Functional Encryption for Turing Machines
with Dynamic Bounded Colluston from LWE

Shweta Agrawal

Narasimha Sat Vempati

IT Madras TU Darmstadt ®

SEFH TECHNISCHE
G =\ UNIVERSITAT
J~ DARMSTADT

Monosy Maitra®

Shota Yamada®

AISTJapan.

nnnnnnnnnnnnn
ADVANCED INDUSTRIAL SCIENCE
AND TECHNOLOGY (AIST)

Functional Encryption [SW05, BSW11, O'N10]

Setup

Encrypt KeyGen

Decrypt

Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Encrypt KeyGen

Decrypt

Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext
CT = Encrypt(PK, m) KeyGen
13 2 0.1
By AR ano

0
gt
gt

Decrypt

"
pt
8!

Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext Secret Key
CT = Encrypt(PK, m) SK; = KeyGen(MSK, f)
" 0 Y b 0 1 pY o> D

3 ‘x‘“ I
D" 0" Moo
Y ‘%
1
0

Decrypt

Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext Secret Key
CT = Encrypt(PK, m) SK; = KeyGen(MSK, f)

=

Decrypt(CT, SK;) = f(m)

Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext Secret Key .
CT = Encrypt(PK, m) SKf = KeyGen(MSK, f) SECUI’Ity:

+ P Any PPT adv. learns only
% f(m) and nothing else.

Decrypt(CT, SK;) = f(m)

Functional Encryption [SW05, BSW11, O'N10]

CT « Encrypt(PK, m)
Setup(1%) : (PK, MSK) <

cT* « SIM(PK, {gKfi ,fim)}, 1™)

Ciphertext / Secret Key \ SKf f.(m)
1
CT = Encrypt(PK, m) SK; = KeyGen(MSK, f)
SKJc2 f,(m)

TR TR) -
3’31:‘&3}‘.““&3 + % . .
s 3

0 SKfQ fQ(m)

_ /

Decrypt(CT, SK;) = f(m)

Functional Encryption [SW05, BSW11, O'N10]

CT « Encrypt(PK, m)
Setup(1%) : (PK, MSK) <

cT* « SIM(PK, {gKfi ,fim)}, 1™)

Ciphertext / Secret Key \ SKf fl(m)
1
CT = Encrypt(PK, m) SK; = KeyGen(MSK, f)
A SKfz fz(m)

mmmfln&a + gj@)@ . .
KE Jos, m

Q = unbounded poly
Decrypt(CT, SK¢) = f(m) Collusion resistant

N

Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext
CT = Encrypt(PK, m)
13 2 0.1
] (B By

0
> :

3
0

e

/ Secret Key \

SK = KeyGen(MSK, f)

_ /

Decrypt(CT, SK;) = f(m)

CT « Encrypt(PK, m)

c1* < SIM(PK, {gKfi f.om)},1™)

SK. £.(m)
SK fz(m)
G
SK, folm)

Full SIM security
Q = unbounded poly impossible

Collusion resistant

[BSW11, AGVW13]

Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext / Secret Key \ SKf1 fl(m) N

CT = Encrypt(PK, m) SK; = KeyGen(MSK, f) AJL*19,
1 ! SKf fz(m) JLMS19,

1gd 2 GILS20,

0.

L Y T .
j" ° °

'L_L .

ED SKfQ fa(m)

_ /

Q = unbounded poly
Decrypt(CT, SK¢) = f(m) Collusion resistant

Functional Encryption [SW05, BSW11, O'N10]

Cryptomania

Setup(1%) : (PK, MSK) :
()
Ciphertext / Secret Key \ S Kf1 fl(m) [Agr19,
CT = Encrypt(PK, m) SK; = KeyGen(MSK, f) AJL*19,
1 ! S Kf fz(m) JLMS19,
1 gl 2 GJLS20,

0.3
hY o>
) m o +) N L5201
Yo 00 . .
0 gt ° ° [AJ15, BV15,
" 1 % AJS15, BNP*16,
p" a S Kf fQ(m) LV16, Lin17,

LT17, KS17,
K / Q KNT18...]

Obfustopia

Q = unbounded poly
Decrypt(CT, SK¢) = f(m) Collusion resistant

Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext
CT = Encrypt(PK, m)
Vgl b g 3 b
1B £F nna

0
> :

7
0

e

/ Secret Key \

SK = KeyGen(MSK, f)

/

Decrypt(CT, SK;) = f(m)

SKy.
SK,.

SK,.

—)

Q = unbounded poly
Collusion resistant

fi(m)
fo(m)

falm)

Complex constructions
Mixed assumptions

Cryptomania

[Agrl9,
AJL*19,
JLMS19,
GJLS20,
JLS20]

[AJ15, BV15,
AJS15, BNP*16,
LV16, Lin17,
EYASYS
KNT18...]

Obfustopia

Functional Encryption [SW05, BSW11, O'N10]

Setup(1%) : (PK, MSK)

Ciphertext / Secret Key \ SKf fl(m)
1
CT = Encrypt(PK, m) SK; = KeyGen(MSK, f)
A SKfz fz(m)

0.1
.] e | D)

] 54 PY . .
0 1 % ° °
.L‘L D-L

Q

Q = bounded poly
Decrypt(CT, SK¢) = f(m) Bounded collusion AR17, Agrl7, AV19

possible Gvwi2,

Functional Encryption [SW05, BSW11, O'N10]

—

Setup(1%, 19) : (PK, MSK)

Ciphertext / Secret Key \

CT = Encrypt(PK, m) SK; = KeyGen(MSK, f)

'Lg'h}’

0.1
pY o{>—
N X + il
M0 - Mg
. B
» 0
Q = bounded poly possible Gvw12,

Decrypt(CT, SK;) = f(m) Bounded collusion AR17, Agr17, AV19

Limttations of Prior Work

e Bounded collusion model

H * Prior work: [GVW12, AR16, Agrl7, AV19]

Limttations of Prior Work

e Bounded collusion model

* Prior work: [GVW12, AR16, Agrl7, AV19]
Q * Q: fixed at setup

* Inefficient: Keys (& CT) grow with Q

Limttations of Prior Work

e Bounded collusion model

* Prior work: [GVW12, AR16, Agrl7, AV19]
Q * Q:fixed at setup

* Inefficient: Keys (& CT) grow with Q

* Same collusion-tolerance for all CT

Limttations of Prior Work Our Results

* Bounded collusion model * Dynamic bounded collusion (DBC) model

e Priorwork: [GVW12, AR16, Agrl7, AV19]
G * Q: fixed at setup

* Inefficient: Keys (& CT) grow with Q

» Stronger model: encryptor fixes Q per CT

* Same collusion-tolerance for all CT

m_, Q m,, Q

1/ 1 2
S Kf1 f1(m1) SKfl .fl(mZ)
CT(m,) % e £ CT(m,) Ky B0
SKfQ f Ql(ml) SKfQ f Qz(mz)

1 1

Limttations of Prior Work Our Results

* Bounded collusion model * Dynamic bounded collusion (DBC) model

* Prior work: [GVW12, AR16, Agrl7, AV19] » Stronger model: encryptor fixes Q per CT

G * Q: fixed at setup * Time(SetUp, KeyGen) independent of Q
* Inefficient: Keys (& CT) grow with Q * |CT| grows linearly with choice of Q

* Same collusion-tolerance for all CT

mllol mZIQZ
S Kf1 f1(m1) SKfl .fl(mZ)

CT(m,) % e £ CT(m,) Ky B0
SKfQ f Ql(ml) SKfQ f Qz(mz)

1 1

Limttations of Prior Work

e Bounded collusion model

e Priorwork: [GVW12, AR16, Agrl7, AV19]
G * Q: fixed at setup

* Inefficient: Keys (& CT) grow with Q

* Same collusion-tolerance for all CT

m_, Q,
SK¢ f.(m)
CT(ml) S|:<f2 E— fz(':ﬂl)
SKy._ fa (m,)

1

Our Results

* Dynamic bounded collusion (DBC) model
» Stronger model: encryptor fixes Q per CT
* Time(SetUp, KeyGen) independent of Q
» |CT| grows linearly with choice of Q
* FromI/BE

Based

m.. Q on IBE

21

2
SK¢ f.(m.)
CT(mZ) SI.<f2 _ fz(,:nz) (NN

SKr, fa (M)

Limttations of Prior Work

* All prior work build key-policy FE

Ciphertext-policy

Inefficient, supports bounded size circuits

a * Build CPFE via universal circuits: U, (.)

~

Key-policy

CTe(f) <

> CT = Encrypt(PK, f)

SK, *

X

Decrypt(CT, SK,) = f(x)

g SKUX = KeyGen(MSK, U,)

Decrypt(CT, SKy,) = U, (f)

Our Results

Limttations of Prior Work

* All prior work build key-policy FE

Inefficient, supports bounded size circuits

a * Build CPFE via universal circuits: U, (.)

» Exception: [SS10] - 1-key secure

Ciphertext-policy

~

Key-policy

CTe(f) <

> CT = Encrypt(PK, f)

SK, *

X

Decrypt(CT, SK,) = f(x)

g SKUX = KeyGen(MSK, U,)

Decrypt(CT, SKy,) = U, (f)

Our Results

Limttations of Prior Work Our Results

* All prior work build key-policy FE » DBC CPFE with various tradeoffs -
* Build CPFE via universal circuits: U, (.)
a * Inefficient, supports bounded size circuits

» Exception: [SS10] - 1-key secure

Limttations of Prior Work Our Results

* All prior work build key-policy FE » DBC CPFE with various tradeoffs -
 Build CPFE via universal circuits: U, (.) * (IND-CPA/SIM-RSO) IBE = (NA /AD)-SIM,
a * Inefficient, supports bounded size circuits (Unbounded / Bounded) size circuits

» Exception: [SS10] - 1-key secure

Limttations of Prior Work Our Results

IND-CPA
* All prior work build key-policy FE * DBC CPFE with various trade% SIM-RSO [K?lg]
* Build CPFE via universal circuits: U, (.) e (IND-CPA/SIM-RSO) IBE = (NA /AD)-SIM,
a * Inefficient, supports bounded size circuits (Unbounded / Bounded) size circuits

» Exception: [SS10] - 1-key secure

Limttations of Prior Work Our Results

* All prior work build key-policy FE » DBC CPFE with various tradeoffs -
 Build CPFE via universal circuits: U, (.) * (IND-CPA/SIM-RSO) IBE = (NA /AD)-SIM,
a * Inefficient, supports bounded size circuits (Unbounded / Bounded) size circuits

» Exception: [SS10] - 1-key secure * IBE: necessary for DBC

Limttations of Prior Work

* All prior work build key-policy FE
* Build CPFE via universal circuits: U, (.)
a * Inefficient, supports bounded size circuits

» Exception: [SS10] - 1-key secure

Our Results

DBC CPFE with various tradeoffs -
* (IND-CPA/SIM-RSQO)IBE = (NA /AD)-SIM,
(Unbounded / Bounded) size circuits
* IBE: necessary for DBC
DBC, AD-SIM, succinct CP/KP-FE from LWE

Unbounded size,
bounded depth &
output circuits

Limttations of Prior Work

* All prior work build key-policy FE
* Build CPFE via universal circuits: U, (.)
a * Inefficient, supports bounded size circuits

» Exception: [SS10] - 1-key secure

Our Results

DBC CPFE with various tradeoffs -
* (IND-CPA/SIM-RSO) IBE = (NA /AD)-SIM,
(Unbounded / Bounded) size circuits
* IBE: necessary for DBC
DBC, AD-SIM, succinct CP/KP-FE from LWE

Stronger security
for [GKP*13b]

Limttations of Prior Work Our Results

* Model of computation

Limttations of Prior Work Our Results

* Model of computation (Uniform: TM,FA) <£Circuits have fixed input sizes]

Incurs worst-case runtime

Limttations of Prior Work Our Results

* Model of computation (Uniform: TM,FA)
* PK-FE [GKP*13a]: non-standard assumption
9 * PK-FE[AS17]: 1-key, LWE

* SK-FE for FA [AMY19]: LWE

Limttations of Prior Work

* Model of computation (Uniform: TM,FA)

* PK-FE [GKP*13a]: non-standard assumption
9 * PK-FE[AS17]: 1-key, LWE
* SK-FE for FA[AMY19]: LWE

e Bounded collusion

Our Results

Limttations of Prior Work

* Model of computation (Uniform: TM,FA)

* PK-FE [GKP*13a]: non-standard assumption
9 * PK-FE[AS17]: 1-key, LWE
* SK-FE for FA [AMY19]: LWE

e Bounded collusion

Our Results

 PK-FE for TM/NL from LWE

Limttations of Prior Work

* Model of computation (Uniform: TM,FA)

PK-FE [GKP*13a]: non-standard assumption
PK-FE [AS17]: 1-key, LWE
SK-FE for FA[AMY19]: LWE

Bounded collusion

Our Results

PK-FE for TM/NL from LWE

Both KP/CP, satisfies DBC
TM: NA-SIM, NL: AD-SIM—[AMY19, AS17]

Limttations of Prior Work Our Results

* Model of computation (Uniform: TM,FA) * PK-FE for TMINL from LWE
* PK-FE [GKP*13a]: non-standard assumption » Both KP/CP, satisfies DBC
e * PK-FE[AS17]: 1-key, LWE * TM: NA-SIM, NL: AD-SIM—[AMY19, AS17]
* SK-FE for FA[AMY19]: LWE * |CT| grows with runtime t

* Bounded collusion tis not a global bound, can vary perinput.

Summary of Results

Necessity of IBE

i

CPFE from IBE
Tradeoffs: security s (TM/NL)-CP/KP-FE
vs. circuit family from LWE

(NA/AD)-SIM

AD-SIM, succinct

CP/KP-FE from LWE

Summary of Results

Necessity of IBE

Concurrent Work:
CPFE from IBE (NA/AD)-SIM
(TM/NL)-CP/KP-FE
* Similar techniques, but for KPFE: vs. circuit family from LWE

* [GGLW?21] also introduced DBC

* IBE + existing KPFE [GVW12, AV19] \

AD-SIM, succinct

CP/KP-FE from LWE

Roadmap

Optimal bounded
collusion FE

Roadmap

Optimal bounded
collusion FE

Roadmap

NA-SIM CPFE
Unb. ckts

+ IND-CPA IBE

Optimal bounded
collusion FE

Roadmap

AD-SIM CPFE NA-SIM CPFE
Bounded ckts Unb. ckts

+ SIM-RSO |IBE + IND-CPA IBE

Optimal bounded
collusion FE

Roadmap

AD-SIM KPFE
Unb. ckts

AD-SIM CPFE NA-SIM CPFE
Bounded ckts Unb. ckts

+ SIM-RSO |IBE + IND-CPA IBE

Optimal bounded
collusion FE

Roadmap

FE for TM
|(x,19)| > |M]

——

FE for TM
|(x,19)] < |M]|
AD-SIM KPFE

Unb. ckts

AD-SIM CPFE NA-SIM CPFE
Bounded ckts Unb. ckts

+ SIM-RSO |IBE + IND-CPA IBE

Optimal bounded
collusion FE

Roadmap

NA-SIM
FE for TM

FE for TM ‘.;.‘ FE for TM
|(x,19)| < [M] |(x,19)| > |M]

AD-SIM KPFE
Unb. ckts

AD-SIM CPFE NA-SIM CPFE
Bounded ckts Unb. ckts

+ SIM-RSO |IBE + IND-CPA IBE

Optimal bounded
collusion FE

Roadmap

AD-SIM CPFE @ + succinct RGC
Unb. ckts (LWE)[]

AD-SIM CPFE
Bounded ckts

+ SIM-RSO IBE

Optimal bounded
collusion FE

Roadmap

AD- SIIVI

FE for NL

FE for NL '.g.’ FE for NL
|(x, 19)] > |M| |(x, 19)] < |M|

——

AD-SIM KPFE
Unb. ckts

AD-SIM CPFE @ + succinct RGC AD-SIM CPFE
Unb. ckts (LWE)[] Bounded ckts

+ SIM-RSO IBE

Optimal bounded
collusion FE

Roadmap

AD-SIM
FE for NL

FE for NL FE for NL

NA-SIM
FE for TM

FE for TM ‘.;.‘ FE for TM
|(x,19)| < [M] |(x,19)| > |M]

(x, 1] > M| |(x, 1] < [M]

AD-SIM KPFE
Unb. ckts
AD-SIM CPFE
Bounded ckts

+ SIM-RSO |IBE

Circuits

AD-SIM CPFE B + succinct RGC
Unb. ckts (LWE)[]

Optimal bounded
collusion FE

Dynamic

Roa d ma p Bounded

Collusion

AD-SIM
FE for NL

FE for NL FE for NL FE for TM FE for TM
|(x, 19)] > |M| |(x,19)] < |M| |(x, 19)] < |M| |(x,15)| > |M]

AD-SIM KPFE
Unb. ckts

. . succinct KPFE
Circuits)[]

AD-SIM CPFE P succinct RGC AD-SIM CPFE
Unb. ckts)] Bounded ckts

SIM-RSO IBE

Optimal bounded
collusion FE

Roadmap

IND-CPA, weakly IND-CPA

compact IBE IBE Optimal bounded
collusion FE

Circuits

+ succinct RGC
(LWE)[]

+ SIM-RSO |IBE + IND-CPA IBE

IND-CPA, weakly IND-CPA
compact IBE IBE Optimal bounded

collusion FE

Roadmap

.

+ succinct KPFE
(LWE)[

+ SIM-RSO IBE + IND-CPA IBE

[]

Optimal bounded
collusion FE

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q.

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q. Optimal bounded

* Weaker need: Time(Setup, KeyGen) = poly-log(Q). collusion FE

Setup KeyGen

Dynamic Bounded Collusion CPFE

Time(Setup, KeyGen) must be independent of Q. Optimal bounded

Optimized
combinatorial
argument

Weaker need: Time(Setup, KeyGen) = poly-log(Q). collusion FE

[AV19]: Time(KeyGen) = poly-log(Q)
[AV19]: Time(SetUp) = poly(Q) . . . X Setup KeyGen </

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q. Optimal bounded

« Weaker need: Time(Setup, KeyGen) = poly-log(Q). collusion FE
* [AV19]: Time(KeyGen) = poly-log(Q)
* [AV19]: Time(SetUp) = poly(Q) . .. X Setup KeyGen </

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q. Optimal bounded

« Weaker need: Time(Setup, KeyGen) = poly-log(Q). collusion FE
* [AV19]: Time(KeyGen) = poly-log(Q)
* [AV19]: Time(SetUp) = poly(Q) . .. x Setup KeyGen \/

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q. Optimal bounded

« Weaker need: Time(Setup, KeyGen) = poly-log(Q). collusion FE
* [AV19]: Time(KeyGen) = poly-log(Q)
* [AV19]: Time(SetUp) = poly(Q) . .. x Setup KeyGen \/

[SS10]: inputs x € {0,1}"
Setup: 2n PKE keys {pk; , , sk; ,}

KeyGen(x): sk, = {sk; ..}

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q. Optimal bounded
* Weaker need: Time(Setup, KeyGen) = poly-log(Q). collusion FE

[AV19]: Time(KeyGen) = poly-log(Q)

« [AV19]: Time(SetUp) = poly(Q) . .. x Setup KeyGen </

[SS10]: inputs x € {0,1}"
Setup: 2n PKE keys {pk; , , sk; ,}
KeyGen(x): sk, ={sk;, } £l

Encrypt(C):

{x;,....,x }

Dynamic Bounded Collusion CPFE

Time(Setup, KeyGen) must be independent of Q. T T——
Weaker need: Time(Setup, KeyGen) = poly-log(Q). collusion FE
[AV19]: Time(KeyGen) = poly-log(Q)

[AV19]: Time(SetUp) = poly(Q) . .. x Setup KeyGen </

[SS10]: inputs x € {0,1}"
Setup: 2n PKE keys {pk; , , sk; ,}
KeyGen(x): sk, = { sk; , } Clx)

Encrypt(C): Garbled

—>
circuit, G

{lab;, }

rke. 7= { IR}

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q. Optimal bounded

« Weaker need: Time(Setup, KeyGen) = poly-log(Q). collusion FE
* [AV19]: Time(KeyGen) = poly-log(Q)
* [AV19]: Time(SetUp) = poly(Q) . .. x Setup KeyGen \/

[SS10]: inputs x € {0,1}"

Setup: 2n PKE keys {pk;, , sk; ,} poly(Q) PKE instances
KeyGen(x): sk, = { sk, , } Clx)

Encrypt(C): Garbled
circuit, G

—>

{lab;, }

rke. 7= { IR}

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q. Optimal bounded

* Weaker need: Time(Setup, KeyGen) = poly-log(Q). collusion FE

* [AV19]: Time(KeyGen) = poly-log(Q)

* [AV19]: Time(SetUp) = poly(Q) . .. W Setup KeyGen /

[SS10]: inputs x € {0,1}"

Setup: IBE = (mpk, msk)

Single IBE instance

KeyGen(x): sk, = { IBE.sk; X; }

Encrypt(C): Garbled
circuit, G

{lab;, }

IBE. CT = { }id; = (7, x)

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q.

* Weaker need: Time(Setup, KeyGen) = poly-log(Q).
* [AV19]: Time(KeyGen) = poly-log(Q)

* [AV19]: Time(SetUp) = poly-log(Q)

KeyGen </

]IBE
copies

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q.
* Weaker need: Time(Setup, KeyGen) = poly-log(Q).

* [AV19]: Time(KeyGen) = poly-log(Q)

* [AV19]: Time(SetUp) = poly-log(Q) KeyGen </

* FEypeqa/(Setup, KeyGen) still need to get rid of Q.. ..

]IBE
copies

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q.

* Weaker need: Time(Setup, KeyGen) = poly-log(Q).

* [AV19]: Time(KeyGen) = poly-log(Q)
* [AV19]: Time(SetUp) = poly-log(Q)

F Especia/

 “Power of 2” trick|[GKP*13]: Run A FE parallely

special

(Setup, KeyGen) still need to get rid of Q.. . .

W/ Setup

KeyGen </

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q.
* Weaker need: Time(Setup, KeyGen) = poly-log(Q).

* [AV19]: Time(KeyGen) = poly-log(Q)
* [AV19]: Time(SetUp) = poly-log(Q) W Setup KeyGen </

* FEypeqa/(Setup, KeyGen) still need to get rid of Q.. ..

 “Power of 2” trick|[GKP*13]: Run A FE parallely

CPFEps. Setup KeyGen

specia

FE Setup(2) KeyGen(2)

Setup(2?) KeyGen(2?)

special

Setup(2) KeyGen(2%)

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q.
* Weaker need: Time(Setup, KeyGen) = poly-log(Q).

* [AV19]: Time(KeyGen) = poly-log(Q)
* [AV19]: Time(SetUp) = poly-log(Q) W Setup KeyGen </

* FEypeqa/(Setup, KeyGen) still need to get rid of Q.. ..

* “Power of 2" trick|[GKP*13]: Run A FE ., parallely
CPFE,;. Setup KeyGen Encrypt(x,19) Decrypt

FE Setup(2) KeyGen(2) Encrypt(2/x) Decrypt with

special

Setup(2?) KeyGen(2?) 271<Q <2’ 2-th subsystem

Setup(2) KeyGen(2%)

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q.
* Weaker need: Time(Setup, KeyGen) = poly-log(Q).

* [AV19]: Time(KeyGen) = poly-log(Q)
* [AV19]: Time(SetUp) = poly-log(Q) W Setup KeyGen </

* FEypeqa/(Setup, KeyGen) still need to get rid of Q.. ..

* “Power of 2" trick|[GKP*13]: Run A FE ., parallely
CPFE,;. Setup KeyGen Encrypt(x,19) Decrypt

FE Setup(2) KeyGen(2) Encrypt(2/x) Decrypt with

special

Setup(2?) KeyGen(2?) 271<Q <2’ 2-th subsystem

setup(2) KeyGen(2) N

[Time(Setup, KeyGen) = poly-log(Q) = CPFE,. efficient]

Dynamic Bounded Collusion CPFE

* Time(Setup, KeyGen) must be independent of Q.
* Weaker need: Time(Setup, KeyGen) = poly-log(Q).

* [AV19]: Time(KeyGen) = poly-log(Q)
* [AV19]: Time(SetUp) = poly-log(Q) W Setup KeyGen </

* FEypeqa/(Setup, KeyGen) still need to get rid of Q.. ..

e “Power of 2” trick[GKP*13]: Run A FE__ . parallely
/ special CPFE,;. Setup KeyGen Encrypt(x,19) Decrypt

FE Setup(2) KeyGen(2) Encrypt(2/x) Decrypt with

special

IND-CPA IBE = NA-SIM, unbounded circuits Setup(22) KeyGen(22) 2'<Q <2 2-th subsystem

SIM-RSO IBE = AD-SIM, bounded circuits

Setup(2) KeyGen(2%)
NA-SIM FE = IND-CPA IBE N

[Time(Setup, KeyGen) = poly-log(Q) = CPFE,. efficient]

Dynamic Bounded Collusion TM-FE

TR E e
from LWE

Unbounded Unbounded
input length machine size

Dynamic Bounded Collusion TM-FE

TR E e
from LWE

Unbounded Unbounded
input length machine size \

TMFE: unb. inputs, TMFE: unb. machines,
bounded machines bounded inputs

Dynamic Bounded Collusion TM-FE

TR E e
from LWE

Unbounded Unbounded
v input length machine size \ v

TMFE: unb. machines,

TMFE: unb. inputs,
bounded machines bounded inputs

Dynamic Bounded Collusion TM-FE

TR E e
from LWE

Unbounded Unbounded
v input length machine size \ v

TMFE: unb. inputs, TMFE: unb. machines,
bounded machines bounded inputs

Succinct: Unbounded size, KFPE and CPFE
bounded depth, output circuits from LWE

Dynamic Bounded Colluston,

DBC CPFE

IND-CPA IBE = NA-SIM, unbounded circuits
SIM-RSO IBE = AD-SIM, bounded circuits |]

NA-SIM FE = IND-CPA IBE ,
succinct, from LWE

Dynamic Bounded Colluston,

DBC CPFE

SIM-RSO IBE = AD-SIM, bounded circuits

DBC, AD-SIM CPFE
bounded circuits

[]

4

succinct, from LWE

AD-SIM, DBC KPFE
succinct, from LWE

(Improves |)

Dynamic Bounded Colluston,

Setup(1Y): | CPFE,,.(PK, MSK)

DBC, AD-SIM CPFE
bounded circuits

[]

4

succinct, from LWE

AD-SIM, DBC KPFE
succinct, from LWE

(Improves |)

Dynamic Bounded Colluston,

Setup(1Y): | CPFE,,.(PK, MSK)

DBC, AD-SIM CPFE
Encrypt(PK, m, 19): bounded circuits

l l []

E_(.)=1-KPFE.Enc(., m)

succinct, from LWE
| l

AD-SIM, DBC KPFE
succinct, from LWE

(Improves |)

Dynamic Bounded Colluston,

Setup(1Y): | CPFE,,.(PK, MSK)

DBC, AD-SIM CPFE
Encrypt(PK, m, 19): bounded circuits

[]

{/ Em (-) = I-KPFEEnc(., m) \} succinct, from LWE

— CT=CPFEp,.Enc(E,)

AD-SIM, DBC KPFE
succinct, from LWE

(Improves |)

Dynamic Bounded Colluston,

Setup(1Y): | CPFE,,.(PK, MSK)

DBC, AD-SIM CPFE
Encrypt(PK, m, 19): KeyGen(MSK, f): bounded circuits

[1. Sample 1-KPFE(PK, MSK)J |]
{/ E_(.) = 1-KPFE.Enc(., m) \}

2. Get 1-KPFE.sk, with MSK ’
—> (T =CPFEp,.Enc(E,)

succinct, from LWE

AD-SIM, DBC KPFE
succinct, from LWE

(Improves |)

Dynamic Bounded Colluston,

Setup(1Y): | CPFE,,.(PK, MSK)

DBC, AD-SIM CPFE
Encrypt(PK, m, 19): KeyGen(MSK, f): bounded circuits

[1. Sample 1-KPFE(PK, MSK)J |]
{/ E_(.) = 1-KPFE.Enc(., m) \}

2. Get 1-KPFE.sk, with MSK ’
—> CT =CPFE,.Enc(E,) SK = (skey, 1-KPFE.sk;)

succinct, from LWE

[3. sk, < CPFE,,.KeyGen(MSK, PK) J

AD-SIM, DBC KPFE
succinct, from LWE

(Improves |)

Dynamic Bounded Colluston,

Setup(1%):

Encrypt(PK, m, 19):

RIS RN R

{/ E_(.)=1-KPFE.Enc(., m) \}

v RN 1'KPFECt EEE v

— CT=CPFEp,.Enc(E,)

CPFE5..(PK, MSK)

KeyGen(MSK, f):

1. Sample 1-KPFE(PK, MSK)J

|
|
|
|
|+ 2. Get 1-KPFE.sk, with MSK
|
|
|
|
|
|

[3. sk, < CPFE,,.KeyGen(MSK, PK) J

SKf = (SkAPKI 1'KPFESkf)

Decrypt(CT, SK¢):

1. CPFE,,..Dec - 1-KPFE.ct

DBC, AD-SIM CPFE
bounded circuits

[]

4

succinct, from LWE

AD-SIM, DBC KPFE
succinct, from LWE

(Improves |)

Dynamic Bounded Colluston,

Setup(1Y): | CPFE,,.(PK, MSK)

DBC, AD-SIM CPFE

Encrypt(PK, m, 19): KeyGen(MSK, f): bounded circuits
{ 1. Sample 1-KPFE(PK, MSK) J |]
{/ Epn () = 1-KPFE.Enc(.,m)\} + 2. Get 1-KPFE.sk, with MSK succincI, o WE
| I [3. sko, « CPFE,,.KeyGen(MSK, PK) I
— (T =CPFE,,.Enc(E,) SK; = (skey , 1-KPFE.sk)
AD-SIM, DBC KPFE

succinct, from LWE
Decrypt(CT, SK¢):

(Improves |)

1. CPFE p,c.Dec - 1-KPFE.ct
[2. 1-KPFE.Dec - fim) Jo—+—————

T
I
I
I
I
I
I

Dynamic Bounded Colluston,

Setup(1Y): | CPFE,,.(PK, MSK)

DBC, AD-SIM CPFE
Encrypt(PK, m, 19): KeyGen(MSK, f): bounded circuits

[1. Sample 1-KPFE(PK, MSK)J |]
{/ E ()= 1-KPFE_EnC(_,m)\W + 2. Get 1-KPFE.sk; with MSK succinct, from LWE

) —

A 4 v

<en(MSK, PK) J

Succinctness: |E_,|is
— QT =CPFEysc.Enc(E,) independent of |f| skr)
AD-SIM, DBC KPFE

succinct, from LWE
Decrypt(CT, SK¢):

(Improves |)

1. CPFE ,c.Dec — 1-KPFE.ct
| 2. 1-KPFE.Dec - f(m) |

Dynamic Bounded Colluston,

DBC, AD-SIM CPFE
bounded circuits

|]
Succinct RGC

from LWE

AD-SIM, DBC CPFE
succinct, from LWE

Dynamic Bounded Collusion TM-FE @

£\ —
TMFE 5, |(x, 1) = ¢,
from LWE IM| = s

Unbounded Unbounded

v /' input length machine size '\ v
TMFE: unb. machines,

TMEFE: unb. inputs, []
bounded machines bounded inputs

Succinct: Unbounded size, KFPE and CPFE \/
bounded depth, output circuits from LWE

Dynamic Bounded Collusion TM-FE

TMFE 3¢
from LWE

v Unbounded Unbounded
/' input length machine size

Succinct: Unbounded size, KFPE and CPFE
bounded depth, output circuits from LWE

\v
TMFE: unb. machines,

TMEFE: unb. inputs, []
bounded machines bounded inputs

o=t >

|(x,19)]| = ¢,
M| =s

Dynamic Bounded Collusion TM-FE

TMFE 3¢
from LWE
£ >s

|(x,19)]| = ¢,
M| =s

10

Dynamic Bounded Collusion TM-FE

TMFE 3¢
from LWE
£ >s

Circuit U;, , (M):

Run M(x) for t steps

|(x,19)]| = ¢,
M| =s

10

Dynamic Bounded Collusion TM-FE

TMFE 3¢
from LWE
£ >s

Circuit U;, , (M):
Run M(x) for t steps

KeyGen, (M)

|(x,19)]| = ¢,
M| =s

10

Dynamic Bounded Collusion TM-FE

Circuit U;, , (M):

Run M(x) for t steps

ct; = Enc; (U;,,, 19), Vi € [£]

KeyGen, (M)

M(x) = Dec(sk,, ct,)

TMFE 3¢
from LWE

(x, 19 = ¢,

M| =s

10

Dynamic Bounded Collusion TM-FE

(x, 19 = ¢,

TMFE 5.
from LWE IM| = s
>s ?<s

Circuit U;, , (M): Circuit U; , (x, 17):
Run M(x) for t steps Run M(x) for t steps

KeyGen, (M)

M(x) = Dec(sk,, ct,) 10

Dynamic Bounded Collusion TM-FE

(x, 19 = ¢,

TMFE 5.
from LWE IM| = s
>s ?<s

Circuit U;, , (M): Circuit U; , (x, 17):
Run M(x) for t steps Run M(x) for t steps

ct, = Enc, ((x,1%), 19)

ct; = Enc; (U;,,, 19), Vi € [{]

KeyGen, (M) KeyGen; (U;,,) , Vi € [s]

M(x) = Dec(sk,, ct,) 10

M(x) = Dec(sk,, ct,)

Dynamic Bounded Collusion TM-FE

|(x, 1) = ¢,

TMFE 5, =
from LWE IM| = s
£ >s £ <s

Circuit U;, , (M): - Circuit U; , (x, 17):

Run M(x) for t steps

Run M(x) for t steps

ct; = Enc; (U;,,, 19), Vi € [£]

KeyGen, (M) KeyGen; (U;) , Vi €|

M(x) = Dec(sk,, ct,) 10

ct, = Enc, ((x,1%), 1Q)

M(x) = Dec(sk,, ct,)

Dynamic Bounded Collusion TM-FE

|(x, 1) = ¢,

TMFE 5, =
from LWE IM| = s
£ >s £ <s

Circuit U;, , (M): - Circuit U; , (x, 17):

Run M(x) for t steps

Run M(x) for t steps

ct; = Enc; (U;,,, 19), Vi € [£]

KeyGen, (M) KeyGen; (U;) , Vi €|

M(x) = Dec(sk,, ct,) 11

ct, = Enc, ((x,1%), 1Q)

M(x) = Dec(sk,, ct,)

Dynamic Bounded Collusion TM-FE

TMFE 5, |(x; 1t)| =4,
from LWE M| =
?>s £t <s
[GKW16] [GKW16]
Delayed Delayed

encryption encryption
...... CPFE, |ETEIEEE m TPINTTE PFE. [ETTEERE
Circuit U, , (M): - Circuit U, , (x, 1):

Run M(x) for t steps Run M(x) for t steps

‘ ct; = Enc; (U;,,, 19), Vi € [£]

GC+IBE _
KeyGen, (M) KeyGen; (U;,,) , Vi € [s]

ct, = Enc, ((x,1%), 19)

GC+IBE

M(x) = Dec(sk,, ct,)

M(x) = Dec(sk,, ct,) 11

Summary and Open Problems

Necessity of IBE

i

CPFE from IBE (NA/AD)-SIM
Tradeoffs: security (TM/NL)-CP/KP-FE
vs. circuit family from LWE

AD-SIM, succinct
CP/KP-FE from LWE

12

Summary and Open Problems

Necessity of IBE

i

CPFE from IBE (NA/AD)-SIM
Tradeoffs: security (TM/NL)-CP/KP-FE
vs. circuit family from LWE

AD-SIM, succinct
CP/KP-FE from LWE

Open problems:

DBC TM-FE with AD-SIM security

* Remove runtime dependence on |CT|

* Collusion resistant ABE for TM (or NL):

needs CP-ABE for unbounded depth

circuits (or unbounded width circuits).

* Other applications for our techniques

12

Summary and Open Problems

Necessity of IBE

i

CPFE from IBE (NA/AD)-SIM
Tradeoffs: security (TM/NL)-CP/KP-FE
vs. circuit family from LWE

AD-SIM, succinct
CP/KP-FE from LWE

Thanks!

Open problems:

DBC TM-FE with AD-SIM security

* Remove runtime dependence on |CT|

* Collusion resistant ABE for TM (or NL):

needs CP-ABE for unbounded depth

circuits (or unbounded width circuits).

* Other applications for our techniques

12

