ZK for General Constraint-Satisfiability:

- Prove knowledge of commitment opening x such that $f(x) = 0$; i.e., x is f-constrained.
- Zero-Knowledge (ZK): no info released except veracity of claim.

Goal:

- Low communication for general f: minimize number of bits transmitted.
- Lattice-based.
- Commit-and-Prove.
Prior Work - Compressed Σ-Protocol Theory (CRYPTO 2020 [AC20])

High-Level Paradigm:

Solve linear instances first, and then linearize the non-linear instances.

1. Natural Σ-protocol for linear constraints.
 - Σ-protocol theory is a well-established, widely-used basis for zero-knowledge proofs.
 - E.g., general-constraint ZK: \(O(|C|) \cdot \kappa \) communication [CD97].

2. Adaptation of Bulletproof PoK [BCC\(^+16\), BBB\(^+18\)].
 - Bulletproofs core: recursive PoK for quadratic relations \(\Longrightarrow \) logarithmic communication.
 - Repurposed as a blackbox compression for Σ-protocol 1.
3. Linearization strategy to handle non-linear constraints in a black-box manner.
 - Using arithmetic secret-sharing.

4. Instantiations.
 - *Logarithmic-communication*: DL, strong-RSA (class groups, RSA + set-up).
 - *Constant-communication*: Knowledge of Exponent Assumption.
 - Pairing based languages (bilinear circuit model) [ACR20].

Lattice instantiation?
Lattice-based Instantiation of Compressed Σ-Protocol Theory

Homomorphic Ring-SIS based commitment scheme

\Rightarrow circuit ZK with polylogarithmic communication.

Challenges and our contributions:

1. Soundness slack, approximation factor, rejection sampling (non-abort SHVZK), ...
 - Also encountered in lattice instantiations of standard Σ-protocols.
 - Careful analysis/instantiation required: propagation through the logarithmically many rounds of compressed Σ-protocols.

 Our contribution: Abstract framework capturing various design choices and uniformizing/simplifying analysis.
 - In contrast, many other works are tailored to specific lattice instantiations.
2. Extractor Analysis.
 - Lattice instantiations have much smaller challenges sets ⇒ larger knowledge error.
 - **Our contribution:** tight extractor analysis.
 - Also better parameters for non-lattice instantiations.

3. Parallel Repetition.
 - Parallel repetition is required to reduce knowledge error.
 - **Our contribution:** novel parallel repetition for PoKs.

4. Linearizing non-linear lattice instances.
 - Requires an arithmetic secret sharing over a ring instead of a field.
 - **Our contribution:** adaptation of existing linearization technique.
Related Work - Sublinear Lattice-Based Circuit ZK

- Sublinear circuit ZK from lattice assumptions [BBC+18].
 - Communication is not polylogarithmic.

- Lattice-based Bulletproofs [BLNS20]:
 - Restricted to proving knowledge of an SIS preimage.
 - Not zero-knowledge.
 - Tailored to specific lattice instantiation (power-of-two cyclotomic number fields).

Concurrent and independent work at CRYPTO 2021:

- Theory of sumcheck arguments with application to lattice-based succinct arguments [BCS21].
 - Alternative abstract framework.
 - Given our extractor analysis \Rightarrow comparable parameters for circuit ZK.

- Upper and lower bounds for lattice-based succinct zero-knowledge [AL21].
 - Better parameters for certain protocols, impossibility results
 - Our work: Tight extractor analysis ($\kappa \leq 2 \log n/|C|$ vs. $\kappa \approx 8.16 \log n/|C|$)
Technical Overview

1. Soundness slack, approximation factor, rejection sampling (non-abort SHVZK), ...
2. Extractor Analysis
3. Parallel Repetition Theorem
4. Linearization Techniques
Knowledge extractor

- Input: Statement x and rewindable access to \mathcal{P}.
- Goal: Compute a witness w for statement x.

A protocol is \textit{knowledge sound} if there exists an extractor with certain properties.

- Informally: The prover can only convince the verifier if it knows a witness.
Two Equivalent Definitions for Knowledge Soundness

- $\epsilon(x)$: success probability of the prover on public input x.
- $\kappa(x)$: knowledge error of the protocol.

Definition (Standard Definition - Knowledge Soundness)

Knowledge extractor has expected runtime

$$\frac{\text{poly}(|x|)}{\epsilon(x) - \kappa(x)}.$$

Definition (Alternative Definition - Knowledge Soundness)

Knowledge extractor has expected polynomial runtime and success probability

$$\frac{\epsilon(x) - \kappa(x)}{\text{poly}(|x|)}.$$
Special Soundness

Alternative notion of soundness that is easier to handle.
- Typically much easier to prove special soundness than knowledge soundness.

Definition (Special-Soundness)

A 3-move protocol is *special-sound* if there exists an efficient algorithm that on input a two accepting transcripts \((a, c, z)\) and \((a, c', z')\) with \(c \neq c'\) outputs a witness \(w\) for statement \(x\).

Special-soundness implies knowledge soundness with knowledge error \(1/N\), where \(N\) is the size of the challenge set.

Natural generalization of 2-special-soundness:
- \(k\)-special-soundness implies knowledge soundness with knowledge error \(\frac{k-1}{N}\).
Generalization from 3-round to \((2\mu + 1)\)-round protocols

Informally: \((k_1, \ldots, k_\mu)\)-special soundness if the protocol is \(k_i\) special sound with respect to the \(i\)-th challenge.

Our Result: \((k_1, \ldots, k_\mu)\)-special soundness tightly implies knowledge soundness.

Prior works:
- Asymptotic analysis: exponential challenge set implies negl. knowledge error [BCC+16].
 - No concrete knowledge error. Not applicable to lattice setting.
- Concrete analysis of the asymptotic approach [dPLS19, AL21].
 - Not tight \((\kappa \approx 8.16 \log n/|C|\), whereas we obtain \(\kappa \leq 2 \log n/|C|\)).

Our techniques:
- Alternative definition for knowledge soundness.
- Simplified extractor for 3-round protocols; sampling with replacement.
- In contrast to prior extractors, this extractor can be applied recursively to multi-round protocols.
Extractor \mathcal{E} with rewindable black-box access to a prover:

Step 1. Query the prover on a random challenge c.

Step 2a. If prover fails, the extractor aborts.

Step 2b. Else the extractor keeps rewinding (fixing the prover’s first message a) and sampling challenges with replacement until it has found a second accepting transcript or until it has exhausted all challenges.

Lemma (Runtime)

The expected number of queries to \mathcal{P} from \mathcal{E} is at most 2.

Lemma (Success Probability)

*Extractor \mathcal{E} succeeds with probability at least $\epsilon - 1/N$.***
Random variable A indicates the prover’s randomness.
- If A is fixed, so is the prover’s first message.

Lemma (Runtime)

The expected number of queries to \mathcal{P} from \mathcal{E} is at most 2.

Intuition:

If the success probability ϵ of \mathcal{P} is:
- “large”, \mathcal{E} will quickly find two transcripts,
- “small”, w.h.p. \mathcal{E} will abort after 1 query.
Random variable A indicates the prover’s randomness.
- If A is fixed, so is the prover’s first message.

Lemma (Runtime)

The expected number of queries to P from E is at most 2.

Proof.

Conditioned on $A = a$, Step 1 succeeds with probability

$$
\epsilon_a := \Pr(\mathcal{P} \text{ succeeds } | A = a).
$$

Step 2b is a negative hypergeometric experiment with expected value at most $1/\epsilon_a$. Expected number of queries is at most

$$
\sum_a \Pr(A = a) \left(1 + \epsilon_a \frac{1}{\epsilon_a} \right) = 2.
$$
Lemma (Success Probability)

Extractor \mathcal{E} succeeds with probability at least $\epsilon - 1/N$.

Intuition:

- **Step 1.** succeeds with probability ϵ.
- **Step 2.** succeeds if and only if there exists a second accepting challenge (for the same prover’s randomness).
Lemma (Success Probability)

*Extractor \mathcal{E} succeeds with probability at least $\epsilon - 1/N$.***

Proof.

Conditioned on $A = a$, success if step 1 is successful \textit{and} if $\epsilon_a > 1/N$.

Hence, the success probability of the extractor equals

$$\sum_{a : \epsilon_a > 1/N} \Pr(A = a) \epsilon_a = \sum_a \Pr(A = a) \epsilon_a - \sum_{a : \epsilon_a \leq 1/N} \Pr(A = a) \epsilon_a,$$

$$\geq \epsilon - \frac{1}{N},$$
Multi-Round Extractor

Recursive application of the 3-round extractor.

- Careful analysis is required.

Theorem

A \((k_1, \ldots, k_\mu)\)-special sound protocol is knowledge sound with knowledge error

\[
\kappa = 1 - \prod_{i=1}^{\mu} \left(1 - \frac{k_i - 1}{N_i}\right) \leq \sum_{i=1}^{\mu} \frac{k_i - 1}{N_i},
\]

where \(N_i\) is the size of the \(i\)-th challenge set.

Tightness:

- Typically there exists a cheating strategy that succeeds with probability \(\kappa\).
First (non-PCP) lattice-based circuit ZK protocol with polylogarithmic communication.
 ▶ Inherits the modularity of Compressed Σ-Protocol Theory.
 ▶ Supports commit-and-prove.
 ▶ Transparent (no trusted set-up).

General and tight extractor analysis for \((k_1, \ldots, k_\mu)\)-special-sound protocols.

Novel parallel repetition theorem for proofs of knowledge.
Thanks!
Thomas Attema and Ronald Cramer.
Compressed sigma-protocol theory and practical application to plug & play secure algorithmics.

Thomas Attema, Ronald Cramer, and Matthieu Rambaud.
Compressed sigma-protocols for bilinear circuits and applications to logarithmic-sized transparent threshold signature schemes.

Martin Albrecht and Russell W. F. Lai.
Subtractive sets over cyclotomic rings: Limits of schnorr-like arguments over lattices.
Bulletproofs: Short proofs for confidential transactions and more.

Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and Vadim Lyubashevsky.
Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits.

