Constructing Locally Leakage-resilient Linear Secret-sharing Schemes

Hemanta K. Maji Anat Paskin-Cherniavsky Tom Suad Mingyuan Wang

August, 2021 (CRYPTO-2021)

Local Leakage-resilient Secret-Sharing

[Benhamouda-Degwekar-Ishai-Rabin CRYPTO'18, Goyal-Kumar STOC'18]

Secret-sharing schemes

- Classical security ensures that any unauthorized set of shares is uncorrelated with the secret.
- What if an adversary leaks local information (e.g., one bit b_i) from every share through side-channel attacks? Is the secret still hidden given the leakage?
 - Local leakage-resilient secret-sharing ensures that the secret remains hidden.

Θ ...

A useful primitive connected to many other fields

- Repairing error-correcting codes [Guruswami Wootters STOC'16, Tamo Ye Barg FOCS'17, Guruswami Rawat SODA'17, ...]
- Secure multiparty computation protocol resilient to local leakage attacks [Benhamouda Degwekar Ishai Rabin CRYPTO'18, ...]
- Modular building block for other primitives (e.g., non-malleable secret-sharing) [Goyal Kumar STOC'18, Srinivasan Vasudevan CRYPTO'19, ...]

Construct new secret-sharing schemes that are leakage-resilient

Aggarwal Damgård Nielsen Obremski Purwanto Ribeiro Simkin CRYPTO'19, Srinivasan Vasudevan CRYPTO'19, Kumar Meka Sahai FOCS'19,

Chattopadhyay Goodman Goyal Kumar Li Meka Zuckerman FOCS'20

• Usually incurs significant overheads and loses algebraic structure (e.g, linearity).

Leakage-resilience of prominent secret-sharing schemes

Benhamouda Degkewar Ishai Rabin CRYPTO'18, Nielsen Simkin EUROCRYPT'20,

Maji Nguyen Paskin-Cherniavsky Suad Wang EUROCRYPT'21,

Adams Maji Nguyen Nguyen Paskin-Cherniavsky Suad Wang ISIT'21

- Significant impact on real-world implementation
- Our work belongs to this line of research.

This Work

Massey Secret-sharing Scheme corresponding to a Random Linear Code

• Massey Secret-sharing corresponding to a code C:

- Every linear secret-sharing is a Massey secret-sharing corresponding to some linear code. Shamir ↔ Reed-Solomon code Additive ↔ Parity code
- Random Linear Code:
 - The generator matrix $G \in F^{(k+1) \times (n+1)}$ is sampled uniformly at random.
 - Over sufficiently large field, a random matrix is MDS with overwhelming probability.
 - When G is MDS, Massey secret-sharing corresponding to G, is a threshold secret-sharing with n parties and reconstruction threshold k + 1.

Main Result I

- Let λ be the security parameter, which represents the size of each secret share.
- Every secret share is an element from a prime field F, where $|F| \approx 2^{\lambda}$.
- m bits are leaked from every secret share.

Leakage-resilience of Massey Secret-Sharing

Let n be the number of parties. Let k + 1 be the reconstruction threshold. Let m be any constant. If we have

k > n/2,

the Massey secret-sharing scheme corresponding to a random matrix $G \in F^{(k+1)\times(n+1)}$ is *m*-bit local leakage-resilient *except* with $\exp(-\Theta(n))$ probability.

- We do need $n < \lambda$ to ensure that G is MDS w.h.p.
- For example, $k = \frac{1}{3}\lambda$ and $n = \frac{1}{2}\lambda$.

Main Result II

A bottleneck for the existing analytic approaches

- Benhamouda Degwekar Ishai Rabin CRYPTO'18 introduced an innovative Fourier analytic approach, which is adopted by all existing works, to prove leakage-resilience.
- We show that this existing approach is bound to fail when k < n/2.
 - A Fourier analytic proxy is used to upper-bound the statistical distance.
 - We consider the leakage function to be the indicator function of quadratic residuosity.

 $L(x) = \begin{cases} 1 & x \text{ is a quadratic residue} \\ 0 & \text{otherwise} \end{cases}$

• For any linear secret sharing scheme, the analytic proxy is ≥ 1 for this leakage function.

- Our first result is optimal w.r.t. the existing technical approach. Proving leakage-resilience (even against a single function) for k < n/2 requires significantly different ideas.
 - Motivation: MPC based on Shamir secret-sharing with k < n/2 is multiplication friendly.
 - Ongoing works: Prove leakage-resilience for any small leakage family \mathcal{L} .

Benhamouda Degwekar Ishai Rabin CRYPTO'18

For any MDS code G, Massey secret-sharing corresponding to G is leakage-resilient when m-bit is leaked from every share as long as $k > \delta_m \cdot n$.

- δ_m increases as m increases.
- $\delta_1 \approx 0.85$.

In particular, Shamir secret-sharing is 1-bit leakage-resilient if $k \ge 0.85n$.

	Construction	# of bits leaked m
BDIR'18	Any MDS G	$k > \delta_m \cdot n$
This work	Random G	$k > 0.5 \cdot n$

Relevant Prior Works

Maji Nguyen Paskin-Cherniavsky Suad Wang EUROCRYPT'21

- Shamir Secret-sharing with randomly chosen evaluation places.
- Only Physical-bit leakages.
- With overwhelming probability, Shamir Secret-sharing scheme with randomly chosen evaluation places is *m*-bit leakage-resilient even for (k + 1) = 2, $n = poly(\lambda)$, and any constant *m*.
 - Also employs the Fourier analytic approach and their results hold for the k < n/2 case.
 - This <u>does not</u> contradict the bottleneck we show as they only consider physical-bit leakage. (Testing whether a field element is a quadratic residue <u>cannot</u> be simulated by physical-bit leakage.)

	Construction					Leakage function	# of bits leaked m
BDIR'18	Any MDS G					general	$k > \delta_m \cdot n$
MNPSW'21	Random $G \leftarrow \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$	$\begin{array}{cccc} 1 & 1 \\ 0 & U_1 \\ 0 & U_1^2 \\ \vdots & \vdots \\ 0 & U_1^k \end{array}$	$ \begin{array}{c} 1\\ U_2\\ U_2^2\\ \vdots\\ U_2^k \end{array} $	···· ··· ··.	$ \begin{array}{c} 1\\ U_n\\ U_n^2\\ \vdots\\ U_n^k \end{array} $	physical-bit	$(k+1) \geqslant 2, n = poly(\lambda)$
This work	Random G					general	$k > 0.5 \cdot n$

Technical Overview

Leakage-resilience of Massev Secret Sharing

F is a prime field of size $\approx 2^{\lambda}$. The Massey secret-sharing scheme corresponding to a random matrix $G \in F^{(k+1) \times (n+1)}$ is local leakage-resilient as long as k > n/2.

Typical union bound (over leakage functions) would not work!

Fix a leakage function L and prove: "most G are secure against this L"

Union bound over all possible choices of L2

Would not work! Why?

- Total number of leakage functions:
 - Assume 1-bit leakage from every share L: F → {0,1}.
 Number of leakage functions for every share: 2^{|F|}.

 - Total number of leakage function: $(2^{|F|})^n = 2^{|F| \cdot n}$.
- The size of the family of constructions:
 - Determined by the generator matrix $G \in F^{(k+1) \times (n+1)}$.
 - Number of constructions: $|F|^{(k+1)(n+1)} \approx 2^{\log(|F|) \cdot k \cdot n}$

Key Technical Observation

A New Set of Tests

- γ, σ, a are appropriate constants.
- A test is specified by a product space $\mathbf{V} = V_1 \times V_2 \times \cdots \times V_n \subseteq F^n$. (Every V_i is of size γ .)
- A codeword $\mathbf{c} \in F^n$ is "bad" (for the test \mathbf{V}) if a large fraction $(\geq \sigma)$ of the coordinates fall into V_i . $\left|\{i : c_i \in V_i\}\right| \geq \sigma \cdot n.$
- A code G passes the test if few $(< a^n)$ codewords are "bad".

Intuition

- Fix a leakage function (L_1, \dots, L_n) . V_i represents the set of large Fourier coefficients for L_i .
- If a code passes all tests, it is leakage-resilient.

For <u>any</u> leakage function, only few $(< a^n)$ codewords has many coordinates $(< \sigma \cdot n)$ with large Fourier coefficients.

• Inspired by pseudorandomness literature.

Proof Overview

The number of tests is much smaller than the number of leakage functions!

- Number of tests $\mathbf{V} = V_1 \times V_2 \times \cdots \times V_n$: $\binom{|F|}{\gamma}^n \approx |F|^{\gamma \cdot n}$
- Number of leakage functions: $(2^{|F|})^n$

Proof Overview

- **1** Fix a test $\mathbf{V} = V_1 \times V_2 \times \cdots \times V_n$, prove that "most G passes this test".
 - Combinatorial argument.
- **2** Use union bound (over test \mathbf{V}) to prove that most G passes all tests.
- **3** G passes all tests $\implies G$ is leakage-resilient
 - Fourier analytic argument introduced by BDIR'18
 - Inherently requires k > n/2.

The Bottleneck

1/2 Barrier for the existing Fourier analytic approach

The existing Fourier analytic approach cannot prove leakage-resilience when $k \leq n/2$.

- In particular, it cannot prove leakage-resilience for one single function, i.e., the indicator function of quadratic residuosity.
- Intuition: Indicator function of quadratic residuosity is the function that maximizes the L_1 norm of the Fourier coefficients.

 $\underset{f}{\arg\max} \quad \sum_{\alpha \in F} \left| \widehat{f}(\alpha) \right|.$

Ongoing works

- For any small leakage family \mathcal{L} , a random code G is leakage-resilient to \mathcal{L} .
 - \mathcal{L} could contain the indicator function of quadratic residuosity.
 - Rely on a purely combinatorial argument.
- Identifying the optimal attacks

Thanks!

Full version eprint.iacr.org/2020/1517