

Revisiting the Security of DbHtS MACs: Beyond-Birthday-Bound in the Multi-User Setting

Yaobin Shen¹, Lei Wang¹, Dawu Gu¹, and Jian Weng² ¹Shanghai Jiao Tong University ²Jinan University CRYPTO 2021 August 19, 2021

Message Authentication Code

- MAC: ensure integrity and authenticity of messages
- Two ways to build a MAC
 - using a blockcipher (CBC-MAC, OMAC, LightMAC)
 - using a hash function (HMAC, NMAC, NI-MAC)
- Following the Hash-then-PRF paradigm

Birthday Bound Security

Hash-then-PRF

- $H_{K_h}(M_1) = H_{K_h}(M_2) \Rightarrow T_1 = T_2$
- Birthday-bound security $O(2^{\frac{n}{2}})$
- Birthday-bound security is not always enough
 - lightweight blockciphers (HIGHT, PRESENT, GIFT), or TDES
 - $n = 64, 2^{\frac{n}{2}} = 2^{32}$ is somewhat small
 - practical attacks exploit collision on short blockcipher [BL16]

[BL16] Karthikeyan Bhargavan, Gaëtan Leurent: On the Practical (In-)Security of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN. CCS 2016: 456-467

DbHtS MACs

- A class of MACs that aim for BBB security
 - SUM-ECBC [Yas10], PMAC_Plus [Yas11]
 - 3kf9 [Zha12]
 - LightMAC_Plus [Nai17]
- Double-block Hash-then-SUM (DbHtS) [DDNP19]

[DDNP19] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul: Double-block Hash-then-Sum: A Paradigm for Constructing BBB Secure PRF. IACR Trans. Symmetric Cryptol. 2018(3) (FSE 2019): 36-92 (2018)

[Yas10] Kan Yasuda:The Sum of CBC MACs Is a Secure PRF. <u>CT-RSA 2010</u>: 366-381

[Yas11] Kan Yasuda: A New Variant of PMAC: Beyond the Birthday Bound. CRYPTO 2011: 596-609

[Zha12] Liting Zhang, <u>Wenling Wu</u>, <u>Han Sui</u>, <u>Peng Wang</u>: 3kf9: Enhancing 3GPP-MAC beyond the Birthday Bound. <u>ASIACRYPT 2012</u>: 296-312 [Nai17] Yusuke Naito: Blockcipher-Based MACs: Beyond the Birthday Bound Without Message Length. <u>ASIACRYPT (3) 2017</u>: 446-470

DbHtS MACs

- BBB security $\frac{q^3}{2^{2n}}$ [DDNP19]
- Forgery attack with complexity $2^{\frac{3n}{4}}$ [LNS18]
- Tight security bound $\frac{q^{\frac{4}{3}}}{2^n}$ [KLL20]

[DDNP19] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul: Double-block Hash-then-Sum: A Paradigm for Constructing BBB Secure PRF. IACR Trans. Symmetric Cryptol. 2018(3) (FSE 2019): 36-92 (2018)
[LNS18] Gaëtan Leurent, Mridul Nandi, Ferdinand Sibleyras: Generic Attacks Against Beyond-Birthday-Bound MACs. CRYPTO (1) 2018: 306-336
[KLL20] Seongkwang Kim, ByeongHak Lee, Jooyoung Lee: Tight Security Bounds for Double-Block Hash-then-Sum

MACs. EUROCRYPT (1) 2020: 435-465

- The above BBB results only consider a single user (su)
- In practice, the adversary can attack multiple users, adaptively distributing its resource
 - MAC: core element of real-world security protocols

SSL SSH IPSec

- billions of daily active users
- Question: can DbHtS MACs still achieve BBB security in the multi-user setting?

Mu Security of DbHtS

- Generic reduction: su × #users [CMS11,MPS20]
 - mu security of DbHtS: $\frac{uq^3}{2^{2n}}$ or $\frac{uq^{\frac{3}{3}}}{2^n}$
 - *u* is the number of users, *q* is the number of queries
 - if one query per user, then $\frac{q^4}{2^{2n}}$ or $\frac{q^{\frac{7}{3}}}{2^n}$
 - $q = 2^{\frac{n}{2}}$ or $q = 2^{\frac{3n}{7}}$ is still (or even worse than) birthday bound
- A direct analysis of mu security of DbHtS is much desired

[CMS11] Sanjit Chatterjee, Alfred Menezes, Palash Sarkar: Another Look at Tightness. **Selected Areas in Cryptography 2011**: 293-319 [MPS20] Andrew Morgan, Rafael Pass, Elaine Shi: On the Adaptive Security of MACs and PRFs. **ASIACRYPT (1) 2020**: 724-753

Our Contributions

- Propose a generic mu framework for DbHtS MACs
 - usability: prove H is ϵ_1 -regular and ϵ_2 -almost universal
 - high security: BBB security $\frac{q^3}{2^{2n}}$

→ $\Pr[H(M_1) = H(M_2)] \le \epsilon_1$

 $\rightarrow \Pr[H(M) = y] \le \epsilon_1$

- Applications to key-reduced variants of DbHtS MACs
 - 2k-SUM-ECBC
 - 2k-PMAC_Plus
 - 2k-LightMAC_Plus

Our Contributions

- Point out a critical flaw in 2kf9 [DDNP19]
 - one query forgery attack
 - birthday attack on several variants of 2kf9

[DDNP19] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul: Double-block Hash-then-Sum: A Paradigm for Constructing BBB Secure PRF. IACR Trans. Symmetric Cryptol. 2018(3) (FSE 2019): 36-92 (2018)

BBB Security of DbHtS MACs

Main theorem:

$$\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{DbHtS}}(A) \leq \frac{qp\ell}{2^{k+n}} + \frac{q^3}{2^{2n}} + \frac{q^2p + qp^2}{2^{2k}}$$

- assume *H* is $\frac{1}{2^n}$ -regular and $\frac{1}{2^n}$ -almost universal, omit lowerorder terms and small constant factors
- q the number of MAC queries, p the number of ideal-cipher queries, n the length of block size, k the length of key
- Independent of the number of users u, which can be as large as q

Our Bound vs Generic Reduction

- Generic reduction: $\frac{q^4}{2^{2n}}$
 - when $q = 2^{\frac{n}{2}}$, it becomes vanished
- Our bound: $\frac{qp\ell}{2^{k+n}} + \frac{q^3}{2^{2n}} + \frac{q^2p+qp^2}{2^{2k}}$
 - when $q = 2^{\frac{n}{2}}$, it is still reasonably small

$$\frac{p\ell}{2^{k+\frac{n}{2}}} + \frac{1}{2^{\frac{n}{2}}} + \frac{p}{2^{2k-n}} + \frac{p^2}{2^{2k-\frac{n}{2}}}$$

• $n = 64, k = 128, q = 2^{32}$, querying 32GB online data, the terms containing p become

$$\frac{p\ell}{2^{160}} + \frac{p}{2^{192}} + \frac{p^2}{2^{224}}$$

Security Model

procedure INITIALIZE

 $(K_h^1, K_1), (K_h^2, K_2), \cdots, \leftarrow \mathcal{K}_h \times \mathcal{K}$ $f_1, f_2, \cdots, \leftarrow \mathcal{F}unc(\mathcal{M}, \{0, 1\}^n)$ $b \leftarrow \mathcal{K} \{0, 1\}$

procedure PRIM(J, X)

if X = (+, x) then return $E_J(x)$ if X = (-, y) then return $E_J^{-1}(y)$ procedure EVAL(i, M) $T_1 \leftarrow DbHtS[H, E](K_h^i, K_i, M)$ $T_0 \leftarrow f_i(M)$ return T_b procedure FINALIZE(b')

return (b' = b)

Game G_{DbHtS}^{prf} defining the multi-user prf security of DbHtS construction

Ideal-cipher model

- better capture the local computation of the adversary
- use n-bit keys to go beyond the birthday bound

Overview of The Proof

- Define bad events to guarantee:
 - For each user, at least one of (K_h^i, K_i) is fresh
 - For queries to the same user, at least one of (Σ, Λ) is fresh
 - For queries to different users, if K_i collides with other keys, then the input to E_{K_i} is fresh

上海交通

Hash function: the concatenation of two CBC MACs

 $H_{K_h}(M) = (H^1_{K_{h,1}}(M), H^2_{K_{h,2}}(M)) = (\mathsf{CBC}[E](K_{h,1}, M), \mathsf{CBC}[E](K_{h,2}, M))$

Application to 2k-SUM-ECBC

酒菜酒

$$\begin{aligned} \mathsf{Adv}_{2\mathsf{k}-\mathsf{SUM}-\mathsf{ECBC}}^{\mathrm{prf}}(A) &\leq \frac{2q}{2^k} + \frac{q(3q+p)(6q+2p)}{2^{2k}} + \frac{6qp\ell}{2^{k+n}} + \frac{64q^2}{2^{n+k}} + \frac{36qp}{2^{n+k}} \\ &+ \frac{44q^2\ell^{\frac{3}{2}}}{2^{n+k}} + \frac{576q^3\ell}{2^{2n}} + \frac{2304q^3}{2^{2n}} \ , \end{aligned}$$

上海交通大学

 $\Sigma = Z_1 \oplus Z_2 \oplus \cdots \oplus Z_{\ell}; \ \Lambda = 2^{\ell} \cdot Z_1 \oplus 2^{\ell-1} \cdot Z_2 \oplus \cdots \oplus 2 \cdot Z_{\ell}$ return (Σ, Λ)

Application to 2k-LightMAC_Plus

Mu security of 2k-LightMAC_Plus

上海交通大学

$$\begin{split} \mathsf{Adv}_{2k\text{-LightMAC_Plus}}^{\mathrm{prf}}(A) &\leq \frac{2q}{2^k} + \frac{q(3q+p)(6q+2p)}{2^{2k}} + \frac{2qp\ell}{2^{k+n}} + \frac{8qp}{2^{k+n}} \\ &\quad + \frac{8q^2}{2^{k+n}} + \frac{4q^2\ell}{2^{k+n}} + \frac{70q^3}{2^{2n}} \ , \end{split}$$

 $Y_{i} \leftarrow M[i] \oplus 2^{i} \cdot \Delta_{0} \oplus 2^{2i} \cdot \Delta_{1}; Z_{i} \leftarrow E_{L}(Y_{i})$ $\Sigma = Z_{1} \oplus Z_{2} \oplus \cdots \oplus Z_{\ell}; \Lambda = 2 \cdot Z_{1} \oplus 2^{2} \cdot Z_{2} \oplus \cdots \oplus 2^{\ell} \cdot Z_{\ell}$ return (Σ, Λ)

Application to 2k-PMAC_Plus

Mu security of 2k-PMAC_Plus

酒交通

$$\begin{split} \mathsf{Adv}_{2\mathsf{k}-\mathsf{PMAC_Plus}}^{\mathrm{prf}}(A) &\leq \frac{2q}{2^k} + \frac{q(3q+p)(6q+2p)}{2^{2k}} + \frac{6qp\ell^2}{2^{n+k}} + \frac{4qp}{2^{n+k}} + \frac{20q^2\ell^3}{2^{n+k}} \\ &+ \frac{200q^3\ell^2}{2^{2n}} + \frac{8q\ell}{2^n} + \frac{6q^3}{2^{2n}} \ , \end{split}$$

Attack on 2kf9

• 2kf9: BBB security $\frac{q^3}{2^{2n}}$ [DDN19]

 Attack: for any short message M with |M| < n, (M, 0ⁿ) is a valid forgery

[DDNP19] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul: Double-block Hash-then-Sum: A Paradigm for Constructing BBB Secure PRF. IACR Trans. Symmetric Cryptol. 2018(3) (FSE 2019): 36-92 (2018)

Attack on 2kf9 with Domain Separation

2kf9 with domain separation

- For any two messages $M_1 = x ||z \text{ and } M_2 = y ||z \bigoplus 0^{n-1}1$ $E_L(x) \oplus E_L(y) = 0^{n-1}1 \implies T_1 = T_2$
- Find (*x*, *y*) with birthday-bound complexity

Attack on other variant of 2kf9

variant of 2kf9, multiply by 2 before fix_1

Similar birthday-bound attack works

Attack on Other Variant of 2kf9

variant of 2kf9, multiply by 2 per block as in 2k-LightMAC_Plus

Similar birthday-bound attack works

Reason behind This Flaw

2kf9 with domain separation

• We can always find a relation between Σ and Λ

• if
$$\Sigma_i = \Sigma_j$$
, then $\Lambda_i = \Lambda_j$

 Such relation does not exit in 2k-SUM-ECBC, 2k-LightMAC_Plus, or 2k-PMAC_Plus

Conclusion

- BBB secure multi-user framework for DbHtS MACs
 - 2k-SUM-ECBC (✓)
 - 2k-PMAC_Plus (✓)
 - 2k-LightMAC_Plus (
 - 2kf9 (×), insecure
- Future works
 - fix 2kf9 to go beyond the birthday bound?
 - 3n/4-bit security for DbHtS MACs in the multi-user setting?

Thanks for your attention!

Q&A?: yaobins180@gmail.com