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Binary Linear Codes

• (n,m)- code  

𝔽2
𝑛 → 𝔽2

𝑚

𝑥 ↦ A ∙ 𝑥

• (n,m,d)-code minimum distance 𝑑 ≝ min𝑥≠0| A𝑥 |

• 𝜷-balanced

minimum distance: 𝑚𝑖𝑛𝑥≠0| A𝑥 |≝
1

2
− 𝛽 𝑚

maximum distance: 𝑚𝑎𝑥𝑥 | A𝑥 |≝
1

2
+ 𝛽 𝑚

• k-independent

every 𝑘× 𝑛 submatrix of A has full rank

n

A 𝑥m • n



Decoding Linear Codes

• The decoding problem  

Find out 𝑥 given (A, 𝑦 = 𝐴𝑥 + 𝑒)

• LPN (Learning Parity with Noise)

A՚
$
𝔽2
𝑚×𝑛, 𝑥՚

$
𝔽2
𝑛, 𝑒~Ber𝑤

𝑚

𝑚 (Exp[|𝑒|] = 𝑤)

• promise-NCP (Nearest Codeword Problem)

A ∈ 𝔽2
𝑚×𝑛, 𝑥 ∈ 𝔽2

𝑛, 𝑒 ∈ 𝔽2
𝑚 with promise |𝑒| = 𝑤

A 𝑥

n

m • n ≡ (mod 2)𝑦+ e



How hard is decoding linear code?

Problem Best attack

Standard LPN
𝒘

𝒎
= O(1)<0.5 

2𝑂(𝑛/ log 𝑛) BKW03

High-noise Promise-NCP

𝑤 ≥
1

2
+ 𝜖 𝑑

NP-hard DMS03

Low-noise LPN/promise-NCP
𝒘

𝒎
=

𝟏

𝑛
p𝑜𝑙𝑦 𝑛,𝑚 ⋅ 2

𝑂
𝑤
𝑚𝑛

= 2𝑂( 𝑛)

Extremely low-noise LPN/promise-NCP
𝒘

𝒎
=
(log 𝑛)2

𝑛

p𝑜𝑙𝑦 𝑛,𝑚 ⋅ 2
𝑂

𝑤
𝑚𝑛

= 𝑛𝑂 log 𝑛

[BKW03] Blum, A., Kalai, A., & Wasserman, H. (2003). Noise-tolerant learning, the parity problem, and the 

statistical query model. Journal of the ACM (JACM), 50(4), 506-519.



NCP ⇒ LPN

• (transposed) NCP instance: (𝐶, 𝑠𝑇𝐶 + 𝑥𝑇)

• an NCP instance  ⇒ an LPN sample: 

1. r ՚ Sparse(m, d) ，𝑦𝑇՚
$
𝔽2
𝑛

2. （𝐶r, (𝑠𝑇𝐶 + 𝑥𝑇)r+ 𝑦𝑇𝐶r） =（𝐶r, (𝑠𝑇 + 𝑦𝑇)𝐶r+ 𝑥𝑇r）

Smoothing lemma [BLVW19] : For balanced code C and r ՚ Sparse(m, d)

（ 𝐶r, 𝑥𝑇r）≈𝑠 (U𝑛 , Ber𝜇 )

Proof.     (binary) Fourier Transform [BLVW19] or linear distinguisher (Vazirani’s XOR lemma) [This work]

∼ U𝑛

[BLVW19] Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, and Daniel Wichs. Worst-case 

hardness for LPN and cryptographic hashing via code smoothing. EUROCRYPT 2019

n m

•

+
C

𝑥𝑇𝑠𝑇

rr

𝑦𝑇
⊕



On the Sparse(m,d) Distribution of r

𝑥𝑇r becomes the noise of the (resulting) LPN

𝑥𝑇: an m-bit error vector of weight w

r ՚ Sparse(m, d) : the m-bit distribution of weight ≈d,      entropy ≈ log
𝑑
𝑚

LPN’s noise rate 𝜇 = Pr[𝑥𝑇r = 1] =
1

2
− 2

−Θ
𝑤

𝑚
𝑑

• Option 1:  a uniform distribution over length-m-weight-d strings

• Option 2: [BLVW19] : the XOR of d length-m-weight-1 strings

• Option 3: [This work]: the m-fold Bernoulli distribution of rate 
d

m
,denoted by Ber𝑑

𝑚

𝑚

𝑥𝑇 r

0001000000000000000

0000000100000000000

…

0000000000000001000

𝑑
bitwise ⊕

0001000100000001000



The main result of [BLVW19]

Smoothing lemma [BLVW19] : For any 𝛽 −balanced code C, any 𝑥𝑇of weight 𝑤, and r ՚ Sparse(m, d)

Stat-Dist （ 𝐶r, 𝑥𝑇r）， (U𝑛 , Ber𝜇 ) ≤ 2
𝑛

2 2
𝑤

𝑚
+ 𝛽

𝑑

where

• NCP’s noise rate: 
𝑤

𝑚
=

𝜆⋅log 𝑛

𝑛
with 𝜆 = 𝜔 1 (known attacks of complexity 𝑛𝑂(𝜆))   

• LPN’s noise rate: 𝜇 =
1

2
− 2

−Θ
𝑤

𝑚
𝑑

• Gilbert–Varshamov bound: 𝛽 = 𝑂(
𝑛

𝑚
)

• Entropy condition: 𝑑 = Ω(𝑛/ log𝑛)

Theorem [BLVW19] : Assumption: promise-NCP of noise 
𝑤

𝑚
=

𝜆⋅log 𝑛

𝑛
is 𝑛𝑂(𝜆)−wc−hard,

Conclusion:   LPN of noise 
1

2
− 2−Θ 𝜆 is 𝑛𝑂(𝜆)−ac−hard

The range of 𝜆 : 𝜔 1 ≤ 𝜆 ≤ 𝑂(log 𝑛)

Corollary (𝜆 = log 𝑛 ) : LPN of noise 
1

2
−

1

poly(n)
is 𝑛𝑂(log 𝑛) -ac-hard
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(Non-constructive) existential analysis

Smoothing lemma : ∃ code C of portion 1 − 2𝑤 log 𝑚 −
𝑛

2 : for any 𝑥𝑇of weight 𝑤, and r ՚ Sparse(m, d)

Stat-Dist （ 𝐶r, 𝑥𝑇r）， (U𝑛 ,𝑥𝑇r) ≤ 2−Ω(𝑛)

where entropy H(r)=log
𝑑
𝑚

≈ 𝑑 log
𝑚

𝑑
= Ω 𝑛 , 𝑥𝑇r~ Ber𝜇 with 𝜇 =

1

2
− 2

−Θ
𝑤

𝑚
𝑑

.

Proof.                                                      for 𝐶~ U𝑛×𝑚 Stat-Dist （ 𝐶r, 𝑥𝑇r）， (U𝑛 ,𝑥𝑇r) ≤ 2−𝑛

for any 𝑥𝑇：∃ (≤ 2−
𝑛

2)-fraction of bad 𝐶 s.t. Stat-Dist （ 𝐶r, 𝑥𝑇r）， (U𝑛 ,𝑥𝑇r) > 2−
𝑛

2

for all length-m-weight-w 𝑥𝑇 : bad C’s of fraction ≤
𝑤
𝑚

⋅ 2−
𝑛

2 = 2𝑤 log
𝑚

𝑤
−
𝑛

2

To Prove Constant-Noise LPN:

1. LPN’s noise: 𝜇 =
1

2
− 2

−Θ
𝑤

𝑚
𝑑
= Θ 1 ⟺

𝑤

𝑚
𝑑 = Θ 1

2. Entropy: 𝑑 log
𝑚

𝑑
= Ω 𝑛

bad C’s fraction
𝑤
𝑚

⋅ 2−
𝑛

2 = 2𝑤 log
𝑚

𝑤
−
𝑛

2 >> 1 (useless!)

Leftover Hash Lemma

Markov’s inequality

Union bound

= Ω
𝑚

𝑑
log𝑑 = 2Ω(𝑛/𝑑) log 𝑑 = 𝑛𝜔(1)

Eq.1 Eq.2

Not possible unless the above inequalities (esp. the union bound) can be circumvented



Observation

• Easy-to-prove:                                𝐶r ≈𝑠 U𝑛
• Much worse:  ∀|𝑥𝑇| = 𝑤:（𝐶r, 𝑥𝑇r）≈𝑠 (𝑈𝑛, 𝑥𝑇r)

Observation:

For r ՚ Ber𝑑
𝑚

𝑚 (important: r is coordinate-wise independent ), 

Stat−Dist (𝐶r, 𝑥𝑇r）,(𝑈𝑛, 𝑥𝑇r) ≤
Stat−Dist 𝐶r ,U𝑛

1−
2𝑑

𝑚

𝑤 ≈
Stat−Dist 𝐶r,U𝑛

1−2𝜇

• almost tight (w.r.t. r ՚ Ber𝑑
𝑚

𝑚)

• Suffices to bound Stat−Dist 𝐶r, U𝑛 for a specific (balanced/independent) code C 

proof omitted…

𝜇 : LPN’s noise



Main result I

Theorem. Assume NCP for balanced/independent code is (T,ϵ)-wc-hard, 

Then,     LPN𝑛,𝜇,𝑞 is (𝑇 − 𝑂 𝑛𝑚𝑞 , 𝜖 +
𝑞⋅2−Ω(𝑑)

1−2𝜇
)-ac-hard for 𝜇 =

1

2
− 2

−Θ
𝑤

𝑚
𝑑

and 𝑑 log(
𝑚

𝑑
) = Θ 𝑛 .

Corollary 1 ( [BLVW19]-like ). Assume promise-NCP of noise 
𝑤

𝑚
=

𝜆⋅log 𝑛

𝑛
is 𝑛𝑂(𝜆)−wc−hard,

Then, LPN of noise 
1

2
− 2−Θ 𝜆 is 𝑛𝑂(𝜆)−ac−hard for any 𝜔 1 ≤ 𝜆 ≤ 𝑂(log 𝑛)

Proof. Set
𝑤

𝑚
=

𝜆⋅log 𝑛

𝑛
, 𝑑 = 𝑂

𝑛

log 𝑛
, 𝑚 = 𝑛1+𝜖

m = 𝒏𝟏+𝝐 Noise rate of LPN [BLVW19] Noise rate of LPN (Corollary 1)

𝑚 = 𝑛1.2 𝜇 =
1

2
− 𝑛−14 𝜇 =

1

2
− 𝑛−58

𝑚 = 𝑛2 𝜇 =
1

2
− 𝑛−3 𝜇 =

1

2
− 𝑛−12

𝑚 = 𝑛3 𝜇 =
1

2
− 𝑛−3 𝜇 =

1

2
− 𝑛−6

𝑚 = 𝑛9 𝜇 =
1

2
− 𝑛−3 𝜇 =

1

2
− 𝑛−1.4

𝑚 = 𝑛10 𝜇 =
1

2
− 𝑛−3 𝜇 =

1

2
− 𝑛−1.3

𝑚 = 𝑛100 𝜇 =
1

2
− 𝑛−3 𝜇 =

1

2
− 𝑛−0.1

[BLVW19] ‘s 
smoothing lemma:

2
𝑛

2 2
𝑤

𝑚
+ 2

𝑛

𝑚

𝑑



Main result II

Theorem. Assume NCP for balanced/independent code is (T,ϵ)-wc-hard.

Then, LPN𝑛,𝜇,𝑞 is (𝑇 − 𝑂 𝑛𝑚𝑞 , 𝜖 +
𝑞⋅2−Ω(𝑑)

1−2𝜇
)-ac-hard for 𝜇 =

1

2
− 2

−Θ
𝑤

𝑚
𝑑

and 𝑑 log(
𝑚

𝑑
) = Θ 𝑛 .

Corollary 2.

Assume NCP of noise 
𝑤

𝑚
= 𝑛−𝑐 is 2Ω(𝑛

1−𝑐)−wc−hard (optimal up to a constant), Then,

 case 0 < 𝑐 ≤
1

2
: LPN𝑛,𝜇,𝑞 2Ω 𝑛1−𝑐 , 2−Ω 𝑛𝑐 −ac−hard for constant 0 < 𝜇 <

1

2
and 𝑞 = 2𝑂 𝑛𝑐

 case
1

2
< 𝑐 < 1: LPN𝑛,𝜇,𝑞 2Ω 𝑛1−𝑐 , 2−Ω 𝑛1−𝑐 −ac−hard for constant 0 < 𝜇 <

1

2
and 𝑞 = 2𝑂 𝑛1−𝑐

Proof. Set
𝑤

𝑚
= 𝑛−𝑐, 𝑑 = 𝑂 𝑛𝑐 , 𝜇 = Θ 1 , 𝜖 +

𝑞⋅2−Ω(𝑑)

1−2𝜇
= 2−Ω 𝑛1−𝑐 + 2−Ω 𝑛𝑐

Sub-exponential hardness for standard LPN!



Applications (Unsuccessful Attempt I)

⇏ PKE or CRHF due to the 𝜔(1) gap

2Ω(𝑛
1−𝑐)−hard NCP

noise rate 
𝑤

𝑚
= 𝑛−𝑐

(0 < 𝑐 < 1)

T             𝜖 q

2Ω 𝑛1−𝑐 , 2−Ω min(𝑛𝑐,𝑛1−𝑐) , 2Ω min(𝑛𝑐,𝑛1−𝑐) −hard

LPN𝑛,𝜇,𝑞, noise rate 𝜇 = Θ(1)

Corollary 2

T             𝜖 q      

2𝜔 𝑛0.5 , 2−𝜔 𝑛0.5 , 2𝑛
0.5

−hard LPN𝑛,𝜇,𝑞, 𝜇 = Θ(1)

Collision resistant hashing
& public-key encryptions

[YZ16]

[YZW+19]

Base collision resistant hashing / public-key encryption on the worst-hardness of NCP ?



Applications (Unsuccessful Attempt II)

⇏ need 𝛿 = 1 instead of 0 < 𝛿 < 1

[BKW03, Lyu05]
LPN

𝑛,𝜇=
1

2
−2− (log 𝑛)𝛿,𝑞=𝑛1+𝜖

for any constant 0 < 𝛿 < 1

can be solved whp in time 2O(n/log log 𝑛)

LPN
𝑛,𝜇=

1

2
−2− 𝑂(log 𝑛),𝑞=𝑛1+𝜖

is solved in time 𝑇 and prob. 𝑃

NCP with noise 
𝑤

𝑚
= Θ(1) is solved 

In time 𝑇 + 𝑝𝑜𝑙𝑦(𝑛) and prob. 𝑃 −
1

𝑝oly(𝑛)

A sub-exponential algorithm for worst-case constant-noise NCP (based on BKW)  ?

Corollary 3
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LWE ⇒ LPN over 𝔽𝑝

• Large-field LPN 

𝑎՚
$
𝔽𝑝
𝑛, 𝑥՚

$
𝔽𝑝
𝑛, 𝑒~Ber𝑟,𝑝 ൝

 Prob. 𝑟: 𝑒՚
$
𝔽𝑝
𝑛

 Prob. 1 − 𝑟: 𝑒 ≔ 0
• LWE (Learning with Errors)

𝑎՚
$
𝔽𝑝
𝑛, 𝑥՚

$
𝔽𝑝
𝑛, 𝑒~𝒟ℤ,𝛼𝑝

Theorem.    LWE𝑛,𝑝,𝛼=𝜔(log 𝑛) ⇒ LPN
𝑛,𝑝,𝑟=1−Ω(

1

𝛼𝑝
)

Proof.          (𝑎, 𝑎, 𝑠 + 𝑒)
𝑚՚

$
𝔽𝑝\{0}

(𝑚𝑎, 𝑚𝑎, 𝑠 + 𝑚𝑒)

൞
𝑒 ≠ 0: 𝑚𝑎,𝑚𝑒 ՚

$
𝔽𝑝
𝑛 × (𝔽𝑝\{0})

𝑒 = 0: 𝑚𝑎,𝑚𝑒 ՚
$
𝔽𝑝
𝑛 × {0}

𝑚𝑒~Ber𝑟,𝑝 𝑤𝑖𝑡ℎ Pr 𝑚𝑒 = 0 = Ω(
1

𝛼𝑝
)
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Summary

• Worst-case to average-case reduction for LPN

• LWE → large-field LPN (noise 
1

√𝑛
-close-to-uniform)

• Promise-NCP (on balanced/independent code) → LPN
1. Extremely-low-noise promise-NCP                → high-noise LPN w. quasi-poly hardness

2. Low-noise NCP w. almost optimal hardness→ constant-noise LPN w. subexp hardness

• Open problems: 

1. Promise-NCP (on any (n,m,d)-code) → LPN

2. PKE/CRH from worst-case hardness for decoding binary linear codes

3. More efficient reductions between LWE and LPN



Thanks for your attention

E-mail: yuyuathk@gmail.com


