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* Problem: For fixed o(A), find A ¢ S¢~! which maximizes:

Pr [X yeA]< Pr [x,yECA].
x,y~S4 x,y~S+
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® Solution: Performance maximized for spherical caps!
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Conditional, asymptotic bounds: Lattice sieving with hash-based searching.

Classical sieving: 20-2924+°(d) [BDGL16] is conditionally optimal.

e Sieving + Grover: 20-2654+0(d) [1,3316] is conditionally optimal.
g Yy op
> Sieving + QRW: 202574+°(d) [C[,21] improves quantum part.
» Does not violate lower bound.

Tuple sieving: results from [HKL18] are conditionally optimal.
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Thank you for watching!
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