Constructing Locally Leakage-resilient

Linear Secret-sharing Schemes

Hemanta K. Maji  Anat Paskin-Cherniavsky Tom Suad Mingyuan Wang

PURDUE AREL \

UNIVERSITY UNIVERSITY

August, 2021 (CRYPTO-2021)



Local Leakage-resilient Secret-Sharing

[Benhamouda-Degwekar-Ishai-Rabin CRYPTO’18, Goyal-Kumar STOC’18|
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Secret-sharing schemes

@ Classical security ensures that any unauthorized set of shares is uncorrelated with the secret.

@ What if an adversary leaks local information (e.g., one bit b;) from every share through
side-channel attacks? Is the secret still hidden given the leakage?

e Local leakage-resilient secret-sharing ensures that the secret remains hidden.




Leakage-resilient Secret-sharing

@ Repairing error-correcting codes
[Guruswami Wootters STOC’16, Tamo Ye Barg FOCS’17, Guruswami Rawat SODA’17, ...]

@ Secure multiparty computation protocol resilient to local leakage attacks
[Benhamouda Degwekar Ishai Rabin CRYPTO’18, ...]

@ Modular building block for other primitives (e.g., non-malleable secret-sharing)
[Goyal Kumar STOC’18, Srinivasan Vasudevan CRYPTO’19, ...]




Leakage-resilient Secret-sharing

Construct new secret-sharing schemes that are leakage-resilient

Aggarwal Damgard Nielsen Obremski Purwanto Ribeiro Simkin CRYPTO’19,
Srinivasan Vasudevan CRYPTO’19,
Kumar Meka Sahai FOCS’19,

Chattopadhyay Goodman Goyal Kumar Li Meka Zuckerman FOCS’20

@ Usually incurs significant overheads and loses algebraic structure (e.g, linearity).

Leakage-resilience of prominent secret-sharing schemes

Benhamouda Degkewar Ishai Rabin CRYPTO’18,
Nielsen Simkin EUROCRYPT’20,

Maji Nguyen Paskin-Cherniavsky Suad Wang EUROCRYPT’21,
Adams Maji Nguyen Nguyen Paskin-Cherniavsky Suad Wang ISIT’21

@ Significant impact on real-world implementation

@ Our work belongs to this line of research.




This Work

1aring Schem : ding to a dom Linear Code

@ Massey Secret-sharing corresponding to a code C:

secret shares of s
C C Fntl (8y81y...,8n) « C

secret shares of s’
(8,81, ..,: sn) < C

@ Every linear secret-sharing is a Massey secret-sharing corresponding to some linear code.
Shamir +— Reed-Solomon code
Additive «— Parity code

@ Random Linear Code:
@ The generator matrix G € F(*+1)x(n+1) jg sampled uniformly at random.

@ Over sufficiently large field, a random matrix is MDS with overwhelming probability.

@ When G is MDS, Massey secret-sharing corresponding to G, is a threshold secret-sharing with n parties
and reconstruction threshold k + 1.




Main Result |

@ Let A be the security parameter, which represents the size of each secret share.
@ Every secret share is an element from a prime field ', where |F| ~ 2.

@ m bits are leaked from every secret share.

Leakage-resilience of Massey Secret-Sharing

Let n be the number of parties. Let k£ + 1 be the reconstruction threshold. Let m be any constant.

If we have
k>mn/2,

the Massey secret-sharing scheme corresponding to a random matrix G € FFHD)x (41 g . bit
local leakage-resilient except with exp(—©(n)) probability.

@ We do need n < A to ensure that G is MDS w.h.p.

@ For example, k = %)\ and n = %)\.



Main Result II

A bottleneck for the existing analytic approaches

@ Benhamouda Degwekar Ishai Rabin CRYPTO’18 introduced an innovative Fourier analytic
approach, which is adopted by all existing works, to prove leakage-resilience.

@ We show that this existing approach is bound to fail when k£ < n/2.

o A Fourier analytic proxy is used to upper-bound the statistical distance.
o We consider the leakage function to be the indicator function of quadratic residuosity.

1 x is a quadratic residue
L(z) = :
0 otherwise
e For any linear secret sharing scheme, the analytic proxy is > 1 for this leakage function.

@ Our first result is optimal w.r.t. the existing technical approach. Proving leakage-resilience
(even against a single function) for k < n/2 requires significantly different ideas.

o Motivation: MPC based on Shamir secret-sharing with & < n/2 is multiplication friendly.

o Ongoing works: Prove leakage-resilience for any small leakage family L.




Relevant Prior Works

Benhamouda Degwekar Ishai Rabin CRYPTO’18

For any MDS code GG, Massey secret-sharing corresponding to G is leakage-resilient when m-bit is
leaked from every share as long as k > 6, - n.

@ §,, increases as m increases.
@ 01 ~ 0.85.

In particular, Shamir secret-sharing is 1-bit leakage-resilient if £ > 0.85n.

] \ Construction \ # of bits leaked m ‘

BDIR’18 | Any MDS G k>0, n
This work Random G k>05-n




elevant Prior Works

i Nguyen Pas

@ Shamir Secret-sharing with randomly chosen evaluation places.

@ Only Physical-bit leakages.

@ With overwhelming probability, Shamir Secret-sharing scheme with randomly chosen evaluation places is
m-bit leakage-resilient even for (k + 1) = 2, n = poly()), and any constant m.

@ Also employs the Fourier analytic approach and their results hold for the k < n/2 case.

@ This does not contradict the bottleneck we show as they only consider physical-bit leakage.
(Testing whether a field element is a quadratic residue cannot be simulated by physical-bit leakage.)

[ [ Construction [ Leakage function [ # of bits leaked m ]
BDIR’18 Any MDS G general k>0m n
11 1 . 1
0 U Us B Un
MNPSW’21 | Random G« |0 Uf U3 ... UR physical-bit (k+1) > 2, n=poly())
o Uk vk ..., Uk
This work Random G general k>05n




Technical Overview

Leakage-resilience of Massey Secret Sharing

F is a prime field of size ~ 2*. The Massey secret-sharing scheme corresponding to a random matrix
G e P+ X (n+1) s Jocal leakage-resilient as long as k > n/2.

Typical union bound (over leakage functions) would not work!

Fix a leakage function L and prove: “most GG are secure against this L”

Union bound over all possible choices of L

Would not work! Why?

@ Total number of leakage functions:

@ Assume 1-bit leakage from every share L: F' — {0, 1}.
e Number of leakage functions for every share: 271,
@ Total number of leakage function: (2|F‘)n = g,

@ The size of the family of constructions:

@ Determined by the generator matrix G € F(++1)x(n+1),
‘F‘(k+l)(n+1) e 210g(\F|)~k<n

~

@ Number of constructions:




Key Technical Observation

A New Set of Tests

@ 7,0,a are appropriate constants.

@ A test is specified by a product space V.=1V; x V5 x --- x V,, C F". (Every V; is of size 7.)

@ A codeword c € F" is “bad” (for the test V) if a large fraction (> o) of the coordinates fall
into V. -
>0-n.

{i: ¢ €V;}
@ A code G passes the test if few (< a™) codewords are “bad”.

W

Intuition

o Fix a leakage function (Lq,--- , L,). V; represents the set of large Fourier coefficients for L;.

@ If a code passes all tests, it is leakage-resilient.

For any leakage function, only few (< a") codewords has many coordinates (< o - n) with
large Fourier coeflicients.

@ Inspired by pseudorandomness literature.




Proof Overview

The number of tests is much smaller than the number of leakage functions!

@ Number of tests V=15 x Vo x --- x V,,: (‘S')" ~ B

@ Number of leakage functions: (2|F ‘)n

v

Proof Overview

Fix atest V=1; x V5 x --- x V,,, prove that “most G passes this test”.

o Combinatorial argument.
Use union bound (over test V) to prove that most G passes all tests.
G passes all tests = G is leakage-resilient

e Fourier analytic argument introduced by BDIR’18
o Inherently requires k > n/2.




The Bottleneck

1/2 Barrier for the existing Fourier analytic approach

The existing Fourier analytic approach cannot prove leakage-resilience when k < n /2.

@ In particular, it cannot prove leakage-resilience for one single function, i.e., the indicator
function of quadratic residuosity.

@ Intuition: Indicator function of quadratic residuosity is the function that maximizes the L

norm of the Fourier coefficients. R
arg max Z‘f(oz))
f

a€EF

4

Ongoing works

@ For any small leakage family £, a random code G is leakage-resilient to L.

e L could contain the indicator function of quadratic residuosity.
e Rely on a purely combinatorial argument.

@ Identifying the optimal attacks
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