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Abstract

• Post-quantum cryptography: Lattice-based, code-based cryptography.

É NIST standardization: Dominated by lattices and codes.
É Security relies on hardness of lattice problems, decoding problems.
É Long-term security =⇒ Conservative bounds.

• State-of-the-art cryptanalysis: Lattice sieving, information set decoding.

É Sample large database of “long” vectors.
É Combine “nearby” vectors to obtain shorter vectors.
É Repeat until sufficiently “short” vectors are found.

• Closest pairs problem: Key subroutine for efficiently combining vectors.

É Subroutine dominates overall algorithm complexities.
É Naive approach: Quadratic for pairs of vectors.
É Hash-based approaches: Subquadratic time complexity.
É No matching lower bounds =⇒ Improvements still possible?
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• Contributions: Lower bounds for corresponding nearest neighbor problems.

É Conditional: Applies to “hash-based” model.
É Tight lower bound for lattice sieving =⇒ [BDGL16] optimal.
É Non-tight lower bound for ISD =⇒ [MO15] possibly suboptimal?

• Cryptographic implications: Better understanding of hardness.

É Cryptanalysis: Search for improvements elsewhere [Duc18, A+19].
É Motivates focus on best lattice sieve [AGPS20, DSvW21].
É Parameter selection: Conditional security guarantees.
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Hash-based model

• Closest pairs problem:
Let (M, d) be a bounded metric space, and let r≥ 0 be a given target distance.
Let L ⊂M be a subset of M, with elements drawn uniformly at random from M.
Find “almost all” pairs x,y ∈ L satisfying d(x,y)≤ r.

• Locality-sensitive hash functions: Functions h satisfying:

Pr
x,y∼M

d(x,y)≤r

[h(x) = h(y)]� Pr
x,y∼M

[h(x) = h(y)] .

• Locality-sensitive hashing: Build and populate hash tables using “nice” hash
functions, and combine pairs of vectors within hash buckets.

É Lattice sieving: M = Sd−1, d(x,y) = ‖x− y‖2, |L|= 2Θ(d).
É ISD setting: M = {0, 1}d, d(x,y) = ‖x− y‖1, |L|= 2Θ(d).
É Nearest neighbor literature: Various (M, d), focus on |L|= 2o(d).
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• Usually h−1(n) has similar shapes for all n.
• Problem: For fixed σ(A), find A ⊂ Sd−1 which maximizes:

Pr
x,y∼Sd−1

x·y≥γ

[x,y ∈ A] .
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Lower bounds (lattice sieving)

• Conditional, asymptotic bounds: Lattice sieving with hash-based searching.

• Classical sieving: 20.292d+o(d) [BDGL16] is conditionally optimal.
• Sieving + Grover: 20.265d+o(d) [Laa16] is conditionally optimal.

É Sieving + QRW: 20.257d+o(d) [CL21] improves quantum part.
É Does not violate lower bound.

• Tuple sieving: results from [HKL18] are conditionally optimal.
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Open problems

• Conditional on hash-based approach→ Other closest pair techniques?

• Only affects closest pairs subroutine→ Improve other parts?
• Asymptotics about leading constant→ Decrease subexponential overhead?
• Bound for ISD not tight→ Better techniques/bounds?
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