& TU EINDHOVEN
UNIVERSITY OF
e Baltic Federal University e TECHNOLOGY

Lower bounds on lattice sieving
and information set decoding

Elena Kirshanova, Thijs Laarhoven

mail@thijs.com
https://www.thijs.com/

Crypto 2021, virtual
(August 17, 2021)

mailto:mail@thijs.com
https://www.thijs.com/

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.
> NIST standardization: Dominated by lattices and codes.

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.
> NIST standardization: Dominated by lattices and codes.
> Security relies on hardness of lattice problems, decoding problems.

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.
> NIST standardization: Dominated by lattices and codes.
> Security relies on hardness of lattice problems, decoding problems.
> Long-term security = Conservative bounds.

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.
> NIST standardization: Dominated by lattices and codes.
> Security relies on hardness of lattice problems, decoding problems.
> Long-term security = Conservative bounds.

¢ State-of-the-art cryptanalysis: Lattice sieving, information set decoding.

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.
> NIST standardization: Dominated by lattices and codes.
> Security relies on hardness of lattice problems, decoding problems.
> Long-term security = Conservative bounds.

¢ State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
> Sample large database of “long” vectors.

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.
> NIST standardization: Dominated by lattices and codes.
> Security relies on hardness of lattice problems, decoding problems.
> Long-term security = Conservative bounds.

¢ State-of-the-art cryptanalysis: Lattice sieving, information set decoding.

> Sample large database of “long” vectors.
» Combine “nearby” vectors to obtain shorter vectors.

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.
> NIST standardization: Dominated by lattices and codes.
> Security relies on hardness of lattice problems, decoding problems.
> Long-term security = Conservative bounds.

¢ State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
> Sample large database of “long” vectors.
» Combine “nearby” vectors to obtain shorter vectors.
> Repeat until sufficiently “short” vectors are found.

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.
> NIST standardization: Dominated by lattices and codes.

> Security relies on hardness of lattice problems, decoding problems.
> Long-term security = Conservative bounds.

¢ State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
> Sample large database of “long” vectors.
» Combine “nearby” vectors to obtain shorter vectors.
> Repeat until sufficiently “short” vectors are found.

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.
> NIST standardization: Dominated by lattices and codes.

> Security relies on hardness of lattice problems, decoding problems.
> Long-term security = Conservative bounds.

¢ State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
> Sample large database of “long” vectors.
» Combine “nearby” vectors to obtain shorter vectors.
> Repeat until sufficiently “short” vectors are found.

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.
»> Subroutine dominates overall algorithm complexities.

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.
> NIST standardization: Dominated by lattices and codes.

> Security relies on hardness of lattice problems, decoding problems.
> Long-term security = Conservative bounds.

¢ State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
> Sample large database of “long” vectors.
» Combine “nearby” vectors to obtain shorter vectors.
> Repeat until sufficiently “short” vectors are found.

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.

»> Subroutine dominates overall algorithm complexities.
> Naive approach: Quadratic for pairs of vectors.

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.
> NIST standardization: Dominated by lattices and codes.

> Security relies on hardness of lattice problems, decoding problems.
> Long-term security = Conservative bounds.

¢ State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
> Sample large database of “long” vectors.
» Combine “nearby” vectors to obtain shorter vectors.
> Repeat until sufficiently “short” vectors are found.

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.
»> Subroutine dominates overall algorithm complexities.
> Naive approach: Quadratic for pairs of vectors.
» Hash-based approaches: Subquadratic time complexity.

TU/e Abstract

® Post-quantum cryptography: Lattice-based, code-based cryptography.
> NIST standardization: Dominated by lattices and codes.
> Security relies on hardness of lattice problems, decoding problems.
> Long-term security = Conservative bounds.

¢ State-of-the-art cryptanalysis: Lattice sieving, information set decoding.
> Sample large database of “long” vectors.
» Combine “nearby” vectors to obtain shorter vectors.
> Repeat until sufficiently “short” vectors are found.

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.
»> Subroutine dominates overall algorithm complexities.
> Naive approach: Quadratic for pairs of vectors.
» Hash-based approaches: Subquadratic time complexity.
» No matching lower bounds = Improvements still possible?

TU/e Abstract

® Closest pairs problem: Key subroutine for efficiently combining vectors.

» Subroutine dominates overall algorithm complexities.

> Naive approach: Quadratic for pairs of vectors.

» Hash-based approaches: Subquadratic time complexity.

» No matching lower bounds = Improvements still possible?

TU/e Abstract

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.

> Subroutine dominates overall algorithm complexities.

> Naive approach: Quadratic for pairs of vectors.

» Hash-based approaches: Subquadratic time complexity.

» No matching lower bounds = Improvements still possible?

TU/e Abstract

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.

> Subroutine dominates overall algorithm complexities.

> Naive approach: Quadratic for pairs of vectors.

» Hash-based approaches: Subquadratic time complexity.

» No matching lower bounds = Improvements still possible?

® Contributions: Lower bounds for corresponding nearest neighbor problems.

TU/e Abstract

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.

> Subroutine dominates overall algorithm complexities.

> Naive approach: Quadratic for pairs of vectors.

» Hash-based approaches: Subquadratic time complexity.

» No matching lower bounds = Improvements still possible?

® Contributions: Lower bounds for corresponding nearest neighbor problems.
»> Conditional: Applies to “hash-based” model.

TU/e Abstract

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.

> Subroutine dominates overall algorithm complexities.

> Naive approach: Quadratic for pairs of vectors.

» Hash-based approaches: Subquadratic time complexity.

» No matching lower bounds = Improvements still possible?

® Contributions: Lower bounds for corresponding nearest neighbor problems.

»> Conditional: Applies to “hash-based” model.
> Tight lower bound for lattice sieving = [BDGL16] optimal.

TU/e Abstract

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.

> Subroutine dominates overall algorithm complexities.

> Naive approach: Quadratic for pairs of vectors.

» Hash-based approaches: Subquadratic time complexity.

» No matching lower bounds = Improvements still possible?

® Contributions: Lower bounds for corresponding nearest neighbor problems.
»> Conditional: Applies to “hash-based” model.
> Tight lower bound for lattice sieving = [BDGL16] optimal.
> Non-tight lower bound for ISD = [MO15] possibly suboptimal?

TU/e Abstract

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.
> Subroutine dominates overall algorithm complexities.
> Naive approach: Quadratic for pairs of vectors.
» Hash-based approaches: Subquadratic time complexity.
» No matching lower bounds = Improvements still possible?

® Contributions: Lower bounds for corresponding nearest neighbor problems.

»> Conditional: Applies to “hash-based” model.
> Tight lower bound for lattice sieving = [BDGL16] optimal.
> Non-tight lower bound for ISD = [MO15] possibly suboptimal?

® Cryptographic implications: Better understanding of hardness.

TU/e Abstract

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.

> Subroutine dominates overall algorithm complexities.

> Naive approach: Quadratic for pairs of vectors.

» Hash-based approaches: Subquadratic time complexity.

» No matching lower bounds = Improvements still possible?

® Contributions: Lower bounds for corresponding nearest neighbor problems.

»> Conditional: Applies to “hash-based” model.
> Tight lower bound for lattice sieving = [BDGL16] optimal.
> Non-tight lower bound for ISD = [MO15] possibly suboptimal?

® Cryptographic implications: Better understanding of hardness.
> Cryptanalysis: Search for improvements elsewhere [Ducl8, A+19].

TU/e Abstract

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.
> Subroutine dominates overall algorithm complexities.
> Naive approach: Quadratic for pairs of vectors.
» Hash-based approaches: Subquadratic time complexity.
» No matching lower bounds = Improvements still possible?

® Contributions: Lower bounds for corresponding nearest neighbor problems.

»> Conditional: Applies to “hash-based” model.
> Tight lower bound for lattice sieving = [BDGL16] optimal.
> Non-tight lower bound for ISD = [MO15] possibly suboptimal?

® Cryptographic implications: Better understanding of hardness.

> Cryptanalysis: Search for improvements elsewhere [Ducl8, A+19].
> Motivates focus on best lattice sieve [AGPS20, DSYW21].

TU/e Abstract

¢ Closest pairs problem: Key subroutine for efficiently combining vectors.
> Subroutine dominates overall algorithm complexities.
> Naive approach: Quadratic for pairs of vectors.
» Hash-based approaches: Subquadratic time complexity.
» No matching lower bounds = Improvements still possible?

® Contributions: Lower bounds for corresponding nearest neighbor problems.

»> Conditional: Applies to “hash-based” model.
> Tight lower bound for lattice sieving = [BDGL16] optimal.
> Non-tight lower bound for ISD = [MO15] possibly suboptimal?

® Cryptographic implications: Better understanding of hardness.

> Cryptanalysis: Search for improvements elsewhere [Ducl8, A+19].
> Motivates focus on best lattice sieve [AGPS20, DSYW21].
> Parameter selection: Conditional security guarantees.

TU/e Hash-based model

® Closest pairs problem:
Let (M, d) be a bounded metric space, and let r > 0 be a given target distance.
Let L C M be a subset of M, with elements drawn uniformly at random from M.
Find “almost all” pairs x,y € L satisfying d(x,y) <r.

TU/e Hash-based model

® Closest pairs problem:
Let (M, d) be a bounded metric space, and let r > 0 be a given target distance.
Let L C M be a subset of M, with elements drawn uniformly at random from M.

Find “almost all” pairs x,y € L satisfying d(x,y) <r.
® Locality-sensitive hash functions: Functions h satisfying:

Pr,, [hG)=h()]> Pr [h(x)=h(y)].
d(x,y)<r

TU/e Hash-based model

® Closest pairs problem:
Let (M, d) be a bounded metric space, and let r > 0 be a given target distance.
Let L C M be a subset of M, with elements drawn uniformly at random from M.
Find “almost all” pairs x,y € L satisfying d(x,y) <r.

® Locality-sensitive hash functions: Functions h satisfying:

Pr,, [hG)=h()]> Pr [h(x)=h(y)].
d(x,y)<r

® Locality-sensitive hashing: Build and populate hash tables using “nice” hash
functions, and combine pairs of vectors within hash buckets.

TU/e Hash-based model

® Closest pairs problem:
Let (M, d) be a bounded metric space, and let r > 0 be a given target distance.
Let L C M be a subset of M, with elements drawn uniformly at random from M.
Find “almost all” pairs x,y € L satisfying d(x,y) <r.

® Locality-sensitive hash functions: Functions h satisfying:
Pr [h(x)=h(y)]> Pr [h(x)=h(y)].
x,y~M x,y~M
d(x,y)<r

® Locality-sensitive hashing: Build and populate hash tables using “nice” hash
functions, and combine pairs of vectors within hash buckets.

> Lattice sieving: M = S%1, d(x,y) = |[x—ll,, |L| = 28D,

TU/e Hash-based model

® Closest pairs problem:
Let (M, d) be a bounded metric space, and let r > 0 be a given target distance.
Let L C M be a subset of M, with elements drawn uniformly at random from M.
Find “almost all” pairs x,y € L satisfying d(x,y) <r.

® Locality-sensitive hash functions: Functions h satisfying:

Pr,, [hG)=h()]> Pr [h(x)=h(y)].
d(x,y)<r

® Locality-sensitive hashing: Build and populate hash tables using “nice” hash
functions, and combine pairs of vectors within hash buckets.

> Lattice sieving: M = S%1, d(x,y) = |[x—ll,, |L| = 28D,
> ISD setting: M = {0,1}¢, d(x,y) = ||x—yll1, |L| = 2@,

TU/e Hash-based model

® Closest pairs problem:
Let (M, d) be a bounded metric space, and let r > 0 be a given target distance.
Let L C M be a subset of M, with elements drawn uniformly at random from M.
Find “almost all” pairs x,y € L satisfying d(x,y) <r.

® Locality-sensitive hash functions: Functions h satisfying:

Pr,, [hG)=h()]> Pr [h(x)=h(y)].
d(x,y)<r

® Locality-sensitive hashing: Build and populate hash tables using “nice” hash
functions, and combine pairs of vectors within hash buckets.

> Lattice sieving: M = S%1, d(x,y) = |[x—ll,, |L| = 28D,
> ISD setting: M = {0,1}¢, d(x,y) = ||x—yll1, |L| = 2@,
> Nearest neighbor literature: Various (M, d), focus on |L| = 2°(9,

TU/e Hash-based model

® Locality-sensitive hash functions: Functions h satisfying:

Pr,, [hG)=h()]> Pr [h(x)=h(y)].
d(x,y)<r

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

X,EEM [A(x) =h(y)]> X,SEM[h(X) =h(y)].
d(x,y)<r

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

Pr [h(x)=h(y)]> Pr_[h(x)="h(y)].
x,y~S? X,y~8
xyzy

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

2. Pr [hG)=h(y)=n] >>Z P, ThGO =h(y) =n].
n Xy/\/ X N
xyzy

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

2 T Loy @] 2, By by o)
Xy=y

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

2 T Loy @] 2, By by o)
Xy=y

e Usually h~'(n) has similar shapes for all n.

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

n- Pr [x,yeh(0)]|>n- Pr [xyeh !(0)].
X,YNS‘ifl[yeh (0] X,Mdfl[yeh (0]
Xy=y

* Usually h!(n) has similar shapes for all n.

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

Pr [xyeh(0)]> pPr [xyehnl(0)].
X,YNS‘ifl[yeh(0)] XNH[yeh(0)]
Xy2y

* Usually h!(n) has similar shapes for all n.

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

Pr [x,y€A]> Pr [xy€eA].
Xy~ Sdfl X,y~ Sd—1
Xy=y

* Usually h!(n) has similar shapes for all n.

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

Pr [x,y€A]l> o(A)>.
X,y~$d71
xy2y

* Usually h!(n) has similar shapes for all n.

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

Pr [x,y€A]l> o(A)>.
X,y~$d71
xy2y

* Usually h!(n) has similar shapes for all n.

* Problem: For fixed o(A), find A ¢ S¢~! which maximizes:

Pr [x,yeA].
X,y~$d71
Xy2y

TU/e Lower bounds (Euclidean sphere)

Lemma (Baernstein-Taylor inequality for S! [BT76])

Let f,g : 841 — R be arbitrary Lebesgue-integrable functions. Let h : [—1,1] — R be
non-decreasing, bounded, and measurable. Let f*,g* : S R be the symmetric
non-decreasing rearrangements of f,g. Then:

fff (x)g(Yh(x-y)do(x)do(y) < f X" (h(x-y)do(x)do(y).

Sd—1x gd—1 Sd—1x gd—1

TU/e Lower bounds (Euclidean sphere)

Lemma (Baernstein-Taylor inequality for S¢! [BT76])

Let f,g : 841 — R be arbitrary Lebesgue-integrable functions. Let h : [—1,1] — R be
non-decreasing, bounded, and measurable. Let f*,g* : ST — R be the symmetric
non-decreasing rearrangements of f,g. Then:

fff (x)g(y)h(x-y)do(x)do(y) < f ff®g" (y)h(x-y)do(x)do(y).
Sdfl Xsdfl Sdfl Xsdfl
f(x)=1{xe€A}
gly) = 1{y € A}
h(x-y)=1{x-y>r}

TU/e Lower bounds (Euclidean sphere)

Lemma (Baernstein-Taylor inequality for S¢! [BT76])

Let f,g : 841 — R be arbitrary Lebesgue-integrable functions. Let h : [—1,1] — R be
non-decreasing, bounded, and measurable. Let f*,g* : ST — R be the symmetric
non-decreasing rearrangements of f,g. Then:

fff x)g(h(x-y)do(x)do(y) < f ff®g" (y)h(x-y)do(x)do(y).
Sdfl Xsdfl Sdfl Xsdfl
f@)=1{xeA} - fX=1{xel,}
gy)=1{yeA}l - gy =1{yeis}
h(x-y)=1{x-y >y} (c(A)=0(C))

TU/e Lower bounds (Euclidean sphere)

Lemma (Baernstein-Taylor inequality for S¢! [BT76])

Let f,g : 841 — R be arbitrary Lebesgue-integrable functions. Let h : [—1,1] — R be
non-decreasing, bounded, and measurable. Let f*,g* : ST — R be the symmetric
non-decreasing rearrangements of f,g. Then:

JJ 1{xeA}l{y€A}i{x-y>y}do? < JJ 1{xeC}1{yeCs}i{x-y>y}do?.
Sd-1xgd-1 Sd-1xgd-1
fX)=1{xeA} - [f=1{xel,}
sy)=1{yeA} - gy)=1{yeCs}
hx-y)=1{x-y =7} (0(A)=0(C4))

TU/e Lower bounds (Euclidean sphere)

Lemma (Baernstein-Taylor inequality for S! [BT76])

Let f,g : 841 — R be arbitrary Lebesgue-integrable functions. Let h : [—1,1] — R be
non-decreasing, bounded, and measurable. Let f*,g* : S R be the symmetric
non-decreasing rearrangements of f,g. Then:

JJ 1{xeA}l{y€A}i{x-y>y}do? < JJ 1{xeC}1{yeCs}i{x-y>y}do?.

Sd—1x gd—1 Sd—1x gd—1

TU/e Lower bounds (Euclidean sphere)

Lemma (Baernstein-Taylor inequality for S¢~! [BT76])

Let f,g : 841 — R be arbitrary Lebesgue-integrable functions. Let h : [—1,1] — R be
non-decreasing, bounded, and measurable. Let f*,g* : S R be the symmetric
non-decreasing rearrangements of f,g. Then:

Pr [xy€Ax-y=y]< Pr [xy€Cyx-y=7].
x,yNSd_1 X,Y“‘Sd_l

TU/e Lower bounds (Euclidean sphere)

Lemma (Baernstein-Taylor inequality for S¢~! [BT76])

Let f,g : 841 — R be arbitrary Lebesgue-integrable functions. Let h : [—1,1] — R be
non-decreasing, bounded, and measurable. Let f*,g* : ST — R be the symmetric
non-decreasing rearrangements of f,g. Then:

Pr [x,ye€A]< P%1BJ€CM-

xy~S41 xy~ST
xy=y Xy=y

TU/e Lower bounds (Euclidean sphere)

Lemma (Baernstein-Taylor inequality for S! [BT76])

Let f,g : 841 — R be arbitrary Lebesgue-integrable functions. Let h : [—1,1] — R be
non-decreasing, bounded, and measurable. Let f*,g* : S R be the symmetric
non-decreasing rearrangements of f,g. Then:

Pr [x,ye€A]< PﬂthGCﬂ-

xy~S41 xy~ST
xy=y Xy=y

IA

Cyg

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

Pr [x,y€A]l> o(A)>.
X,y~$d71
xy2y

* Usually h~!(n) has similar shapes for all n.
* Problem: For fixed o(A), find A ¢ S¢~! which maximizes:
Prd) [x,y €A]

X, y~S
X-y=y

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

Pr [x,yeA] > o(A)%.
xy~$ o
xy2y

* Usually h~!(n) has similar shapes for all n.
* Problem: For fixed o(A), find A ¢ S¢~! which maximizes:
Pr [X yeA]< Pr [x,yECA].

x,y~S4 x,y~S+
xy2y Xy2y

TU/e Lower bounds (Euclidean sphere)

® Locality-sensitive hash functions: Functions h satisfying:

Pr [x,y eA]l> o(A)>
xy~S+
xyzy
* Usually h~!(n) has similar shapes for all n.
* Problem: For fixed o(A), find A ¢ S¢~! which maximizes:

Pr [X yeA]< Pr [x,yECA].
x,y~S4 x,y~S+
xy2y xy2y

® Solution: Performance maximized for spherical caps!

TU/e Lower bounds (lattice sieving)

® Conditional, asymptotic bounds: Lattice sieving with hash-based searching.

TU/e Lower bounds (lattice sieving)

® Conditional, asymptotic bounds: Lattice sieving with hash-based searching.
* Classical sieving: 20-2924+°(d) [BDGL16] is conditionally optimal.

TU/e Lower bounds (lattice sieving)

® Conditional, asymptotic bounds: Lattice sieving with hash-based searching.
* Classical sieving: 20-2924+°(d) [BDGL16] is conditionally optimal.

* Sieving + Grover: 20-265¢+°(9) [13216] is conditionally optimal.

TU/e Lower bounds (lattice sieving)

® Conditional, asymptotic bounds: Lattice sieving with hash-based searching.
* Classical sieving: 20-2924+°(d) [BDGL16] is conditionally optimal.

e Sieving + Grover: 20-2654+0(d) 1 1516] is conditionally optimal.
g y op
> Sieving + QRW: 202574+°(d) [C[,21] improves quantum part.

TU/e Lower bounds (lattice sieving)

® Conditional, asymptotic bounds: Lattice sieving with hash-based searching.
* Classical sieving: 20-2924+°(d) [BDGL16] is conditionally optimal.

* Sieving + Grover: 20-265¢+°(9) [13216] is conditionally optimal.

> Sieving + QRW: 202574+°(d) [C[,21] improves quantum part.
> Does not violate lower bound.

TU/e Lower bounds (lattice sieving)

Conditional, asymptotic bounds: Lattice sieving with hash-based searching.

Classical sieving: 20-2924+°(d) [BDGL16] is conditionally optimal.

e Sieving + Grover: 20-2654+0(d) [1,3316] is conditionally optimal.
g Yy op
> Sieving + QRW: 202574+°(d) [C[,21] improves quantum part.
» Does not violate lower bound.

Tuple sieving: results from [HKL18] are conditionally optimal.

Tu/e Open problems

® Conditional on hash-based approach — Other closest pair techniques?

Tu/e Open problems

® Conditional on hash-based approach — Other closest pair techniques?

® Only affects closest pairs subroutine — Improve other parts?

Tu/e Open problems

® Conditional on hash-based approach — Other closest pair techniques?
® Only affects closest pairs subroutine — Improve other parts?

® Asymptotics about leading constant — Decrease subexponential overhead?

Tu/e Open problems

Conditional on hash-based approach — Other closest pair techniques?

Only affects closest pairs subroutine — Improve other parts?

® Asymptotics about leading constant — Decrease subexponential overhead?

Bound for ISD not tight — Better techniques/bounds?

Tu/e Open problems

Conditional on hash-based approach — Other closest pair techniques?

Only affects closest pairs subroutine — Improve other parts?

® Asymptotics about leading constant — Decrease subexponential overhead?

Bound for ISD not tight — Better techniques/bounds?

Thank you for watching!

	Abstract
	Hash-based model
	Lower bounds
	Euclidean sphere
	Lattice sieving

	Open problems

