

Thinking Outside the Superbox

Nicolas Bordes¹, Joan Daemen², <u>Daniël Kuijsters</u>², Gilles Van Assche³ Crypto 2021

¹Université Grenoble Alpes (France) ²Radboud University (The Netherlands) ³STMicroelectronics (Belgium)

ESCADA

Proven secure if f is a randomly and uniformly chosen permutation

Keyed Duplex [Bertoni et al., SAC 2011]

Proven secure if f is a randomly and uniformly chosen permutation

Farfalle [Bertoni et al., ToSC 2017]

- In practice we build permutations that (try to) withstand cryptanalysis of the scheme
- Study round-reduced versions using knowledge of inner structure

Research question: How do different designs of cryptographic permutations affect (differential) cryptanalysis?

Given a permutation f:

- An input difference a through f giving an output difference b
 → (a, b) called a differential
- Divide #{x | f(x) + f(x + a) = b} by the total number of different x
 → Differential Probability (DP) of (a, b)
- Often − log₂(DP(a, b)) is more convenient to work with
 → weight of (a, b)

Permutations built as the composition of *r* round functions of the form $T \circ L \circ N$ where:

- *N* is an S-box layer, i.e., it can be written as $N = S \times \cdots \times S$
- L is a linear layer that is the composition of a mixing layer M (possibly the identity) and a shuffle layer P (a bit permutation)
- T is an addition of a constant, i.e., a translation

Typically, L and N are the same for each round

We do not consider Feistel structures or ARX-based round functions

A more precise description of how differences propagate through a permutation:

- (r + 1)-tuple (q₀,...,q_r) of intermediate differences in f
 → called a differential trail (AKA characteristic)
- Number of input pairs that follow each difference of the trail divided by the total number of different pairs → DP of the differential trail
- Sum of the weights of the differentials over active S-Boxes → weight of the differential trail
- Differentials trails with DP > 0 that share q_0 and $q_r \sim$ clustering of trails

The central notion in the paper, alignment:

- Coined in [Bertoni et al., Ecrypt II Hash 2011] (But different from our definition)
- Bits grouped along S-box boundaries, e.g., in nibbles or bytes
- When consistently processed in these groups \rightsquigarrow we call round function aligned
- Naturally leads to the concept of a superbox substructure
- This, combined with an MDS matrix, allows for reasoning about differential properties using combinatorial arguments

- An unaligned approach avoids such grouping in the design of round functions
- Needs computer programs to investigate trail bounds
- Superficially, one might wonder why not every cipher is designed with an aligned approach
- ... but an aligned approach may have (potentially unwanted?) side-effects

Our contribution \rightsquigarrow trying to quantify these side-effects

	Aligned	Mixing	S-box size	# S-boxes	Width
Rijndael	yes	strong	8	32	256
SATURNIN	yes	strong	4	64	256
Spongent	yes	weak	4	96	384
Xoodoo	no	strong	3	128	384

We want you to increase the sample size!

Software available at: https://github.com/ongetekend/ThinkingOutsideTheSuperbox

Branch Number

- The DP of a trail can be approximated by the product of DPs of active S-boxes
- A trail has a low DP if few S-boxes are active or the S-boxes have a high DP
- Wide trail strategy [Daemen, PhD thesis 1995]: ensure that all trails have many active S-boxes
- Accomplish this by choosing the mixing layer *M* such that:
 - Few active S-boxes in *a* give many active S-boxes in M(a)
 - Few active S-boxes in b give many active S-boxes in $M^{-1}(b)$
- The branch number [Daemen, PhD thesis 1995] of *M* is defined as

 $\min_{a\neq 0}\{w_{\Pi}(a)+w_{\Pi}(M(a))\}\,,$

where $w_{\Pi}(\cdot)$ is the *box* weight, i.e., it counts the number of active S-boxes

Huddling – Two-round Bit and Box Weight Histograms

- We see a loss of diffusion in going from bit to box weight $\sim \mathsf{huddling}$
- Huddling increases with S-box size \rightsquigarrow more pronounced in aligned ciphers

We see that trails cluster together in differentials

- Two-round histograms of the linear propagation properties
- Three-round trail histograms of SATURNIN and XOODOO
- We have studied the independence of round differentials for three rounds of X00D00
- Based on available information, we sketched what happens when considering weight histograms of four rounds and beyond

Given the same resources \rightsquigarrow XOODOO performs best w.r.t. differential and linear propagation properties

Thank you for your attention!

Part of this work was sponsored by ERC grant ESCADA