# Smoothing Out Binary Linear Codes and Worst-case Sub-exponential Hardness for LPN

Yu Yu & Jiang Zhang









### Binary Linear Codes

• (n,m)- code

$$\mathbb{F}_2^n \to \mathbb{F}_2^m$$
$$x \mapsto A \cdot x$$



- (n,m,d)-code minimum distance  $d \stackrel{\text{def}}{=} \min_{x \neq 0} |Ax|$
- β-balanced

minimum distance: 
$$min_{x\neq 0} | Ax | \stackrel{\text{def}}{=} \left(\frac{1}{2} - \beta\right) m$$
 maximum distance:  $max_x | Ax | \stackrel{\text{def}}{=} \left(\frac{1}{2} + \beta\right) m$ 

k-independent

every  $k \times n$  submatrix of A has full rank

### Decoding Linear Codes

The decoding problem

Find out 
$$x$$
 given  $(A, y = Ax + e)$ 



• LPN (Learning Parity with Noise)
$$A \leftarrow \mathbb{F}_{2}^{m \times n}, x \leftarrow \mathbb{F}_{2}^{n}, e \sim \text{Ber}_{\frac{w}{m}}^{m} \qquad (\text{Exp}[|e|] = w)$$

• promise-NCP (Nearest Codeword Problem)

$$A \in \mathbb{F}_2^{m \times n}$$
,  $x \in \mathbb{F}_2^n$ ,  $e \in \mathbb{F}_2^m$  with promise  $|e| = w$ 

### How hard is decoding linear code?

| Problem                                                                                    | Best attack                                                        |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Standard LPN $\frac{w}{m} = O(1) < 0.5$                                                    | $2^{O(n/\log n)}$ BKW03                                            |
| <b>High-noise</b> Promise-NCP $w \ge \left(\frac{1}{2} + \epsilon\right)d$                 | NP-hard DMS03                                                      |
| Low-noise LPN/promise-NCP $\frac{w}{m} = \frac{1}{\sqrt{n}}$                               | $poly(n,m) \cdot 2^{O\left(\frac{W}{m}n\right)} = 2^{O(\sqrt{n})}$ |
| Extremely low-noise LPN/promise-NCP $\frac{\mathbf{w}}{\mathbf{m}} = \frac{(\log n)^2}{n}$ | $poly(n,m) \cdot 2^{O\left(\frac{w}{m}n\right)} = n^{O(\log n)}$   |

[BKW03] Blum, A., Kalai, A., & Wasserman, H. (2003). Noise-tolerant learning, the parity problem, and the statistical query model. *Journal of the ACM (JACM)*, *50*(4), 506-519.

### $NCP \Rightarrow LPN$

- (transposed) NCP instance:  $(C, s^TC + x^T)$
- an NCP instance ⇒ an LPN sample:
- 1.  $r \leftarrow \text{Sparse}(m, d)$  ,  $y^T \leftarrow \mathbb{F}_2^n$ 2.  $(Cr, (s^TC + x^T)r + y^TCr) = (Cr, (s^T + y^T)Cr + x^Tr)$



**Smoothing lemma** [BLVW19]: For balanced code C and  $r \leftarrow \text{Sparse}(m, d)$ 

$$(Cr, \mathbf{x}^T r) \approx_{S} (\mathbf{U}_n, \mathbf{Ber}_{\mu})$$

(binary) Fourier Transform [BLVW19] or linear distinguisher (Vazirani's XOR lemma) [This work] Proof.

[BLVW19] Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, and Daniel Wichs. Worst-case hardness for LPN and cryptographic hashing via code smoothing. EUROCRYPT 2019

### On the Sparse(m,d) Distribution of r

 $x^T r$  becomes the noise of the (resulting) LPN



 $x^T$ : an m-bit error vector of weight w

 $r \leftarrow \text{Sparse}(m, d)$ : the m-bit distribution of weight  $\approx d$ ,

d, entropy 
$$\approx \log \binom{d}{m}$$

LPN's noise rate  $\mu = \Pr[x^T r = 1] = \frac{1}{2} - 2^{-\Theta(\frac{w}{m}d)}$ 

- **Option** 1: a uniform distribution over length-m-weight-d strings
- Option 2: [BLVW19]: the XOR of d length-m-weight-1 strings



• Option 3: [This work]: the m-fold Bernoulli distribution of rate  $\frac{d}{m}$ , denoted by  $\operatorname{Ber}_{\frac{d}{m}}^{m}$ 

### The main result of [BLVW19]

**Smoothing lemma** [BLVW19]: For any  $\beta$  —balanced code C, any  $x^T$  of weight w, and  $r \leftarrow \text{Sparse}(m, d)$ 

Stat-Dist 
$$\left( (Cr, x^T r), (U_n, Ber_{\mu}) \right) \le 2^{\frac{n}{2}} \left( 2 \frac{w}{m} + \beta \right)^d$$

#### where

- NCP's noise rate:  $\frac{w}{m} = \frac{\lambda \cdot \log n}{n}$  with  $\lambda = \omega(1)$  (known attacks of complexity  $n^{O(\lambda)}$ )
- LPN's noise rate:  $\mu = \frac{1}{2} 2^{-\Theta(\frac{w}{m}d)}$
- Gilbert–Varshamov bound:  $\beta = O(\sqrt{\frac{n}{m}})$
- Entropy condition:  $d = \Omega(n/\log n)$

**Theorem** [BLVW19]: Assumption: promise-NCP of noise  $\frac{w}{m} = \frac{\lambda \cdot \log n}{n}$  is  $n^{O(\lambda)}$ -wc-hard, Conclusion: LPN of noise  $\frac{1}{2} - 2^{-\Theta(\lambda)}$  is  $n^{O(\lambda)}$ -ac-hard

The range of  $\lambda : \omega(1) \le \lambda \le O(\log n)$ 

Corollary (
$$\lambda = \log n$$
): LPN of noise  $\frac{1}{2} - \frac{1}{\text{poly(n)}}$  is  $n^{O(\log n)}$  -ac-hard



### (Non-constructive) existential analysis

Smoothing lemma : 
$$\exists$$
 code C of portion  $\left(1-2^{w\log m-\frac{n}{2}}\right)$ : for any  $x^T$  of weight  $w$ , and  $r \leftarrow \text{Sparse}(m,d)$  Stat-Dist  $\left( (Cr, x^Tr), (U_n, x^Tr) \right) \leq 2^{-\Omega(n)}$  where entropy  $\exists d \log \frac{m}{d} = \Omega(n), x^Tr \sim \text{Ber}_{\mu} \text{ with } \mu = \frac{1}{2} - 2^{-\Theta\left(\frac{w}{m}d\right)}$ 

Proof. Leftover Hash Lemma

Markov's inequality

Union bound

for  $C \sim U_{n \times m}$  Stat-Dist  $\left( (Cr, x^T r), (U_n, x^T r) \right) \leq 2^{-n}$  for any  $x^T$ :  $\exists (\leq 2^{-\frac{n}{2}})$ -fraction of bad C s.t. Stat-Dist  $\left( (Cr, x^T r), (U_n, x^T r) \right) > 2^{-\frac{n}{2}}$  for all length-m-weight-w  $x^T$ : bad C's of fraction  $\leq {w \choose m} \cdot 2^{-\frac{n}{2}} = 2^{w \log \frac{m}{w} - \frac{n}{2}}$ 

#### To Prove Constant-Noise LPN:

1. LPN's noise: 
$$\mu = \frac{1}{2} - 2^{-\Theta(\frac{w}{m}d)} = \Theta(1) \iff \frac{w}{m}d = \Theta(1)$$

2. Entropy: 
$$d \log \frac{m}{d} = \Omega(n)$$

bad C's fraction 
$$\binom{w}{m} \cdot 2^{-\frac{n}{2}} = 2^{w \log \frac{m}{w} - \frac{n}{2}} >> 1$$
 (useless!)
$$= \Omega \left( \frac{m}{d} \log d \right) = 2^{\Omega(n/d)} \log d = n^{\omega(1)}$$
For 1

Not possible unless the above inequalities (esp. the union bound) can be circumvented

### Observation

- Easy-to-prove:  $Cr \approx_S U_n$  Much worse:  $\forall |x^T| = w$ :  $(Cr, x^Tr) \approx_S (U_n, x^Tr)$

#### **Observation:**

For  $r \leftarrow \operatorname{Ber}_d^m$  (important: r is coordinate-wise independent),

$$\mathsf{Stat-Dist}(\ (\mathit{Cr}, \mathbf{x}^T r\ )\ , (U_n, \mathbf{x}^T r)\ ) \leq \frac{\mathsf{Stat-Dist}(\mathit{cr}, \mathsf{U}_n)}{\left(1 - \frac{2d}{m}\right)^w} \approx \frac{\mathsf{Stat-Dist}(\mathit{cr}, \mathsf{U}_n)}{(1 - 2\mu)}$$

 $\mu$ : LPN's noise

- almost tight (w.r.t.  $r \leftarrow \operatorname{Ber}_d^m$ )
- Suffices to bound Stat-Dist(Cr,  $U_n$ ) for a specific (balanced/independent) code C proof omitted...

### Main result I

**Theorem.** Assume NCP for balanced/independent code is  $(T, \epsilon)$ -wc-hard,

Then, 
$$LPN_{n,\mu,q}$$
 is  $(T-O(nmq), \epsilon + \frac{q \cdot 2^{-\Omega(d)}}{1-2\mu})$ -ac-hard for  $\mu = \frac{1}{2} - 2^{-\Theta\left(\frac{w}{m}d\right)}$  and  $d\log(\frac{m}{d}) = \Theta(n)$ .

Corollary 1 ( [BLVW19]-like ). Assume promise-NCP of noise  $\frac{w}{m} = \frac{\lambda \cdot \log n}{m}$  is  $n^{O(\lambda)}$ -wc-hard, Then, LPN of noise  $\frac{1}{2} - 2^{-\Theta(\lambda)}$  is  $n^{O(\lambda)}$ -ac-hard for any  $\omega(1) \le \lambda \le O(\log n)$ 

*Proof.* Set 
$$\frac{w}{m} = \frac{\lambda \cdot \log n}{n}$$
,  $d = O\left(\frac{n}{\log n}\right)$ ,  $m = n^{1+\epsilon}$ 

| $\mathrm{m}=n^{1+\epsilon}$ | Noise rate of LPN [BLVW19]         | Noise rate of LPN (Corollary 1)                                   |
|-----------------------------|------------------------------------|-------------------------------------------------------------------|
| $m = n^{1.2}$               | $\mu = \frac{1}{2} - n^{-14}$ Smoo | SLVW19] 's $\mu = \frac{1}{2} - n^{-58}$ othing lemma:            |
| $m = n^2$                   |                                    | $2^{\frac{w}{n}} + 2^{\frac{n}{n}}$ $\mu = \frac{1}{2} - n^{-12}$ |
| $m = n^3$                   | $\mu = \frac{1}{2} - n^{-3}$       | $\mu = \frac{1}{2} - n^{-6}$                                      |
| $m = n^9$                   | $\mu = \frac{1}{2} - n^{-3}$       | $\mu = \frac{1}{2} - n^{-1.4}$                                    |
| $m=n^{10}$                  | $\mu = \frac{1}{2} - n^{-3}$       | $\mu = \frac{1}{2} - n^{-1.3}$                                    |
| $m = n^{100}$               | $\mu = \frac{1}{2} - n^{-3}$       | $\mu = \frac{1}{2} - n^{-0.1}$                                    |

### Main result II

**Theorem.** Assume NCP for balanced/independent code is  $(T, \epsilon)$ -wc-hard.

Then, 
$$LPN_{n,\mu,q}$$
 is  $(T-O(nmq), \epsilon + \frac{q \cdot 2^{-\Omega(d)}}{1-2\mu})$ -ac-hard for  $\mu = \frac{1}{2} - 2^{-\Theta(\frac{w}{m}d)}$  and  $d\log(\frac{m}{d}) = \Theta(n)$ .

#### Corollary 2. Sub-exponential hardness for standard LPN!

Assume NCP of noise 
$$\frac{w}{m} = n^{-c}$$
 is  $2^{\Omega(n^{1-c})}$ -wc-hard (optimal up to a constant), Then, 
$$\begin{cases} \bullet \text{ case } 0 < c \leq \frac{1}{2} : & \text{LPN}_{n,\mu,q} \left( 2^{\Omega(n^{1-c})}, 2^{-\Omega(n^c)} \right) - \text{ac-hard for constant } 0 < \mu < \frac{1}{2} \text{ and } q = 2^{O(n^c)} \end{cases}$$
 
$$\bullet \text{ case } \frac{1}{2} < c < 1 : & \text{LPN}_{n,\mu,q} \left( 2^{\Omega(n^{1-c})}, 2^{-\Omega(n^{1-c})} \right) - \text{ac-hard for constant } 0 < \mu < \frac{1}{2} \text{ and } q = 2^{O(n^{1-c})} \end{cases}$$

*Proof.* Set 
$$\frac{w}{m} = n^{-c}$$
,  $d = O(n^c)$ ,  $\mu = \Theta(1)$ ,  $\epsilon + \frac{q \cdot 2^{-\Omega(d)}}{1 - 2\mu} = 2^{-\Omega(n^{1-c})} + 2^{-\Omega(n^c)}$ 

### Applications (Unsuccessful Attempt I)

Base collision resistant hashing / public-key encryption on the worst-hardness of NCP?





$$T$$
  $\epsilon$   $q$   $\left(2^{\omega(n^{0.5})}, 2^{-\omega(n^{0.5})}, 2^{n^{0.5}}\right)$  -hard LPN <sub>$n,\mu,q$</sub> ,  $\mu = \Theta(1)$ 



Collision resistant hashing & public-key encryptions

### Applications (Unsuccessful Attempt II)

A sub-exponential algorithm for worst-case constant-noise NCP (based on BKW) ?





### LWE $\Rightarrow$ LPN over $\mathbb{F}_n$

Large-field LPN

$$a \stackrel{\$}{\leftarrow} \mathbb{F}_p^n, \mathbf{x} \stackrel{\$}{\leftarrow} \mathbb{F}_p^n, \mathbf{e} \sim \text{Ber}_{r,p}$$
  $\left\{ \begin{array}{l} \bullet \text{ Prob. } r \colon \mathbf{e} \stackrel{\$}{\leftarrow} \mathbb{F}_p^n \\ \bullet \text{ Prob. } 1 - r \colon \mathbf{e} \coloneqq 0 \end{array} \right.$ 

• LWE (Learning with Errors)

$$a \stackrel{\$}{\leftarrow} \mathbb{F}_p^n$$
,  $\stackrel{\$}{\mathbf{x}} \stackrel{\$}{\leftarrow} \mathbb{F}_p^n$ ,  $\stackrel{\bullet}{\mathbf{e}} \sim \mathcal{D}_{\mathbb{Z},\alpha p}$ 

*Proof.* 
$$(a, \langle a, s \rangle + e) \xrightarrow{m \leftarrow \mathbb{F}_p \setminus \{0\}} (ma, \langle ma, s \rangle + me)$$

$$\begin{cases} \bullet e \neq 0 \colon (ma, me) \stackrel{\$}{\leftarrow} \mathbb{F}_p^n \times (\mathbb{F}_p \setminus \{0\}) \\ \bullet e = 0 \colon (ma, me) \stackrel{\$}{\leftarrow} \mathbb{F}_p^n \times \{0\} \end{cases}$$

 $me \sim \text{Ber}_{r,p} \text{ with } \Pr[me = 0] = \Omega(\frac{1}{\alpha n})$ 



### Summary

- Worst-case to average-case reduction for LPN
  - LWE  $\rightarrow$  large-field LPN (noise  $\frac{1}{\sqrt{n}}$ -close-to-uniform)
  - Promise-NCP (on balanced/independent code) → LPN
    - 1. Extremely-low-noise promise-NCP → high-noise LPN w. quasi-poly hardness
    - 2. Low-noise NCP w. almost optimal hardness  $\rightarrow$  constant-noise LPN w. subexp hardness

### Open problems:

- 1. Promise-NCP (on any (n,m,d)-code)  $\rightarrow$  LPN
- 2. PKE/CRH from worst-case hardness for decoding binary linear codes
- 3. More efficient reductions between LWE and LPN

# Thanks for your attention

E-mail: yuyuathk@gmail.com