf{x},\mathbf{y}\in A\right]\leq\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}\left[\mathbf{x},\mathbf{y}\in\mathcal{C}_{A}\right].$$

Lower bounds (Euclidean sphere)

Lemma (Baernstein–Taylor inequality for S^{d-1} [BT76])

Lower bounds (Euclidean sphere)

• Locality-sensitive hash functions: Functions *h* satisfying:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}[\mathbf{x},\mathbf{y}\in A]\gg\sigma(A)^2.$$

- Usually $h^{-1}(n)$ has similar shapes for all n.
- **Problem**: For fixed $\sigma(A)$, find $A \subset S^{d-1}$ which maximizes:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}\left[\mathbf{x},\mathbf{y}\in A\right]$$

Lower bounds (Euclidean sphere)

• Locality-sensitive hash functions: Functions *h* satisfying:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}[\mathbf{x},\mathbf{y}\in A]\gg\sigma(A)^2.$$

- Usually $h^{-1}(n)$ has similar shapes for all n.
- **Problem**: For fixed $\sigma(A)$, find $A \subset S^{d-1}$ which maximizes:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}\left[\mathbf{x},\mathbf{y}\in A\right]\leq\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}\left[\mathbf{x},\mathbf{y}\in\mathcal{C}_{A}\right].$$

Lower bounds (Euclidean sphere)

• Locality-sensitive hash functions: Functions *h* satisfying:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}[\mathbf{x},\mathbf{y}\in A]\gg\sigma(A)^2.$$

- Usually $h^{-1}(n)$ has similar shapes for all n.
- **Problem**: For fixed $\sigma(A)$, find $A \subset S^{d-1}$ which maximizes:

$$\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}\left[\mathbf{x},\mathbf{y}\in A\right]\leq\Pr_{\substack{\mathbf{x},\mathbf{y}\sim\mathcal{S}^{d-1}\\\mathbf{x}\cdot\mathbf{y}\geq\gamma}}\left[\mathbf{x},\mathbf{y}\in\mathcal{C}_{A}\right].$$

• Solution: Performance maximized for spherical caps!

• Conditional, asymptotic bounds: Lattice sieving with hash-based searching.

- Conditional, asymptotic bounds: Lattice sieving with hash-based searching.
- Classical sieving: $2^{0.292d+o(d)}$ [BDGL16] is conditionally optimal.

- Conditional, asymptotic bounds: Lattice sieving with hash-based searching.
- Classical sieving: $2^{0.292d+o(d)}$ [BDGL16] is conditionally optimal.
- Sieving + Grover: $2^{0.265d+o(d)}$ [Laa16] is conditionally optimal.

- Conditional, asymptotic bounds: Lattice sieving with hash-based searching.
- Classical sieving: $2^{0.292d+o(d)}$ [BDGL16] is conditionally optimal.
- Sieving + Grover: $2^{0.265d+o(d)}$ [Laa16] is conditionally optimal.
 - ► Sieving + QRW: $2^{0.257d+o(d)}$ [CL21] improves quantum part.

- Conditional, asymptotic bounds: Lattice sieving with hash-based searching.
- Classical sieving: $2^{0.292d+o(d)}$ [BDGL16] is conditionally optimal.
- Sieving + Grover: $2^{0.265d+o(d)}$ [Laa16] is conditionally optimal.
 - ► Sieving + QRW: $2^{0.257d+o(d)}$ [CL21] improves quantum part.
 - Does not violate lower bound.

- Conditional, asymptotic bounds: Lattice sieving with hash-based searching.
- Classical sieving: $2^{0.292d+o(d)}$ [BDGL16] is conditionally optimal.
- Sieving + Grover: $2^{0.265d+o(d)}$ [Laa16] is conditionally optimal.
 - ► Sieving + QRW: $2^{0.257d+o(d)}$ [CL21] improves quantum part.
 - Does not violate lower bound.
- **Tuple sieving**: results from [HKL18] are conditionally optimal.

• Conditional on hash-based approach → Other closest pair techniques?

- Conditional on hash-based approach → Other closest pair techniques?
- Only affects closest pairs subroutine → Improve other parts?

- Conditional on hash-based approach → Other closest pair techniques?
- Only affects closest pairs subroutine → Improve other parts?
- Asymptotics about leading constant → Decrease subexponential overhead?

- Conditional on hash-based approach → Other closest pair techniques?
- Only affects closest pairs subroutine → Improve other parts?
- Asymptotics about leading constant → Decrease subexponential overhead?
- Bound for ISD not tight → Better techniques/bounds?

- Conditional on hash-based approach → Other closest pair techniques?
- Only affects closest pairs subroutine → Improve other parts?
- Asymptotics about leading constant → Decrease subexponential overhead?
- Bound for ISD not tight → Better techniques/bounds?

Thank you for watching!