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Setting - Proving General Constraints in Zero-Knowledge

ZK for General Constraint-Satisfiability:

Prove knowledge of commitment opening x such that f (x) = 0; i.e., x is f -constrained.

Zero-Knowledge (ZK): no info released except veracity of claim.

Goal:

Low communication for general f : minimize number of bits transmitted.

Lattice-based.

Commit-and-Prove.
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Prior Work - Compressed Σ-Protocol Theory (CRYPTO 2020 [AC20])

High-Level Paradigm:

Solve linear instances first, and then linearize the non-linear instances.

1. Natural Σ-protocol for linear constraints.

Σ-protocol theory is a well-established, widely-used
basis for zero-knowledge proofs.

E.g., general-constraint ZK: O(|C |) · κ
communication [CD97].

2. Adaptation of Bulletproof PoK [BCC+16, BBB+18].

Bulletproofs core: recursive PoK for quadratic
relations =⇒ logarithmic communication.

Repurposed as a blackbox compression for
Σ-protocol 1.

[x] s.t. L(x) = y

P V
[r],L(r)−−−−−−→

c←−−−−−−
z = r + cx

z−−−−−−→ Accept?
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Prior Work - Compressed Σ-Protocol Theory (CRYPTO 2020 [AC20])

3. Linearization strategy to handle non-linear constraints in a black-box manner.

Using arithmetic secret-sharing.

4. Instantiations.

Logarithmic-communication: DL, strong-RSA (class groups, RSA + set-up).

Constant-communication: Knowledge of Exponent Assumption.

Pairing based languages (bilinear circuit model) [ACR20].

Lattice instantiation?
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This Work

Lattice-based Instantiation of Compressed Σ-Protocol Theory

Homomorphic Ring-SIS based commitment scheme
=⇒ circuit ZK with polylogarithmic communication.

Challenges and our contributions:

1. Soundness slack, approximation factor, rejection sampling (non-abort SHVZK), ...

Also encountered in lattice instantiations of standard Σ-protocols.

Careful analysis/instantiation required: propagation through the logarithmically many
rounds of compressed Σ-protocols.

Our contribution: Abstract framework capturing various design choices
and uniformizing/simplifying analysis.
I In contrast, many other works are tailored to specific lattice instantiations.

5 / 24



2. Extractor Analysis.

Lattice instantiations have much smaller challenges sets
=⇒ larger knowledge error.

Our contribution: tight extractor analysis.

Also better parameters for non-lattice instantiations.

3. Parallel Repetition.

Parallel repetition is required to reduce knowledge error.

Our contribution: novel parallel repetition for PoKs.

4. Linearizing non-linear lattice instances.

Requires an arithmetic secret sharing over a ring instead of a field.

Our contribution: adaptation of existing linearization technique.
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Related Work - Sublinear Lattice-Based Circuit ZK

Sublinear circuit ZK from lattice assumptions [BBC+18].
I Communication is not polylogarithmic.

Lattice-based Bulletproofs [BLNS20]:
I Restricted to proving knowledge of an SIS preimage.
I Not zero-knowledge.
I Tailored to specific lattice instantiation (power-of-two cyclotomic number fields).

Concurrent and independent work at CRYPTO 2021:

Theory of sumcheck arguments with application to lattice-based succinct
arguments [BCS21].
I Alternative abstract framework.
I Given our extractor analysis =⇒ comparable parameters for circuit ZK.

Upper and lower bounds for lattice-based succinct zero-knowledge [AL21].
I Better parameters for certain protocols, impossibility results
I Our work: Tight extractor analysis (κ ≤ 2 log n/|C | vs. κ ≈ 8.16 log n/|C |)
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Technical Overview

1 Soundness slack, approximation factor, rejection sampling (non-abort SHVZK), ...

2 Extractor Analysis

3 Parallel Repetition Theorem

4 Linearization Techniques

8 / 24



Extractor Analysis for (2µ + 1)-Round Protocols

Knowledge extractor

Input: Statement x and rewindable access to P.

Goal: Compute a witness w for statement x .

A protocol is knowledge sound if there exists an
extractor with certain properties.

Informally: The prover can only convince the
verifier if it knows a witness.

(x ;w) ∈ R
P(x ;w) V(x)

a0−−−−−−→
c1←−−−−−−
a1−−−−−−→
...
cµ←−−−−−−
aµ−−−−−−→ Accept/

Reject
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Two Equivalent Definitions for Knowledge Soundness

ε(x): success probability of the prover on public input x .

κ(x): knowledge error of the protocol.

Definition (Standard Definition - Knowledge Soundness)

Knowledge extractor has expected runtime

poly(|x |)
ε(x)− κ(x)

.

Definition (Alternative Definition - Knowledge Soundness)

Knowledge extractor has expected polynomial runtime and
success probability

ε(x)− κ(x)

poly(|x |)
.
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Special Soundness

Alternative notion of soundness that is easier to handle.

Typically much easier to prove special soundness than knowledge soundness.

Definition (Special-Soundness)

A 3-move protocol is special-sound if there exists an efficient algorithm that on input a two
accepting transcripts (a, c, z) and (a, c ′, z ′) with c 6= c ′ outputs a witness w for statement x .

Special-soundness implies knowledge soundness with knowledge error 1/N, where N is the size
of the challenge set.

Natural generalization of 2-special-soundness:

k-special-soundness implies knowledge soundness with knowledge error

k − 1

N
.
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Generalization from 3-round to (2µ + 1)-round protocols

Informally: (k1, . . . , kµ)-special soundness if the protocol is ki special sound with respect to
the i-th challenge.

Our Result: (k1, . . . , kµ)-special soundness tightly implies knowledge soundness.

Prior works:
Asymptotic analysis: exponential challenge set implies negl. knowledge error [BCC+16].
I No concrete knowledge error. Not applicable to lattice setting.

Concrete analysis of the asymptotic approach [dPLS19, AL21].
I Not tight (κ ≈ 8.16 log n/|C |, whereas we obtain κ ≤ 2 log n/|C |).

Our techniques:

Alternative definition for knowledge soundness.

Simplified extractor for 3-round protocols; sampling with replacement.

In contrast to prior extractors, this extractor can be
applied recursively to multi-round protocols.
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Knowledge extractor for special sound protocols

Extractor E with rewindable black-box access to a prover:

Step 1. Query the prover on a random challenge c .
Step 2a. If prover fails, the extractor aborts.
Step 2b. Else the extractor keeps rewinding (fixing the prover’s first message a) and sampling
challenges with replacement until it has found a second accepting transcript or until it has
exhausted all challenges.

Lemma (Runtime)

The expected number of queries to P from E is at most 2.

Lemma (Success Probability)

Extractor E succeeds with probability at least ε− 1/N.
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Expected Runtime

Random variable A indicates the prover’s randomness.

If A is fixed, so is the prover’s first message.

Lemma (Runtime)

The expected number of queries to P from E is at most 2.

Intuition:

If the success probability ε of P is:

“large”, E will quickly find two transcripts,

“small”, w.h.p. E will abort after 1 query.
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Expected Runtime

Random variable A indicates the prover’s randomness.

If A is fixed, so is the prover’s first message.

Lemma (Runtime)

The expected number of queries to P from E is at most 2.

Proof.

Conditioned on A = a, Step 1 succeeds with probability

εa := Pr(P succeeds |A = a).

Step 2b is a negative hypergeometric experiment with expected value at most 1/εa.
Expected number of queries is at most∑

a

Pr(A = a)

(
1 + εa

1

εa

)
= 2 .
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Success Probability

Lemma (Success Probability)

Extractor E succeeds with probability at least ε− 1/N.

Intuition:

Step 1. succeeds with probability ε.

Step 2. succeeds if and only if there exists a second accepting challenge (for the same
prover’s randomness).
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Success Probability

Lemma (Success Probability)

Extractor E succeeds with probability at least ε− 1/N.

Proof.

Conditioned on A = a, success if step 1 is successful and if εa > 1/N.

Hence, the success probability of the extractor equals∑
a|εa>1/N

Pr(A = a)εa =
∑
a

Pr(A = a)εa −
∑

a|εa≤1/N

Pr(A = a)εa ,

≥ ε− 1

N
,
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Multi-Round Extractor

Recursive application of the 3-round extractor.

Careful analysis is required.

Theorem

A (k1, . . . , kµ)-special sound protocol is knowledge sound with knowledge error

κ = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
≤

µ∑
i=1

ki − 1

Ni
,

where Ni is the size of the i-th challenge set.

Tightness:

Typically there exists a cheating strategy that succeeds with probability κ.
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Conclusion

First (non-PCP) lattice-based circuit ZK protocol with polylogarithmic communication.
I Inherits the modularity of Compressed Σ-Protocol Theory.
I Supports commit-and-prove.
I Transparent (no trusted set-up).

General and tight extractor analysis for (k1, . . . , kµ)-special-sound protocols.

Novel parallel repetition theorem for proofs of knowledge.
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Thanks!
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