Tight State-Restoration Soundness in the Algebraic Group Model

Ashrujit Ghoshal

Stefano Tessaro

University of Washington

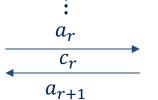
CRYPTO 2021

ZK-proofs gaining adoption in practice

Often, security guarantees weak or non-existent Reason: Fiat-Shamir transform

Fiat-Shamir (FS) transform [FS86]

Public coin (ZK) IP for NP relation *R* {proof, argument} P(x, w) V(x) $\frac{a_1}{c_1}$



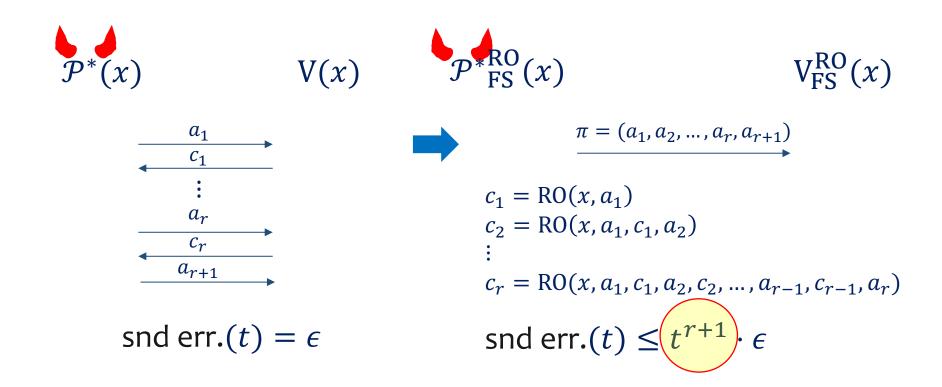
NI(ZK) FS[IP] for Rargument $V^{H}_{EC}(x)$ $P_{FS}^{H}(x,w)$ $\pi = (a_1, a_2, \dots, a_r, a_{r+1})$ $c_1 = H(x, a_1)$ $c_2 = H(x, a_1, c_1, a_2)$ $c_r = H(x, a_1, c_1, a_2, c_2, \dots, a_{r-1}, c_{r-1}, a_r)$ Common approach to build non-interactive succinct argument systems [BCCGP16, AHIV17, BBBPWM18, WTsTW18, MBKM19, BFS20, GWC20, Lee20, CHMMVW20, Setty20, SL20, LSTW20, BHRRS20, KST21, BHRRS21, ...]

Usually, only the soundness interactive protocol analyzed

Hope: IP sound + H = random oracle \Rightarrow FS[IP] sound

Is that the case?

Soundness degradation



This is very bad

snd err. $(t) \leq t^{r+1} \cdot \epsilon$

Bulletproofs [BBBPWM18, BCCGP16]

- Implemented in Monero, Signal's MobileCoin
- More than constant rounds, hence no meaningful security guarantee

Constant-round protocols

- E.g., Sonic [MBKM19], Plonk [GWC19], Marlin [CHMMVW20]
- For 256-bit curves, $r \ge 4$, secure only for $t \le 2^{60}$

Overly pessimistic? Expect much better security!

Our work

Security expectations

Tight State-Restoration Soundness in the Algebraic Group Model

Proof guarantees

Ashrujit Ghoshal^(E5) and Stefano Tessaro Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, USA {ashruit.t.essarol&cs.ashington.edu

General framework to prove security in the Algebraic Group Model (AGM) [FKL17] for

- group-based proof/argument systems
- using the Fiat-Shamir transform

with or without pairings

General framework to prove security in the (AGM) [FKL17] for

- group-based proof/argument systems
- using the Fiat-Shamir transform

to prove security in the Algebraic Group Model (AGM) [FKL17]

Tight bounds for Bulletproofs [BBBPWM18, BCCGP16], Sonjc [MBKM19]

first non-trivial soundness proof for the non-interactive protocol.

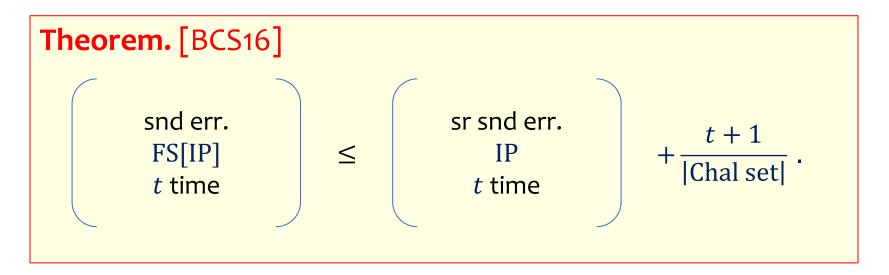
Concurrent work: [BMMTV20] — non-tight bounds in the AGM for main component of Bulletproofs

Expect to apply to number of other proof systems

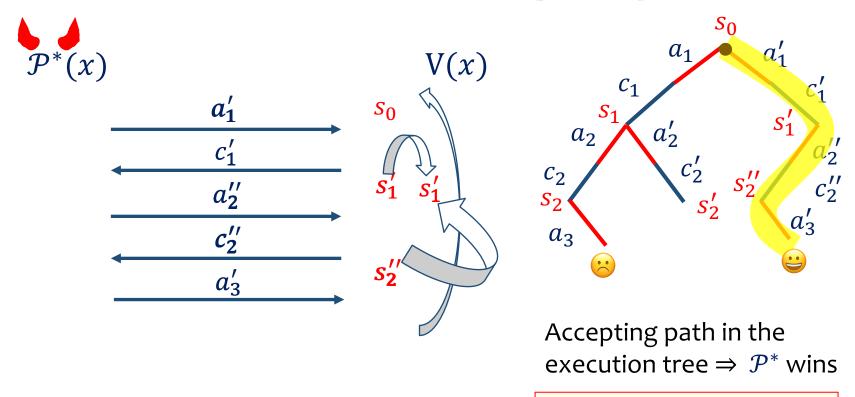
[Groth16,FKL17] soundness analysis in ideal models (GGM/AGA-

Key ingredient = state-restoration soundness

State-restoration (SR) soundness \Rightarrow FS soundness, tightly

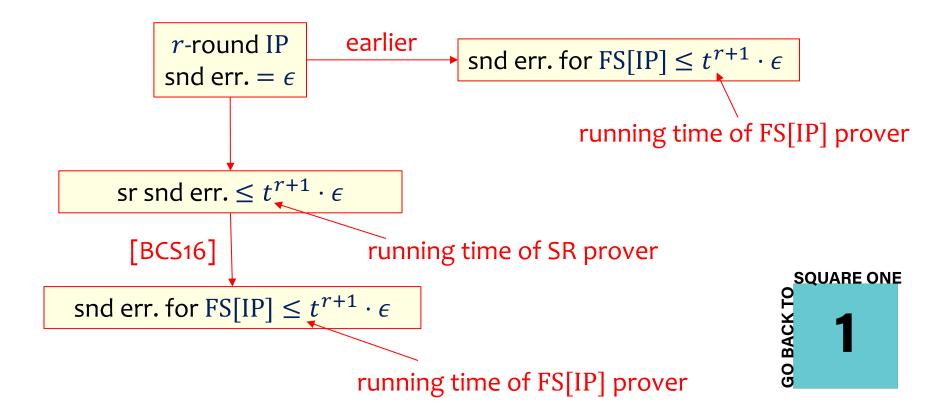


State-restoration (SR) soundness [BCS16]



sr snd err. = $\Pr[\mathcal{P}^* \text{ wins}]$

Bounding sr snd err. generically



Can we prove better bounds for SR soundness?

For certain interactive proofs, YES! [CCHLRR18, CCHLRRW19, JKZ21, HLR21, ...] Round-by-round soundness ⇔ SR soundness [Holmgren19]

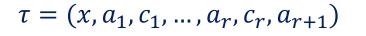
For arguments no non-trivial bounds for SR soundness known

Proving soundness of arguments

Witness extended emulation (wee) [Lindello3, GI08]

V

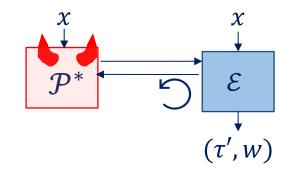
IP = (P, V) for NP relation R



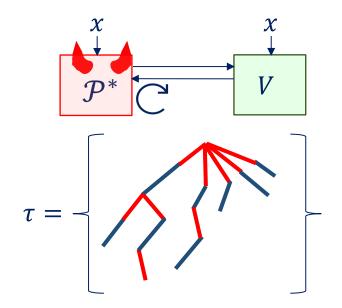
 a_1

Goal: τ' identically distributed as τ and $Acc(\tau') \Rightarrow (x, w) \in R$ guarantee only computational for arguments

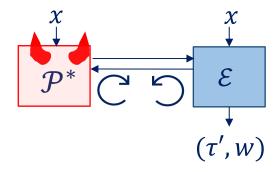
Proof via generalized forking lemma [BCCGP16, JT20, ACK21]



For state-restoration provers



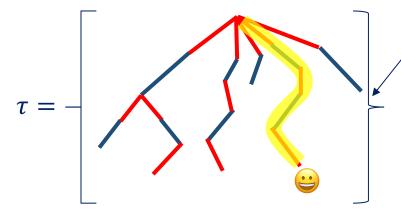
Double rewinding!



Goal: τ' identically distributed as τ and $Acc(\tau') \Rightarrow (x, w) \in R$

Extraction strategy unclear 😕

Idea: online extraction



Extract witness from accepting transcript τ , w/o rewinding

$\begin{array}{c} x \\ \mathcal{P}^{*} \\ \mathcal{P}^{*} \\ \mathcal{C} \\ \mathcal{X} \\ \mathcal{K} \\ \mathcal{E} \\ \mathcal{C} \\ \mathcal{K} \\ \mathcal{K}$

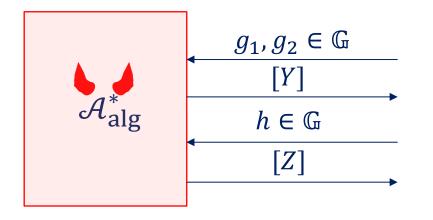
Online extraction supported by

- Knowledge assumptions
- Ideal models (e.g., AGM, GGM, ROM, ...)

This paper: SRS in the AGM

Algebraic Group Model (AGM) [FKL17]

Group G



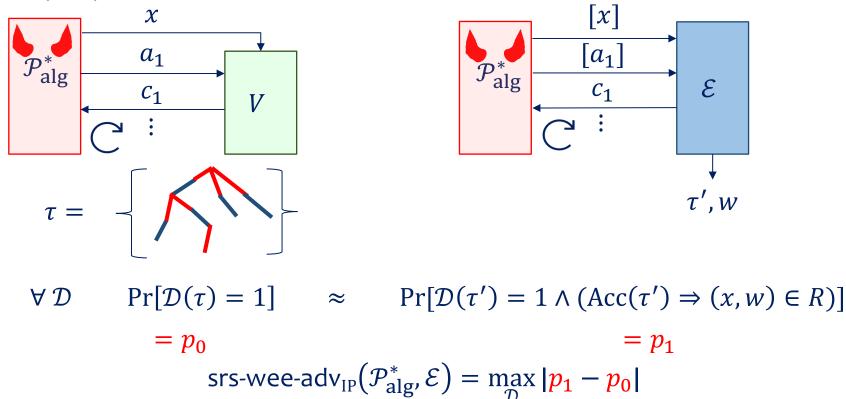
$$[Y] = (Y, y_{g_1}, y_{g_2})$$
$$Y = g_1^{y_{g_1}} g_2^{y_{g_2}}$$

$$[Z] = (Z, z_{g_1}, z_{g_2}, z_h)$$

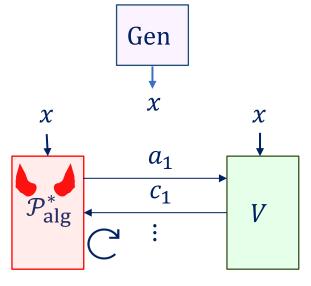
$$Z = g_1^{z_{g_1}} g_2^{z_{g_2}} h^{z_h}$$

Our target = Adaptive srs-wee in the AGM

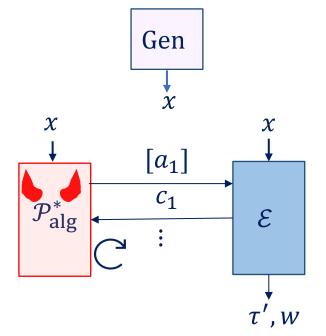
IP = (P, V) for NP relation R



Also in the paper: Non-adaptive srs-wee

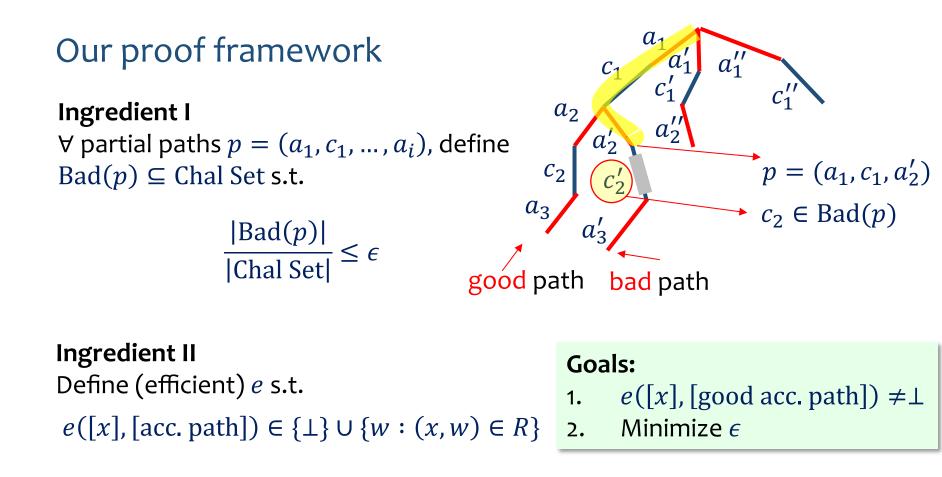


τ



Goal: Given IP

- 1. define \mathcal{E}
- 2. $\forall \mathcal{P}_{alg}^*$ running in time *t*, upper bound srs-wee-adv_{IP}($\mathcal{P}_{alg}^*, \mathcal{E}$)



Master Theorem.

Suppose Bad, *e* are defined for IP. $\exists \mathcal{E} = \mathcal{E}(e)$ s.t. $\forall \mathcal{P}_{alg}^*$ running in time *t*

srs-wee-adv_{IP}
$$(\mathcal{P}_{alg}^*, \mathcal{E}) \leq t \cdot \epsilon + p_{IP}^{fail}(e, \mathcal{P}_{alg}^*)$$

 $\Pr[e([x], [\text{good acc. path}]) = \bot]$

For arguments, prove $p_{IP}^{fail}(e, \mathcal{P}^*) \leq probability$ of violating an assumption

Applications

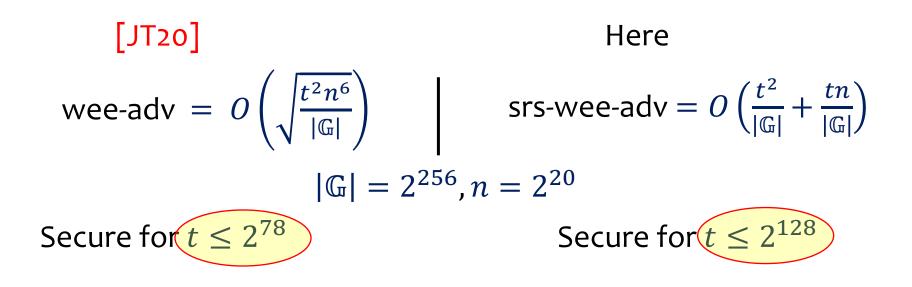
Our results

Shown tight via matching attacks Bulletproofs range proof (BP-RP) AoK that $C = g^{x}h^{r} \in \mathbb{G}$ is a commitment to $x \in [0, 2^{n} - 1]$ 'tn **Theorem.** $\exists \mathcal{E} \text{ s.t. } \text{ srs-wee-adv}_{\text{BP-RP}}(t, \mathcal{E}) \leq \text{dlog-adv}_{\mathbb{G}}(t) + 0$ Bulletproofs AoK for arith. circuit satisfiability (BP-ACS), n = (# mult gates)**Theorem.** $\exists \mathcal{E} \text{ s.t. srs-wee-adv}_{\mathsf{BP-ACS}}(t, \mathcal{E}) \leq \mathsf{dlog-adv}_{\mathbb{G}}(t) + 0$ Sonic AoK for arith. circuit satisfiability, n = (# mult gates)**Theorem.** $\exists \mathcal{E} \text{ s.t.}$ srs-wee-adv_{Sonic} $(t, \mathcal{E}) \le 4n$ -dlog-adv_G $(t) + 2 \cdot dlog$ -adv_G(t) + 4tn

Prior work: Concrete security analysis of Bulletproofs-ACS

Interactive protocol

GGM



Example - analyzing Bulletproofs [BBBPWM18,BCCGP16]

Input: $(g, h \in \mathbb{G}, \mathbf{g}, \mathbf{h} \in \mathbb{G}^n, \mathbf{W}_L, \mathbf{W}_R, \mathbf{W}_O \in \mathbb{Z}_n^{Q \times n},$		
$\mathbf{W}_{V} \in \mathbb{Z}_{n}^{Q \times m}, \mathbf{c} \in \mathbb{Z}_{n}^{Q}; \mathbf{a}_{I}, \mathbf{a}_{R}, \mathbf{a}_{Q} \in \mathbb{Z}_{n}^{n}, \boldsymbol{\gamma} \in \mathbb{Z}_{n}^{m})$		
\mathcal{P} 's input: $(q, h, \mathbf{g}, \mathbf{h}, \mathbf{W}_L, \mathbf{W}_R, \mathbf{W}_Q, \mathbf{W}_V, \mathbf{c}; \mathbf{a}_L, \mathbf{a}_R, \mathbf{a}_Q, \boldsymbol{\gamma})$		
\mathcal{V} 's input: $(g, h, \mathbf{g}, \mathbf{h}, \mathbf{W}_L, \mathbf{W}_R, \mathbf{W}_O, \mathbf{W}_V, \mathbf{c})$		
Output: {V accepts, V rejects }		
\mathcal{P} computes:		
$\alpha, \beta, \rho \stackrel{\$}{\leftarrow} \mathbb{Z}_p$		
$A_I = h^{\alpha} \mathbf{g}^{\mathbf{a}_L} \mathbf{h}^{\mathbf{a}_R} \in \mathbb{G}$	//	commit to $\mathbf{a}_L, \mathbf{a}_R$
$A_O = h^\beta \mathbf{g}^{\mathbf{a}_O} \in \mathbb{G}$	//	commitment to \mathbf{a}_O
$\mathbf{s}_L, \mathbf{s}_R \stackrel{\$}{\leftarrow} \mathbb{Z}_p^n$	//	choose blinding vectors s_L, s_R
$S = h^{\rho} \mathbf{g}^{\mathbf{s}_{L}} \mathbf{h}^{\mathbf{s}_{R}} \in \mathbb{G}$	//	commitment to s_L, s_R
$\mathcal{P} \rightarrow \mathcal{V} : A_I, A_O, S$		
$V : y, z \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}^{*}$		
$\mathcal{V} \rightarrow \mathcal{P}: y, z$		
\mathcal{P} and \mathcal{V} compute:		
$\mathbf{y}^{n} = (1, y, y^{2}, \dots, y^{n-1}) \in \mathbb{Z}_{p}^{n}$	//	challenge per witness
$\mathbf{z}_{[1:]}^{Q+1} = (z, z^2, \dots, z^Q) \in \mathbb{Z}_p^Q$	//	challenge per constraint
$\delta(y, z) = \langle \mathbf{y}^{-n} \circ (\mathbf{z}_{[1:]}^{Q+1} \cdot \mathbf{W}_R), \mathbf{z}_{[1:]}^{Q+1} \cdot \mathbf{W}_L \rangle$	//	independent of the witness
\mathcal{P} computes:		
$l(X) = \mathbf{a}_L \cdot X + \mathbf{a}_O \cdot X^2 + \mathbf{y}^{-n} \circ (\mathbf{z}_{[1:]}^{Q+1} \cdot \mathbf{W}_R) \cdot X$		
$+ \mathbf{s}_L \cdot X^3 \in \mathbb{Z}_p^n[X]$		
$r(X) = \mathbf{y}^n \circ \mathbf{a}_R \cdot X - \mathbf{y}^n + \mathbf{z}_{[1:]}^{Q+1} \cdot (\mathbf{W}_L \cdot X + \mathbf{W}_O)$		
$+ \mathbf{y}^n \circ \mathbf{s}_R \cdot X^3 \in \mathbb{Z}_p^n[X]$		
$t(X) = \langle l(X), r(X) \rangle = \sum_{i=1}^{6} t_i \cdot X^i \in \mathbb{Z}_p[X]$		
$\mathbf{w} = \mathbf{W}_L \cdot \mathbf{a}_L + \mathbf{W}_R \cdot \mathbf{a}_R + \mathbf{W}_O \cdot \mathbf{a}_O$		
$t_2 = \langle \mathbf{a}_L, \mathbf{a}_R \circ \mathbf{y}^n \rangle - \langle \mathbf{a}_O, \mathbf{y}^n \rangle + \langle \mathbf{z}_{[1:]}^{Q+1}, \mathbf{w} \rangle + \delta(y, z) \in \mathbb{Z}_p$	//	$t_2 = d(y, z) + \langle \mathbf{z}_{[1:]}^{Q+1}, \mathbf{c} + \mathbf{W}_V \cdot \mathbf{v} \rangle$
$\tau_i \stackrel{\$}{\leftarrow} \mathbb{Z}_p \forall i \in [1, 3, 4, 5, 6]$		
$T_i = g^{t_i} h^{\tau_i} \forall i \in [1, 3, 4, 5, 6]$		
$\mathcal{P} \rightarrow \mathcal{V}: T_1, T_3, T_4, T_5, T_6$	//	commitments to t_1,t_3,t_4,t_5,t_6

$\mathcal{V} : x \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$	//	Random challenge	(74)
$\mathcal{V} \rightarrow \mathcal{P} : x$			(75)
P computes:			(76)
$l = l(x) \in \mathbb{Z}_p^n$			(77)
$\mathbf{r} = r(x) \in \mathbb{Z}_p^n$			(78)
$\hat{t} = \langle \mathbf{l}, \mathbf{r} \rangle \in \mathbb{Z}_p$			(79)
$\tau_x = \sum_{i=1, i \neq 2}^{6} \tau_i \cdot x^i + x^2 \cdot \langle \mathbf{z}_{[1:]}^{Q+1}, \mathbf{W}_V \cdot \boldsymbol{\gamma} \rangle \in \mathbb{Z}_p$	//	blinding value for \hat{t}	(80)
$\mu = \alpha \cdot x + \beta \cdot x^2 + \rho \cdot x^3 \in \mathbb{Z}_p$	//	Blinding value for P	(81)
$\mathcal{P} \rightarrow \mathcal{V} : \tau_x, \mu, \hat{t}, \mathbf{l}, \mathbf{r}$			(82)
V computes and checks:			(83)
$h'_i = h_i^{y^{-i+1}} \forall i \in [1, n]$	//	$\mathbf{h}' = (h_1, h_2^{y^{-1}}, \dots, h_n^{y^{-n+1}})$	(84)
$W_L = \mathbf{h}'^{\mathbf{z}_{\{1:\}}^{Q+1} \cdot \mathbf{W}_L}$	//	Weights for \mathbf{a}_L	(85)
$W_R = \mathbf{g}^{\mathbf{y}^{-n} \circ (\mathbf{z}_{[1:]}^{Q+1} \cdot \mathbf{W}_R)}$	//	Weights for \mathbf{a}_R	(86)
$W_O = \mathbf{h}'^{\mathbf{z}_{[1:]}^{Q+1} \cdot \mathbf{W}_O}$	//	Weights for \mathbf{a}_O	(87)
$\hat{t}\stackrel{?}{=}\langle \mathbf{l},\mathbf{r} angle$	//	Check that \hat{t} is correct	(88)
$g^{\hat{t}}h^{\tau_x} \stackrel{?}{=} g^{x^2 \cdot (\delta(y,z) + \langle \mathbf{z}_{[1:]}^{Q+1}, \mathbf{c} \rangle)} \cdot \mathbf{V}^{x^2 \cdot (\mathbf{z}_{[1:]}^{Q+1}, \mathbf{W}_V)} \cdot T_1^x$			(89)
$\cdot \prod_{i=3}^6 T_i^{(x^i)}$	//	$\hat{t} = t(x) = \sum_{i=1}^{6} t_i \cdot x^i$	(90)
$P = A_I^x \cdot A_O^{(x^2)} \cdot \mathbf{h'}^{-\mathbf{y}^n} \cdot W_L^x \cdot W_R^x \cdot W_O \cdot S^{(x^3)}$	//	commitment to $l(x), r(x)$	(91)
$P \stackrel{?}{=} h^{\mu} \cdot \mathbf{g}^{\mathbf{l}} \cdot \mathbf{h'}^{\mathbf{r}}$	11	Check that $\mathbf{l} = l(x)$ and $\mathbf{r} = r(x)$	(92)
if all checks succeed: V accepts			(93)
else: V rejects			(94)

Protocol 3: Part 2: Polynomial identity check for $\langle l(x), r(x) \rangle = t(x)$

Protocol 3: Part 1: Computing commitments to l(X), r(X) and t(X)

Main ingredient: Inner product argument

$$x = (Q, \hat{t}) \in \mathbb{G} \times \mathbb{Z}_{p}$$

$$w = (\vec{l}, \vec{r}) \in \mathbb{Z}_{p}^{n} \times \mathbb{Z}_{p}^{n}$$

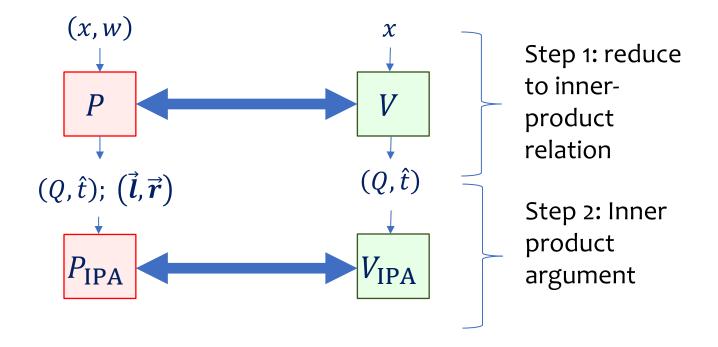
$$x = (Q, \hat{t})$$

$$V_{\text{IPA}}$$

 $g_1, \dots, g_n, h_1, \dots, h_n =$ generators of **G**

AoK: Accept iff prover knows
$$w = (\vec{l}, \vec{r})$$
 s.t.
1. $Q = g_1^{l_1} \cdots g_n^{l_n} h_1^{r_1} \cdots h_n^{r_n}$
2. $\hat{t} = \langle \vec{l}, \vec{r} \rangle$

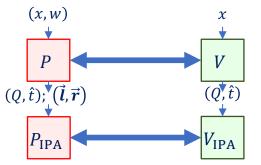
Bulletproofs template for NP relation **R**



 $(x,w) \in R \text{ iff } Q = g_1^{l_1} \cdots g_n^{l_n} h_1^{r_1} \cdots h_n^{r_n} \text{ and } \hat{t} = \langle \vec{l}, \vec{r} \rangle [\text{whp}]$

Important points in analyzing Bulletproofs

Point 1: Lack of composition in the AGM



Different representations of group elements compared to IPA in isolation

Point 2: Different extraction strategies

Range proof Extract from input representation AoK for arith. circuit satisfiability Extract from first message

Extracting from input representation: Bulletproofs range proof

Range proof: AoK that $C = g^{x}h^{r} \in \mathbb{G}$ is a commitment to $x \in [0, 2^{n} - 1]$

Instance = *C*, generators = (g, h)adaptive \mathcal{P}_{alg}^* outputs [C] = (C, x, r) s.t. $C = g^x h^r$ *e*: return (x, r)No! Not guaranteed that $x \in [0, 2^n - 1]$

Technical core

 \mathcal{P}_{alg}^* produces good acc. path but $x \notin [0, 2^n - 1]$ \Rightarrow break DLOG

Invitation to analyze SR soundness of interactive protocols

Open problems

- Prove SR soundness for more protocols
- SR soundness in the standard model
- Extend our framework to enable modular analysis in the AGM

Paper: https://eprint.iacr.org/2020/1351

