Functional Encryption for Turing Machines
with Dynamic Bounded Colluston from LWE

Shweta Agrawal

Narasimha Sat Vempati

IT Madras TU Darmstadt ®

SEFH TECHNISCHE
G =\ UNIVERSITAT
J~ DARMSTADT

Monosy Maitra®

Shota Yamada®

AISTJapan.

nnnnnnnnnnnnn
ADVANCED INDUSTRIAL SCIENCE
AND TECHNOLOGY (AIST)



Functional Encryption [SW05, BSW11, O'N10]

Setup

Encrypt KeyGen

Decrypt




Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Encrypt KeyGen

Decrypt




Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext
CT = Encrypt(PK, m) KeyGen
13 2 0.1
By AR ano

0
gt
gt

Decrypt

"
pt
8!




Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext Secret Key
CT = Encrypt(PK, m) SK; = KeyGen(MSK, f)
" 0 Y b 0 1 pY o> D

3 ‘x‘“ I
D" 0" Moo
Y ‘%
1
0

Decrypt




Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext Secret Key
CT = Encrypt(PK, m) SK; = KeyGen(MSK, f)

=

Decrypt(CT, SK;) = f(m)




Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext Secret Key .
CT = Encrypt(PK, m) SKf = KeyGen(MSK, f) SECUI’Ity:

+ P Any PPT adv. learns only
% f(m) and nothing else.

Decrypt(CT, SK;) = f(m)




Functional Encryption [SW05, BSW11, O'N10]

CT « Encrypt(PK, m)
Setup(1%) : (PK, MSK) <

cT* « SIM(PK, {gKfi ,fim)}, 1™)

Ciphertext / Secret Key \ SKf f.(m)
1
CT = Encrypt(PK, m) SK; = KeyGen(MSK, f)
SKJc2 f,(m)

TR TR ) -
3’31:‘&3}‘.““&3 + % . .
s 3

0 SKfQ fQ(m)

\_ /

Decrypt(CT, SK;) = f(m)



Functional Encryption [SW05, BSW11, O'N10]

CT « Encrypt(PK, m)
Setup(1%) : (PK, MSK) <

cT* « SIM(PK, {gKfi ,fim)}, 1™)

Ciphertext / Secret Key \ SKf fl(m)
1
CT = Encrypt(PK, m) SK; = KeyGen(MSK, f)
A SKfz fz(m)

mmmfln&a + gj@)@ . .
KE Jos, m

Q = unbounded poly
Decrypt(CT, SK¢) = f(m) Collusion resistant




N

Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext
CT = Encrypt(PK, m)
13 2 0.1
] (B By

0
> :

3
0

e

/ Secret Key \

SK = KeyGen(MSK, f)

\_ /

Decrypt(CT, SK;) = f(m)

CT « Encrypt(PK, m)

c1* < SIM(PK, {gKfi f.om)},1™)

SK. £.(m)
SK fz(m)
G
SK, folm)

Full SIM security
Q = unbounded poly impossible

Collusion resistant

[BSW11, AGVW13]



Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext / Secret Key \ SKf1 fl(m) N

CT = Encrypt(PK, m) SK; = KeyGen(MSK, f) AJL*19,
1 ! SKf fz(m) JLMS19,

1gd 2 GILS20,

0.

L Y T .
j" ° °

'L_L .

ED SKfQ fa(m)

\_ /

Q = unbounded poly
Decrypt(CT, SK¢) = f(m) Collusion resistant



Functional Encryption [SW05, BSW11, O'N10]

Cryptomania

Setup(1%) : (PK, MSK) :
()
Ciphertext / Secret Key \ S Kf1 fl(m) [Agr19,
CT = Encrypt(PK, m) SK; = KeyGen(MSK, f) AJL*19,
1 ! S Kf fz(m) JLMS19,
1 gl 2 GJLS20,

0.3
hY o>
) m o + ) N L5201
Yo 00 . .
0 gt ° ° [AJ15, BV15,
" 1 % AJS15, BNP*16,
p" a S Kf fQ(m) LV16, Lin17,

LT17, KS17,
K / Q KNT18...]

Obfustopia

Q = unbounded poly
Decrypt(CT, SK¢) = f(m) Collusion resistant



Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext
CT = Encrypt(PK, m)
Vgl b g 3 b
1B £F nna

0
> :

7
0

e

/ Secret Key \

SK = KeyGen(MSK, f)

/

Decrypt(CT, SK;) = f(m)

SKy.
SK,.

SK,.

—)

Q = unbounded poly
Collusion resistant

fi(m)
fo(m)

falm)

Complex constructions
Mixed assumptions

Cryptomania

[Agrl9,
AJL*19,
JLMS19,
GJLS20,
JLS20]

[AJ15, BV15,
AJS15, BNP*16,
LV16, Lin17,
EYASYS
KNT18...]

Obfustopia



Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext / Secret Key \ SKf fl(m)
1
CT = Encrypt(PK, m) SK; = KeyGen(MSK, f)
A SKfz fz(m)

0.1
. ] e | D )

] 54 PY . .
0 1 % ° °
.L‘L D-L

Q

Q = bounded poly
Decrypt(CT, SK¢) = f(m) Bounded collusion AR17, Agrl7, AV19

possible Gvwi2,




Functional Encryption [SW05, BSW11, O'N10]

—

Setup(1%, 19) : (PK, MSK)

Ciphertext / Secret Key \

CT = Encrypt(PK, m) SK; = KeyGen(MSK, f)

'Lg'h}’

0.1
pY o{>—
N X + il
M0 - Mg
. B
» 0
Q = bounded poly possible Gvw12,

Decrypt(CT, SK;) = f(m) Bounded collusion AR17, Agr17, AV19




Limttations of Prior Work

e Bounded collusion model

H * Prior work: [GVW12, AR16, Agrl7, AV19]




Limttations of Prior Work

e Bounded collusion model

* Prior work: [GVW12, AR16, Agrl7, AV19]
Q * Q: fixed at setup

* Inefficient: Keys (& CT) grow with Q




Limttations of Prior Work

e Bounded collusion model

* Prior work: [GVW12, AR16, Agrl7, AV19]
Q * Q:fixed at setup

* Inefficient: Keys (& CT) grow with Q

* Same collusion-tolerance for all CT




Limttations of Prior Work Our Results

* Bounded collusion model * Dynamic bounded collusion (DBC) model

e Priorwork: [GVW12, AR16, Agrl7, AV19]
G * Q: fixed at setup

* Inefficient: Keys (& CT) grow with Q

» Stronger model: encryptor fixes Q per CT

* Same collusion-tolerance for all CT

m_, Q m,, Q

1/ 1 2
S Kf1 f1(m1) SKfl .fl(mZ)
CT(m,) % e £ CT(m,) Ky B0
SKfQ f Ql(ml) SKfQ f Qz(mz)

1 1



Limttations of Prior Work Our Results

* Bounded collusion model * Dynamic bounded collusion (DBC) model

* Prior work: [GVW12, AR16, Agrl7, AV19] » Stronger model: encryptor fixes Q per CT

G * Q: fixed at setup * Time(SetUp, KeyGen) independent of Q
* Inefficient: Keys (& CT) grow with Q * |CT| grows linearly with choice of Q

* Same collusion-tolerance for all CT

mllol mZIQZ
S Kf1 f1(m1) SKfl .fl(mZ)

CT(m,) % e £ CT(m,) Ky B0
SKfQ f Ql(ml) SKfQ f Qz(mz)

1 1



Limttations of Prior Work

e Bounded collusion model

e Priorwork: [GVW12, AR16, Agrl7, AV19]
G * Q: fixed at setup

* Inefficient: Keys (& CT) grow with Q

* Same collusion-tolerance for all CT

m_, Q,
SK¢ f.(m)
CT(ml) S|:<f2 E— fz(':ﬂl)
SKy._ fa (m,)

1

Our Results

* Dynamic bounded collusion (DBC) model
» Stronger model: encryptor fixes Q per CT
* Time(SetUp, KeyGen) independent of Q
» |CT| grows linearly with choice of Q
* FromI/BE

Based

m.. Q on IBE

21

2
SK¢ f.(m.)
CT(mZ) SI.<f2 _ fz(,:nz) (NN

SKr, fa (M)



Limttations of Prior Work

* All prior work build key-policy FE

Ciphertext-policy

Inefficient, supports bounded size circuits

a * Build CPFE via universal circuits: U, (.)

~

Key-policy

CTe(f) <

> CT = Encrypt(PK, f)

SK, *

X

Decrypt(CT, SK,) = f(x)

g SKUX = KeyGen(MSK, U,)

Decrypt(CT, SKy, ) = U, (f)

Our Results



Limttations of Prior Work

* All prior work build key-policy FE

Inefficient, supports bounded size circuits

a * Build CPFE via universal circuits: U, (.)

» Exception: [SS10] - 1-key secure

Ciphertext-policy

~

Key-policy

CTe(f) <

> CT = Encrypt(PK, f)

SK, *

X

Decrypt(CT, SK,) = f(x)

g SKUX = KeyGen(MSK, U,)

Decrypt(CT, SKy, ) = U, (f)

Our Results



Limttations of Prior Work Our Results

* All prior work build key-policy FE » DBC CPFE with various tradeoffs -
* Build CPFE via universal circuits: U, (.)
a * Inefficient, supports bounded size circuits

» Exception: [SS10] - 1-key secure




Limttations of Prior Work Our Results

* All prior work build key-policy FE » DBC CPFE with various tradeoffs -
 Build CPFE via universal circuits: U, (.) * (IND-CPA/SIM-RSO) IBE = (NA /AD)-SIM,
a * Inefficient, supports bounded size circuits (Unbounded / Bounded) size circuits

» Exception: [SS10] - 1-key secure




Limttations of Prior Work Our Results

IND-CPA
* All prior work build key-policy FE * DBC CPFE with various trade% SIM-RSO [K?lg]
* Build CPFE via universal circuits: U, (.) e (IND-CPA/SIM-RSO) IBE = (NA /AD)-SIM,
a * Inefficient, supports bounded size circuits (Unbounded / Bounded) size circuits

» Exception: [SS10] - 1-key secure




Limttations of Prior Work Our Results

* All prior work build key-policy FE » DBC CPFE with various tradeoffs -
 Build CPFE via universal circuits: U, (.) * (IND-CPA/SIM-RSO) IBE = (NA /AD)-SIM,
a * Inefficient, supports bounded size circuits (Unbounded / Bounded) size circuits

» Exception: [SS10] - 1-key secure * IBE: necessary for DBC




Limttations of Prior Work

* All prior work build key-policy FE
* Build CPFE via universal circuits: U, (.)
a * Inefficient, supports bounded size circuits

» Exception: [SS10] - 1-key secure

Our Results

DBC CPFE with various tradeoffs -
* (IND-CPA/SIM-RSQO)IBE = (NA /AD)-SIM,
(Unbounded / Bounded) size circuits
* IBE: necessary for DBC
DBC, AD-SIM, succinct CP/KP-FE from LWE

Unbounded size,
bounded depth &
output circuits




Limttations of Prior Work

* All prior work build key-policy FE
* Build CPFE via universal circuits: U, (.)
a * Inefficient, supports bounded size circuits

» Exception: [SS10] - 1-key secure

Our Results

DBC CPFE with various tradeoffs -
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(Unbounded / Bounded) size circuits
* IBE: necessary for DBC
DBC, AD-SIM, succinct CP/KP-FE from LWE

Stronger security
for [GKP*13b]
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* Model of computation (Uniform: TM,FA) * PK-FE for TMINL from LWE
* PK-FE [GKP*13a]: non-standard assumption » Both KP/CP, satisfies DBC
e * PK-FE[AS17]: 1-key, LWE * TM: NA-SIM, NL: AD-SIM—[AMY19, AS17]
* SK-FE for FA[AMY19]: LWE * |CT| grows with runtime t

* Bounded collusion tis not a global bound, can vary perinput.
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Necessity of IBE

Concurrent Work:
CPFE from IBE (NA/AD)-SIM
(TM/NL)-CP/KP-FE
* Similar techniques, but for KPFE: vs. circuit family from LWE

* [GGLW?21] also introduced DBC

* IBE + existing KPFE [GVW12, AV19] \

AD-SIM, succinct

CP/KP-FE from LWE
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* [AV19]: Time(KeyGen) = poly-log(Q)
* [AV19]: Time(SetUp) = poly-log(Q) W Setup KeyGen </

* FEypeqa/(Setup, KeyGen) still need to get rid of Q.. ..

e “Power of 2” trick[GKP*13]: Run A FE__ . parallely
/ special CPFE,;.  Setup KeyGen  Encrypt(x,19) Decrypt

FE Setup(2) KeyGen(2) Encrypt(2/x) Decrypt with

special

IND-CPA IBE = NA-SIM, unbounded circuits Setup(22) KeyGen(22) 2'<Q <2 2-th subsystem

SIM-RSO IBE = AD-SIM, bounded circuits
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