

Subtractive Sets over Cyclotomic Rings

Limits of Schnorr-like Arguments over Lattices

Martin R. Albrecht¹, **Russell W. F. Lai**²

¹Royal Holloway, University of London ²Friedrich-Alexander-Universität Erlangen-Nürnberg

Perspective

This work

Subtractive sets \leftrightarrow lattice-based Schnorr-like arguments

Perspective

This work

Subtractive sets ↔ lattice-based Schnorr-like arguments

Concurrent works on Lattice-based Schnorr-like arguments

- [BCS21] Jonathan Bootle, Alessandro Chiesa, Katerina Sotiraki: Sumcheck Arguments and their Applications, CRYPTO'21
- [ACK21] Thomas Attema, Ronald Cramer, Lisa Kohl: A Compressed Sigma-Protocol Theory for Lattices, CRYPTO'21

Every other lattice talk needs this slide!

Short Integer Solution (SIS) over ${\cal R}$

Fix q, β . Given (\mathbf{A}, \mathbf{y}) , find \mathbf{x} such that $\begin{cases} \mathbf{A}\mathbf{x} = \mathbf{y} \mod q \\ \|\mathbf{x}\| < \beta. \end{cases}$

- $h, k \in \mathbb{N}$: dimensions
- $q \in \mathbb{N}$: modulus
- $eta \in \mathbb{N}$: norm bound
- \mathcal{R} : ring (+, and \times but not always \div , e.g. \mathbb{Z})
- $\mathcal{R}_q := \mathcal{R}/q\mathcal{R}$
- $\mathbf{A} \in \mathcal{R}_q^{h imes k}$: matrix
- $\mathbf{x} \in \mathcal{R}^k$: vector
- $\mathbf{y} \in \mathcal{R}_q^h$: vector
- $||\cdot||$: infinity norm

Every other lattice talk needs this slide!

Short Integer Solution (SIS) over ${\cal R}$

Fix q, β . Given (\mathbf{A}, \mathbf{y}) , find \mathbf{x} such that

$$\left\{ egin{aligned} \mathsf{A}\mathsf{x} = \mathsf{y} \ \mathsf{mod} \ \|\mathsf{x}\| \leq eta. \end{aligned}
ight.$$

Motivating Problem

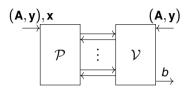
Proving knowledge of SIS witness x.

- $h, k \in \mathbb{N}$: dimensions
- $q \in \mathbb{N}$: modulus
- $eta \in \mathbb{N}$: norm bound
- \mathcal{R} : ring (+, and × but not always \div , e.g. \mathbb{Z})
- $\mathcal{R}_q := \mathcal{R}/q\mathcal{R}$
- $\mathbf{A} \in \mathcal{R}_q^{h \times k}$: matrix
- $\mathbf{x} \in \mathcal{R}^k$: vector
- $\mathbf{y} \in \mathcal{R}_q^h$: vector
- $\|\cdot\|$: infinity norm

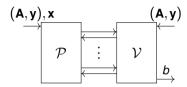
$$R_{s,\beta}\left((\mathbf{A},\mathbf{y}),\mathbf{x}
ight):=\left(\mathbf{A}\mathbf{x}=s\cdot\mathbf{y} mod q \wedge \|\mathbf{x}\| \leq \beta
ight)$$

where $s\in\mathcal{R}$ is called the "slack" ($s=1 \implies$ no slack)

$$R_{s,\beta}\left((\mathbf{A},\mathbf{y}),\mathbf{x}
ight):=\left(\mathbf{A}\mathbf{x}=s\cdot\mathbf{y} mod q \wedge \|\mathbf{x}\| \leq eta
ight)$$
 where $s\in\mathcal{R}$ is called the "slack" ($s=1 \implies$ no slack)

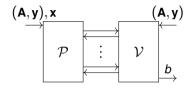


$$R_{s,\beta}\left((\mathbf{A},\mathbf{y}),\mathbf{x}
ight):=\left(\mathbf{A}\mathbf{x}=s\cdot\mathbf{y} mod q \wedge \|\mathbf{x}\| \leq eta
ight)$$
 where $s\in\mathcal{R}$ is called the "slack" ($s=1 \implies$ no slack)



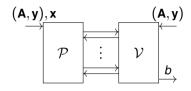
• Completeness for $R_{1,\beta}$: If $R_{1,\beta}\left((\mathbf{A},\mathbf{y}),\mathbf{x}\right)=1$ then $\mathcal V$ accepts (\mathbf{A},\mathbf{y}) , i.e. b=1.

$$R_{s,eta}\left((\mathbf{A},\mathbf{y}),\mathbf{x}
ight):=\left(\mathbf{A}\mathbf{x}=s\cdot\mathbf{y} mod q \wedge \|\mathbf{x}\| \leq eta
ight)$$
 where $s\in\mathcal{R}$ is called the "slack" ($s=1 \implies$ no slack)



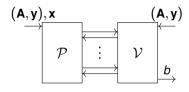
- Completeness for $R_{1,\beta}$: If $R_{1,\beta}\left((\mathbf{A},\mathbf{y}),\mathbf{x}\right)=1$ then \mathcal{V} accepts (\mathbf{A},\mathbf{y}) , i.e. b=1.
- κ -Knowledge Soundness for $R_{s,\beta'}$: There exists efficient *knowledge extactor* $\mathcal E$ such that if $\mathcal P$ convinces $\mathcal V$ to accept $(\mathbf A,\mathbf y)$ with probability $\rho>\kappa$, then $\mathcal E^{\mathcal P}$ extracts $\tilde{\mathbf x}$ such that $R_{s,\beta'}((\mathbf A,\mathbf y),\tilde{\mathbf x})=1$ with probability $\rho-\kappa$.

$$R_{s,eta}\left((\mathbf{A},\mathbf{y}),\mathbf{x}
ight):=\left(\mathbf{A}\mathbf{x}=s\cdot\mathbf{y} mod q \wedge \|\mathbf{x}\| \leq eta
ight)$$
 where $s\in\mathcal{R}$ is called the "slack" ($s=1 \implies$ no slack)



- Completeness for $R_{1,\beta}$: If $R_{1,\beta}\left((\mathbf{A},\mathbf{y}),\mathbf{x}\right)=1$ then \mathcal{V} accepts (\mathbf{A},\mathbf{y}) , i.e. b=1.
- κ -Knowledge Soundness for $R_{s,\beta'}$: There exists efficient *knowledge extactor* $\mathcal E$ such that if $\mathcal P$ convinces $\mathcal V$ to accept $(\mathbf A,\mathbf y)$ with probability $\rho>\kappa$, then $\mathcal E^{\mathcal P}$ extracts $\tilde{\mathbf x}$ such that $R_{s,\beta'}((\mathbf A,\mathbf y),\tilde{\mathbf x})=1$ with probability $\rho-\kappa$.
- Challenge: Design $\langle \mathcal{P}, \mathcal{V} \rangle$ to minimise
 - knowledge error κ
 - "slack" s

$$R_{s,eta}\left((\mathbf{A},\mathbf{y}),\mathbf{x}
ight):=\left(\mathbf{A}\mathbf{x}=s\cdot\mathbf{y} mod q \wedge \|\mathbf{x}\| \leq eta
ight)$$
 where $s\in\mathcal{R}$ is called the "slack" ($s=1 \implies$ no slack)



- Completeness for $R_{1,\beta}$: If $R_{1,\beta}\left((\mathbf{A},\mathbf{y}),\mathbf{x}\right)=1$ then \mathcal{V} accepts (\mathbf{A},\mathbf{y}) , i.e. b=1.
- κ -Knowledge Soundness for $R_{s,\beta'}$: There exists efficient *knowledge extactor* $\mathcal E$ such that if $\mathcal P$ convinces $\mathcal V$ to accept $(\mathbf A,\mathbf y)$ with probability $\rho>\kappa$, then $\mathcal E^{\mathcal P}$ extracts $\tilde{\mathbf x}$ such that $R_{s,\beta'}((\mathbf A,\mathbf y),\tilde{\mathbf x})=1$ with probability $\rho-\kappa$.
- Challenge: Design $\langle \mathcal{P}, \mathcal{V} \rangle$ to minimise
 - knowledge error κ
 - "slack" s
 - "stretch" $\frac{\beta'}{\beta}$

Landscape

Pre-2019

PCP-based:

// Probabilistically-checkable proofs

- PCP (e.g. for R1CS) + commitments
- $oxed{oxed}$ logarithmic-size proof, no slack (s=1), no stretch $oldsymbol{eta}'=oldsymbol{eta}$
- Super-polynomial modulus q
- Stern-like:

Schnorr-like:

// Probabilistically-checkable proofs

Landscape

Pre-2019

- · PCP-based:
 - i PCP (e.g. for R1CS) + commitments
 - lacksquare logarithmic-size proof, no slack (s= 1), no stretch eta'=eta
 - Super-polynomial modulus q
- Stern-like:
 - combinatorial (cut-and-choose)
 - $oxed{\pm}$ no slack (s= 1), no stretch $oldsymbol{eta}'=oldsymbol{eta}$
 - \Box linear-size proof, $\Omega(1)$ knowledge error (need $\Omega(\lambda)$ repetition)
- Schnorr-like:

// Probabilistically-checkable proofs

Landscape

Pre-2019

- · PCP-based:
 - i PCP (e.g. for R1CS) + commitments
 - lacktriangledown logarithmic-size proof, no slack (s=1), no stretch eta'=eta
 - Super-polynomial modulus q
- Stern-like:
 - i combinatorial (cut-and-choose)
 - \blacksquare no slack (s=1), no stretch $\beta'=\beta$
 - \blacksquare linear-size proof, $\Omega(1)$ knowledge error (need $\Omega(\lambda)$ repetition)
- Schnorr-like:
 - i algebraic
 - \pm 1/poly(λ) knowledge error ($O(\lambda/\log \lambda)$ repetition)
 - lacktriangledown linearity \Longrightarrow recursive composition ("Bulletproof folding") \Longrightarrow logarithmic-size proof
 - \blacksquare slack $s \neq 1$, stretch $\beta'/\beta > 1$ (amplified by recursive composition)

Landscape

Post-2019

- Stern+Schnorr:
 - i Schnorr but with extra non-linear constraints
 - lacktriangledown 1/poly(λ) knowledge error, no slack (s= 1), no stretch eta'=eta
 - ☐ non-linearity ⇒ not "Bulletproof" compatible

Landscape

Post-2019

- Stern+Schnorr:
 - i Schnorr but with extra non-linear constraints
 - \blacksquare 1/poly(λ) knowledge error, no slack (s=1), no stretch $\beta'=\beta$
 - □ non-linearity ⇒ not "Bulletproof" compatible

Question

Keep linearity and $1/poly(\lambda)$ knowledge error of Schnorr, but reduce slack and stretch?

Schnorr-like Protocol 1

Parameters: $\mathcal{C}\subseteq\mathcal{R}$: challenge set, $\gamma\in\mathbb{N}$: norm bound, $\kappa=\frac{1}{|\mathcal{C}|}$: knowledge error

Recall verification equation

$$\mathbf{A}\hat{\mathbf{x}} \stackrel{?}{=} \mathbf{v} + c \cdot \mathbf{y} \bmod q$$

· Recall verification equation

$$\mathbf{A}\hat{\mathbf{x}} \stackrel{?}{=} \mathbf{v} + c \cdot \mathbf{y} \bmod q$$

• Run $\mathcal P$ twice on c_0, c_1 to get $\mathbf v, \hat{\mathbf x}_0, \hat{\mathbf x}_1$ such that

$$\mathbf{A}(\hat{\mathbf{x}}_0 \quad \hat{\mathbf{x}}_1) = (\mathbf{v} \quad \mathbf{y}) \begin{pmatrix} 1 & 1 \\ c_0 & c_1 \end{pmatrix} \bmod q$$

· Recall verification equation

$$\mathbf{A}\hat{\mathbf{x}} \stackrel{?}{=} \mathbf{v} + c \cdot \mathbf{y} \bmod q$$

• Run \mathcal{P} twice on c_0, c_1 to get $\mathbf{v}, \hat{\mathbf{x}}_0, \hat{\mathbf{x}}_1$ such that

$$\mathbf{A}(\hat{\mathbf{x}}_0 \quad \hat{\mathbf{x}}_1) = (\mathbf{v} \quad \mathbf{y}) \begin{pmatrix} 1 & 1 \\ c_0 & c_1 \end{pmatrix} \bmod q$$

• **Try** to solve the following dual Vandermonde system for **z** over \mathcal{R} :

$$\begin{pmatrix} 1 & 1 \\ c_0 & c_1 \end{pmatrix} \mathbf{z} = s \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

· Recall verification equation

$$\mathbf{A}\hat{\mathbf{x}} \stackrel{?}{=} \mathbf{v} + c \cdot \mathbf{y} \bmod q$$

• Run \mathcal{P} twice on c_0, c_1 to get $\mathbf{v}, \hat{\mathbf{x}}_0, \hat{\mathbf{x}}_1$ such that

$$\mathbf{A}(\hat{\mathbf{x}}_0 \quad \hat{\mathbf{x}}_1) = (\mathbf{v} \quad \mathbf{y}) \begin{pmatrix} 1 & 1 \\ c_0 & c_1 \end{pmatrix} \bmod q$$

• **Try** to solve the following dual Vandermonde system for **z** over \mathcal{R} :

$$\begin{pmatrix} 1 & 1 \\ c_0 & c_1 \end{pmatrix} \mathbf{z} = s \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• Output $\tilde{\mathbf{x}} := (\hat{\mathbf{x}}_0 \ \hat{\mathbf{x}}_1)\mathbf{z}$ such that

$$\mathbf{A}\tilde{\mathbf{x}} = \mathbf{A}(\hat{\mathbf{x}}_0 \quad \hat{\mathbf{x}}_1)\mathbf{z} = (\mathbf{v} \quad \mathbf{y})\begin{pmatrix} 1 & 1 \\ c_0 & c_1 \end{pmatrix}\mathbf{z} = s \cdot \mathbf{y} \mod q$$

Schnorr-like Protocol 2: Lattice Bulletproof [Bootle et al. @ Crypto'20]

Parameters: $\mathcal{C}\subseteq\mathcal{R}$: challenge set, $\gamma\in\mathbb{N}$: norm bound, $\kappa=\frac{2}{|\mathcal{C}|}$: knowledge error

Structural Assumptions: $\mathbf{A} = (\mathbf{A}_0 \quad \mathbf{A}_1), \quad \mathbf{x} = \begin{pmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \end{pmatrix}, \quad \mathbf{y} = \mathbf{A}\mathbf{x} = \mathbf{A}_0\mathbf{x}_0 + \mathbf{A}_1\mathbf{x}_1 \mod q$

$$\begin{split} & \underbrace{\mathcal{P}\left((\mathbf{A},\mathbf{y}),\mathbf{x}\right)} \\ & \mathbf{y}_{01} := \mathbf{A}_{0}\mathbf{x}_{1}, \ \mathbf{y}_{10} := \mathbf{A}_{1}\mathbf{x}_{0} \quad & \underbrace{\begin{array}{c} \mathbf{y}_{01},\mathbf{y}_{10} \\ \\ \end{array}} \\ & \underbrace{\begin{array}{c} c \\ \\ \end{array}} \quad c \leftarrow \$\mathcal{C} \\ \\ & \widehat{\mathbf{x}} := \mathbf{x}_{0} + c \cdot \mathbf{x}_{1} \\ & \underbrace{\begin{array}{c} \hat{\mathbf{x}} \\ \\ \|\widehat{\mathbf{x}}\| \le \gamma \\ \end{matrix}} \quad \text{return} \ \begin{cases} (c \cdot \mathbf{A}_{0} + \mathbf{A}_{1}) \, \widehat{\mathbf{x}} = \mathbf{y}_{10} + c \cdot \mathbf{y} + c^{2} \cdot \mathbf{y}_{01} \ \text{mod} \ q \end{cases} \end{split}$$

• Recall verification equation $(c \cdot \mathbf{A}_0 + \mathbf{A}_1)\hat{\mathbf{x}} \stackrel{?}{=} \mathbf{y}_{10} + c \cdot \mathbf{y} + c^2 \cdot \mathbf{y}_{01} \mod q$

- Recall verification equation $(c \cdot \mathbf{A}_0 + \mathbf{A}_1) \hat{\mathbf{x}} \stackrel{?}{=} \mathbf{y}_{10} + c \cdot \mathbf{y} + c^2 \cdot \mathbf{y}_{01} \mod q$
- Run $\mathcal P$ 3 times on c_0,c_1,c_2 to get $\mathbf y_{01},\mathbf y_{10},\hat{\mathbf x}_0,\hat{\mathbf x}_1,\hat{\mathbf x}_2$ such that

$$\mathbf{A} \begin{pmatrix} c_0 \hat{\mathbf{x}}_0 & c_1 \hat{\mathbf{x}}_1 & c_2 \hat{\mathbf{x}}_2 \\ \hat{\mathbf{x}}_0 & \hat{\mathbf{x}}_1 & \hat{\mathbf{x}}_2 \end{pmatrix} = (\mathbf{y}_{10} \ \mathbf{y} \ \mathbf{y}_{01}) \begin{pmatrix} 1 & 1 & 1 \\ c_0 & c_1 & c_2 \\ c_0^2 & c_1^2 & c_2^2 \end{pmatrix} \mod q$$

- Recall verification equation $(c \cdot \mathbf{A}_0 + \mathbf{A}_1) \hat{\mathbf{x}} \stackrel{?}{=} \mathbf{y}_{10} + c \cdot \mathbf{y} + c^2 \cdot \mathbf{y}_{01} \mod q$
- Run $\mathcal P$ 3 times on c_0, c_1, c_2 to get $\mathbf y_{01}, \mathbf y_{10}, \hat{\mathbf x}_0, \hat{\mathbf x}_1, \hat{\mathbf x}_2$ such that

$$\mathbf{A} \begin{pmatrix} c_0 \hat{\mathbf{x}}_0 & c_1 \hat{\mathbf{x}}_1 & c_2 \hat{\mathbf{x}}_2 \\ \hat{\mathbf{x}}_0 & \hat{\mathbf{x}}_1 & \hat{\mathbf{x}}_2 \end{pmatrix} = (\mathbf{y}_{10} \ \mathbf{y} \ \mathbf{y}_{01}) \begin{pmatrix} 1 & 1 & 1 \\ c_0 & c_1 & c_2 \\ c_0^2 & c_1^2 & c_2^2 \end{pmatrix} \mod q$$

• **Try** to solve the following dual Vandermonde system for **z** over \mathcal{R} :

$$\begin{pmatrix} 1 & 1 & 1 \\ c_0 & c_1 & c_2 \\ c_0^2 & c_1^2 & c_2^2 \end{pmatrix} \mathbf{z} = s \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

- Recall verification equation $(c \cdot \mathbf{A}_0 + \mathbf{A}_1) \hat{\mathbf{x}} \stackrel{?}{=} \mathbf{y}_{10} + c \cdot \mathbf{y} + c^2 \cdot \mathbf{y}_{01} \mod q$
- Run $\mathcal P$ 3 times on c_0, c_1, c_2 to get $\mathbf y_{01}, \mathbf y_{10}, \hat{\mathbf x}_0, \hat{\mathbf x}_1, \hat{\mathbf x}_2$ such that

$$\mathbf{A} \begin{pmatrix} c_0 \hat{\mathbf{x}}_0 & c_1 \hat{\mathbf{x}}_1 & c_2 \hat{\mathbf{x}}_2 \\ \hat{\mathbf{x}}_0 & \hat{\mathbf{x}}_1 & \hat{\mathbf{x}}_2 \end{pmatrix} = (\mathbf{y}_{10} \ \mathbf{y} \ \mathbf{y}_{01}) \begin{pmatrix} 1 & 1 & 1 \\ c_0 & c_1 & c_2 \\ c_0^2 & c_1^2 & c_2^2 \end{pmatrix} \mod q$$

• **Try** to solve the following dual Vandermonde system for **z** over \mathcal{R} :

$$\begin{pmatrix} 1 & 1 & 1 \\ c_0 & c_1 & c_2 \\ c_0^2 & c_1^2 & c_2^2 \end{pmatrix} \mathbf{z} = s \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

• Output $\tilde{\mathbf{x}} := \begin{pmatrix} c_0 \hat{\mathbf{x}}_0 & c_1 \hat{\mathbf{x}}_1 & c_2 \hat{\mathbf{x}}_2 \\ \hat{\mathbf{x}}_0 & \hat{\mathbf{x}}_1 & \hat{\mathbf{x}}_2 \end{pmatrix} \mathbf{z}$ such that

$$\mathbf{A}\tilde{\mathbf{x}} = \mathbf{A} \begin{pmatrix} c_0 \hat{\mathbf{x}}_0 & c_1 \hat{\mathbf{x}}_1 & c_2 \hat{\mathbf{x}}_2 \\ \hat{\mathbf{x}}_0 & \hat{\mathbf{x}}_1 & \hat{\mathbf{x}}_2 \end{pmatrix} \mathbf{z} = (\mathbf{y}_{10} \ \mathbf{y} \ \mathbf{y}_{01}) \begin{pmatrix} 1 & 1 & 1 \\ c_0 & c_1 & c_2 \\ c_0^2 & c_1^2 & c_2^2 \end{pmatrix} \mathbf{z} = s \cdot \mathbf{y} \bmod q$$

For what challenges c_0, \dots, c_{t-1} and slack s is the following dual Vandermonde system solvable over \mathcal{R} ?

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ c_0 & c_1 & \dots & c_{t-1} \\ \vdots & \vdots & \ddots & \vdots \\ c_0^{t-1} & c_1^{t-1} & \dots & c_{t-1}^{t-1} \end{pmatrix} \mathbf{z} = s \cdot \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_{t-1} \end{pmatrix}$$

$$(*)$$

For what challenges c_0, \dots, c_{t-1} and slack s is the following dual Vandermonde system solvable over \mathcal{R} ?

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ c_0 & c_1 & \dots & c_{t-1} \\ \vdots & \vdots & \ddots & \vdots \\ c_0^{t-1} & c_1^{t-1} & \dots & c_{t-1}^{t-1} \end{pmatrix} \mathbf{z} = s \cdot \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_{t-1} \end{pmatrix}$$
(*)

Observation. If $\prod_{i \in \mathbb{Z}_t \setminus \{i\}} (c_i - c_j) \mid s$ for all $i \in \mathbb{Z}_t$, then Equation (*) is solvable over \mathcal{R} .

For what challenges c_0, \dots, c_{t-1} and slack s is the following dual Vandermonde system solvable over \mathcal{R} ?

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ c_0 & c_1 & \dots & c_{t-1} \\ \vdots & \vdots & \ddots & \vdots \\ c_0^{t-1} & c_1^{t-1} & \dots & c_{t-1}^{t-1} \end{pmatrix} \mathbf{z} = s \cdot \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_{t-1} \end{pmatrix}$$

$$(*)$$

Observation. If $\prod_{j\in\mathbb{Z}_t\setminus\{i\}}(c_i-c_j)\mid s$ for all $i\in\mathbb{Z}_t$, then Equation (*) is solvable over \mathcal{R} .

Definition. A set $C \subseteq_n \mathcal{R}$ is (s,t)-subtractive if for any t-subset $T = \{c_0,\ldots,c_{t-1}\} \subseteq_t \mathcal{C}$ it holds that $\prod_{j \in \mathbb{Z}_t \setminus \{i\}} (c_i - c_j) \mid s$ for all $i \in \mathbb{Z}_t$. If s = 1 we say C is subtractive.

Definition. A set $C \subseteq_n \mathcal{R}$ is (s,t)-subtractive if for any t-subset $T = \{c_0,\ldots,c_{t-1}\} \subseteq_t \mathcal{C}$ it holds that $\prod_{j \in \mathbb{Z}_t \setminus \{i\}} (c_i - c_j) \mid s$ for all $i \in \mathbb{Z}_t$. If s = 1 we say \mathcal{C} is subtractive.

Definition. A set $C \subseteq_n \mathcal{R}$ is (s,t)-subtractive if for any t-subset $T = \{c_0,\ldots,c_{t-1}\} \subseteq_t \mathcal{C}$ it holds that $\prod_{j \in \mathbb{Z}_t \setminus \{i\}} (c_i - c_j) \mid s$ for all $i \in \mathbb{Z}_t$. If s = 1 we say \mathcal{C} is subtractive.

A Note about Secret Sharing over \mathcal{R} . If $\mathcal{C} \subseteq_n \mathcal{R}$ is (s,t)-subtractive, then for any $T = \{c_0, \ldots, c_{t-1}\} \subseteq_t \mathcal{C}$, the following Vandermonde system is solvable over \mathcal{R} :

$$egin{pmatrix} 1 & c_0 & \dots & c_0^{t-1} \ 1 & c_1 & \dots & c_1^{t-1} \ dots & dots & \ddots & dots \ 1 & c_{t-1}^{t-1} & \dots & c_{t-1}^{t-1} \end{pmatrix} \mathbf{z} = s \cdot egin{pmatrix} w_0 \ w_1 \ dots \ w_{t-1} \end{pmatrix}$$

 \implies *t*-out-of-*n* secret sharing over \mathcal{R} .

Definition. A set $C \subseteq_n \mathcal{R}$ is (s,t)-subtractive if for any t-subset $T = \{c_0,\ldots,c_{t-1}\} \subseteq_t \mathcal{C}$ it holds that $\prod_{j \in \mathbb{Z}_t \setminus \{i\}} (c_i - c_j) \mid s$ for all $i \in \mathbb{Z}_t$. If s = 1 we say \mathcal{C} is subtractive.

Sample Implications.

- (s,3)-subtractive set of size $n \Longrightarrow$ Lattice Bulletproof with slack s and knowledge error 2/n
- (s,t)-subtractive set of size $n \Longrightarrow \text{Lattice-based } t\text{-out-of-}n \text{ threshold primitives}$

Definition. A set $C \subseteq_n \mathcal{R}$ is (s,t)-subtractive if for any t-subset $T = \{c_0,\ldots,c_{t-1}\} \subseteq_t \mathcal{C}$ it holds that $\prod_{j \in \mathbb{Z}_t \setminus \{i\}} (c_i - c_j) \mid s$ for all $i \in \mathbb{Z}_t$. If s = 1 we say \mathcal{C} is subtractive.

Sample Implications.

- (s,3)-subtractive set of size $n \Longrightarrow$ Lattice Bulletproof with slack s and knowledge error 2/n
- ullet (s,t)-subtractive set of size $n\Longrightarrow$ Lattice-based t-out-of-n threshold primitives

Challenge. Find large (poly-size) (s,t)-subtractive sets with small slack s over interesting \mathcal{R} , e.g. cyclotomic rings $\mathcal{R} = \mathbb{Z}[\zeta_m]$ where ζ_m is a primitive m-th root of unity, $m = \operatorname{poly}(\lambda)$.

Our Results over $\mathcal{R} = \mathbb{Z}[\zeta_m]$

- Power-of-2 cyclotomic rings $m = 2^{\ell}$:
 - Construct family of (s, t)-subtractive sets of size n for a wide range of s, t, n, e.g. (2,3)-subtractive set of size n=m/2+1 (\Longrightarrow Bulletproof with slack 2)
 - lacksquare Impossibility of family of (2, t)-subtractive sets $\{\mathcal{C}_m\}_m$ of size $|\mathcal{C}_m| > m+1$

Our Results over $\mathcal{R} = \mathbb{Z}[\zeta_m]$

- Power-of-2 cyclotomic rings $m = 2^{\ell}$:
 - Construct family of (s, t)-subtractive sets of size n for a wide range of s, t, n, e.g. (2,3)-subtractive set of size n=m/2+1 (\Longrightarrow Bulletproof with slack 2)
 - $oldsymbol{\exists}$ Impossibility of family of (2, t)-subtractive sets $\{\mathcal{C}_m\}_m$ of size $|\mathcal{C}_m|>m+1$
- Prime-power cyclotomic rings $m = p^{\ell}$:
 - lacktriangle Construct family of subtractive sets of size ho (\Longrightarrow Bulletproof with no slack)
 - lacksquare Impossibility of subtractive set $\mathcal C$ of size $|\mathcal C|>p$

Our Results over $\mathcal{R} = \mathbb{Z}[\zeta_m]$

- Power-of-2 cyclotomic rings $m = 2^{\ell}$:
 - Construct family of (s, t)-subtractive sets of size n for a wide range of s, t, n, e.g. (2,3)-subtractive set of size n = m/2 + 1 (\Longrightarrow Bulletproof with slack 2)
 - Impossibility of family of (2,t)-subtractive sets $\{\mathcal{C}_m\}_m$ of size $|\mathcal{C}_m|>m+1$
- Prime-power cyclotomic rings $m = p^{\ell}$:
 - lacktriangle Construct family of subtractive sets of size p (\Longrightarrow Bulletproof with no slack)
 - Impossibility of subtractive set $\mathcal C$ of size $|\mathcal C|>p$
- \bigcirc Proof system for SIS over \mathcal{R} :

	[Bootle et al. @ Crypto'20]			[This work]		
\blacksquare Better lattice Bulletproof ($m = 2^{\ell}$):	slack	k^3	\rightarrow	slack		
	stretch	$k^{3\log m + 4.5}$	_	stretch	$k^{2\log m + 0.58}$	

Let $\mathcal R$ have an ideal $\mathfrak q$ with q cosets. For 3-move 1-challenge public-coin proofs with "algebraic" knowledge extractor, knowledge error $\kappa < q^{-1}$ is impossible unless $s \in \mathfrak q$.

Our Results over $\mathcal{R} = \mathbb{Z}[\zeta_m]$

- Power-of-2 cyclotomic rings $m = 2^{\ell}$:
 - \blacksquare Construct family of (s,t)-subtractive sets of size n for a wide range of s,t,n, e.g. (2,3)-subtractive set of size n=m/2+1 (\Longrightarrow Bulletproof with slack 2)
 - Impossibility of family of (2, t)-subtractive sets $\{\mathcal{C}_m\}_m$ of size $|\mathcal{C}_m|>m+1$
- Prime-power cyclotomic rings $m = p^{\ell}$:
 - lacktriangle Construct family of subtractive sets of size p (\Longrightarrow Bulletproof with no slack)
 - Impossibility of subtractive set ${\mathcal C}$ of size $|{\mathcal C}| > p$
- \bigcirc Proof system for SIS over \mathcal{R} :

	[Bootle et al. @ Crypto 20]			[This work]	
\blacksquare Better lattice Bulletproof ($m = 2^{\ell}$):	slack	k^3	\rightarrow	slack	
	stretch	$k^{3\log m + 4.5}$		stretch	$k^{2\log m + 0.58}$

- E Let \mathcal{R} have an ideal q with q cosets. For 3-move 1-challenge public-coin proofs with "algebraic" knowledge extractor, knowledge error $\kappa < q^{-1}$ is impossible unless s ∈ q.
- \bigcirc Application to threshold secret sharing over \mathcal{R} , e.g. distributed PRF

Our results critically rely on the presence and absence of \textit{ideals} in $\mathcal{R}.$

Our results critically rely on the presence and absence of ideals in $\mathcal{R}.$

• For $c \in \mathcal{R}$, ideal $\langle c \rangle := c\mathcal{R} = \{c \cdot r : r \in \mathcal{R}\} = \{\text{all } \mathcal{R} \text{ elements divisible by } c\}.$

Our results critically rely on the presence and absence of ideals in $\mathcal{R}.$

• For $c \in \mathcal{R}$, ideal $\langle c \rangle := c\mathcal{R} = \{c \cdot r : r \in \mathcal{R}\} = \{\text{all } \mathcal{R} \text{ elements divisible by } c\}.$

Our results critically rely on the presence and absence of *ideals* in \mathcal{R} .

 $\bullet \ \ \text{For} \ c \in \mathcal{R}, \text{ideal} \ \langle c \rangle := c \mathcal{R} = \{c \cdot r : r \in \mathcal{R}\} = \{\text{all} \ \mathcal{R} \ \text{elements divisible by} \ c\}.$

Definition. (s,t)-subtractive set \mathcal{C} : For any $T\subseteq_t \mathcal{C}$, any $c\in T$, we have $s\in \left\langle \prod_{c'\in T\setminus\{c\}}(c-c')\right\rangle$.

Our results critically rely on the presence and absence of *ideals* in \mathcal{R} .

 $\bullet \ \ \text{For} \ c \in \mathcal{R}, \text{ideal} \ \langle c \rangle := c \mathcal{R} = \{c \cdot r : r \in \mathcal{R}\} = \{\text{all} \ \mathcal{R} \ \text{elements divisible by} \ c\}.$

Definition. (s,t)-subtractive set \mathcal{C} : For any $T\subseteq_t \mathcal{C}$, any $c\in T$, we have $s\in \left\langle \prod_{c'\in T\setminus\{c\}}(c-c')\right\rangle$.

Our results critically rely on the presence and absence of *ideals* in \mathcal{R} .

 $\bullet \ \ \text{For} \ c \in \mathcal{R}, \text{ideal} \ \langle c \rangle := c \mathcal{R} = \{c \cdot r : r \in \mathcal{R}\} = \{\text{all} \ \mathcal{R} \ \text{elements divisible by} \ c\}.$

Definition. (s,t)-subtractive set \mathcal{C} : For any $T\subseteq_t \mathcal{C}$, any $c\in T$, we have $s\in \left\langle \prod_{c'\in T\setminus\{c\}}(c-c')\right\rangle$.

How hard is it to construct large (s,t)-subtractive sets for small s?

• We want lots of elements to divide the small s.

Our results critically rely on the presence and absence of *ideals* in \mathcal{R} .

 $\bullet \ \ \text{For} \ c \in \mathcal{R}, \text{ideal} \ \langle c \rangle := c \mathcal{R} = \{c \cdot r : r \in \mathcal{R}\} = \{\text{all} \ \mathcal{R} \ \text{elements divisible by} \ c\}.$

Definition. (s,t)-subtractive set \mathcal{C} : For any $T\subseteq_t \mathcal{C}$, any $c\in T$, we have $s\in \left\langle \prod_{c'\in T\setminus\{c\}}(c-c')\right\rangle$.

- We want lots of elements to divide the small s.
- If $\mathcal{R}=\mathbb{Z}$, it is difficult:

Our results critically rely on the presence and absence of *ideals* in \mathcal{R} .

• For $c \in \mathcal{R}$, ideal $\langle c \rangle := c\mathcal{R} = \{c \cdot r : r \in \mathcal{R}\} = \{\text{all } \mathcal{R} \text{ elements divisible by } c\}.$

Definition. (s,t)-subtractive set \mathcal{C} : For any $T\subseteq_t \mathcal{C}$, any $c\in \mathcal{T}$, we have $s\in \left\langle \prod_{c'\in \mathcal{T}\setminus\{c\}}(c-c')\right\rangle$.

- We want lots of elements to divide the small s.
- If $\mathcal{R} = \mathbb{Z}$, it is difficult:
 - s = 1: The only invertible elements in \mathbb{Z} are -1, 1.

Our results critically rely on the presence and absence of *ideals* in \mathcal{R} .

• For $c \in \mathcal{R}$, ideal $\langle c \rangle := c\mathcal{R} = \{c \cdot r : r \in \mathcal{R}\} = \{\text{all } \mathcal{R} \text{ elements divisible by } c\}.$

Definition. (s,t)-subtractive set \mathcal{C} : For any $T\subseteq_t \mathcal{C}$, any $c\in T$, we have $s\in \left\langle \prod_{c'\in T\setminus\{c\}}(c-c')\right\rangle$.

- We want lots of elements to divide the small s.
- If $\mathcal{R} = \mathbb{Z}$, it is difficult:
 - s = 1: The only invertible elements in \mathbb{Z} are -1, 1.
 - s = 2: The only factors of 2 are -2, -1, 1, 2.

Our results critically rely on the presence and absence of *ideals* in \mathcal{R} .

• For $c \in \mathcal{R}$, ideal $\langle c \rangle := c\mathcal{R} = \{c \cdot r : r \in \mathcal{R}\} = \{\text{all } \mathcal{R} \text{ elements divisible by } c\}.$

Definition. (s,t)-subtractive set \mathcal{C} : For any $T\subseteq_t \mathcal{C}$, any $c\in T$, we have $s\in \left\langle \prod_{c'\in T\setminus\{c\}}(c-c')\right\rangle$.

- We want lots of elements to divide the small s.
- If $\mathcal{R} = \mathbb{Z}$, it is difficult:
 - s = 1: The only invertible elements in \mathbb{Z} are -1, 1.
 - s = 2: The only factors of 2 are -2, -1, 1, 2.
- $\mathbb{Z}[\zeta_{2^{\ell}}]$: $1 \zeta_{2^{\ell}}^{k}$ divides 2 whenever $2^{\ell} \nmid k$.

Our results critically rely on the presence and absence of *ideals* in \mathcal{R} .

 $\bullet \ \ \text{For} \ c \in \mathcal{R} \text{, ideal } \langle c \rangle := c \mathcal{R} = \{c \cdot r : r \in \mathcal{R}\} = \{\text{all } \mathcal{R} \text{ elements divisible by } c\}.$

Definition. (s,t)-subtractive set \mathcal{C} : For any $T\subseteq_t \mathcal{C}$, any $c\in \mathcal{T}$, we have $s\in \left\langle \prod_{c'\in \mathcal{T}\setminus\{c\}}(c-c')\right\rangle$.

- We want lots of elements to divide the small s.
- If $\mathcal{R} = \mathbb{Z}$, it is difficult:
 - s = 1: The only invertible elements in \mathbb{Z} are -1, 1.
 - s = 2: The only factors of 2 are -2, -1, 1, 2.
- $\mathbb{Z}[\zeta_{2^\ell}]$: 1 $-\zeta_{2^\ell}^k$ divides 2 whenever $2^\ell \nmid k$.
- $\mathbb{Z}[\zeta_{p^\ell}]$: $\frac{1-\zeta_{p^\ell}^k}{1-\zeta_{p^\ell}}$ is invertible whenever $\gcd(p,k)=1$.

Theorem. The set C is subtractive and |C| = p.

$$\mathcal{C} = \{\mu_0, \mu_1, \ldots, \mu_{p-1}\}$$

$$\mu_k = \frac{1 - \zeta^k}{1 - \zeta}$$

Theorem. The set \mathcal{C} is subtractive and $|\mathcal{C}| = p$.

$$\mathcal{C} = \{\mu_0, \mu_1, \ldots, \mu_{p-1}\}$$

$$\mu_k = \frac{1 - \zeta^k}{1 - \zeta}$$

•
$$\mu_k = \frac{1-\zeta^k}{1-\zeta}$$
 is invertible over $\mathcal R$ whenever $\gcd(p,k)=1$.

Theorem. The set \mathcal{C} is subtractive and $|\mathcal{C}| = p$.

$$\mathcal{C} = \{\mu_0, \mu_1, \ldots, \mu_{p-1}\}$$

$$\mu_k = \frac{1 - \zeta^k}{1 - \zeta}$$

Proof.

- $\mu_k = \frac{1-\zeta^k}{1-\zeta}$ is invertible over $\mathcal R$ whenever $\gcd(p,k)=1$.
- For i < j < p we have

$$\mu_{j} - \mu_{i} = \frac{1 - \zeta^{j}}{1 - \zeta} - \frac{1 - \zeta^{i}}{1 - \zeta} = \frac{\zeta^{i} - \zeta^{j}}{1 - \zeta} = \zeta^{i} \cdot \frac{1 - \zeta^{j-i}}{1 - \zeta} = \zeta^{i} \cdot \mu_{j-i}$$

which is invertible over \mathcal{R} .

Theorem. There is no subtractive set C of size |C| > p.

Theorem. There is no subtractive set C of size |C| > p.

Proof.

• The ideal $\mathcal{I}=\langle \mathbf{1}-\zeta \rangle$ has p cosets and $\mathbf{1} \notin \mathcal{I}.$

Theorem. There is no subtractive set C of size |C| > p.

- The ideal $\mathcal{I}=\langle \mathbf{1}-\zeta \rangle$ has p cosets and $\mathbf{1} \notin \mathcal{I}.$
- Let C be a subtractive set of size |C| > p.

Theorem. There is no subtractive set C of size |C| > p.

- The ideal $\mathcal{I} = \langle 1 \zeta \rangle$ has p cosets and $1 \notin \mathcal{I}$.
- Let C be a subtractive set of size |C| > p.
- Pigeonhole principle \implies There exist $c_0, c_1 \in \mathcal{C}$ such that $c_0 c_1 \in \mathcal{I}$.

Theorem. There is no subtractive set C of size |C| > p.

- The ideal $\mathcal{I} = \langle 1 \zeta \rangle$ has p cosets and $1 \notin \mathcal{I}$.
- Let C be a subtractive set of size |C| > p.
- Pigeonhole principle \implies There exist $c_0, c_1 \in \mathcal{C}$ such that $c_0 c_1 \in \mathcal{I}$.
- $\mathcal C$ is subtractive $\implies c_0-c_1$ is invertible $\implies 1 \in \mathcal I$, a contradiction.

Theorem. For
$$0 \le i \le \ell$$
, $s \in \langle 1 - \zeta \rangle^{\lceil \log t \rceil 2^{i-1}}$, the set \mathcal{C} is (s,t) -subtractive and $|\mathcal{C}| = 2^i + 1$.
$$\mathcal{C} = \left\{0, 1, \zeta, \zeta^2, \dots, \zeta^{2^i-1}\right\}$$

Theorem. The set
$$\mathcal C$$
 is (2,3)-subtractive and $|\mathcal C|=\phi(m)+1=m/2+1$.
$$\mathcal C=\left\{0,1,\zeta,\zeta^2,\dots,\zeta^{\phi(m)-1}\right\}$$

Theorem. The set $\mathcal C$ is (2,3)-subtractive and $|\mathcal C|=\phi(m)+1=m/2+1$. $\mathcal C=\left\{0,1,\zeta,\zeta^2,\dots,\zeta^{\phi(m)-1}\right\}$

Proof.

1. Ignore the 0. It's for free.

Theorem. The set $\mathcal C$ is (2,3)-subtractive and $|\mathcal C|=\varphi(m)+1=m/2+1$. $\mathcal C=\left\{0,1,\zeta,\zeta^2,\dots,\zeta^{\varphi(m)-1}\right\}$

- 1. Ignore the 0. It's for free.
- 2. WLOG, let $T = \{\zeta^a, \zeta^b, \zeta^c\} \subseteq \mathcal{C}$ with $0 \le a < b < c < \varphi(m)$.

Theorem. The set $\mathcal C$ is (2,3)-subtractive and $|\mathcal C|=\phi(m)+1=m/2+1$. $\mathcal C=\left\{0,1,\zeta,\zeta^2,\dots,\zeta^{\phi(m)-1}\right\}$

- 1. Ignore the 0. It's for free.
- 2. WLOG, let $T = \{\zeta^a, \zeta^b, \zeta^c\} \subseteq \mathcal{C}$ with $0 \le a < b < c < \varphi(m)$.
- 3. We want to show that $2 \in \langle (\zeta^a \zeta^b)(\zeta^a \zeta^c) \rangle := \mathcal{I}$.

Theorem. The set $\mathcal C$ is (2,3)-subtractive and $|\mathcal C|=\phi(m)+1=m/2+1$. $\mathcal C=\left\{0,1,\zeta,\zeta^2,\dots,\zeta^{\phi(m)-1}\right\}$

- 1. Ignore the 0. It's for free.
- 2. WLOG, let $T = \{\zeta^a, \zeta^b, \zeta^c\} \subseteq \mathcal{C}$ with $0 \le a < b < c < \varphi(m)$.
- 3. We want to show that $2 \in \langle (\zeta^a \zeta^b)(\zeta^a \zeta^c) \rangle := \mathcal{I}$.
- 4. ζ^a is invertible $\Longrightarrow \mathcal{I} = \langle (1 \zeta^{b-a})(1 \zeta^{c-a}) \rangle$.

Theorem. The set $\mathcal C$ is (2,3)-subtractive and $|\mathcal C|=\phi(m)+1=m/2+1$. $\mathcal C=\left\{0,1,\zeta,\zeta^2,\dots,\zeta^{\phi(m)-1}\right\}$

- 1. Ignore the 0. It's for free.
- 2. WLOG, let $T = \{\zeta^a, \zeta^b, \zeta^c\} \subseteq \mathcal{C}$ with $0 \le a < b < c < \varphi(m)$.
- 3. We want to show that $2 \in \langle (\zeta^a \zeta^b)(\zeta^a \zeta^c) \rangle := \mathcal{I}$.
- 4. ζ^a is invertible $\Longrightarrow \mathcal{I} = \langle (1 \zeta^{b-a})(1 \zeta^{c-a}) \rangle$.
- 5. Routine calculation $\implies \mathcal{I} = \langle 1 \zeta \rangle^{\text{Ev}(b-a) + \text{Ev}(c-a)}$.

Theorem. The set $\mathcal C$ is (2,3)-subtractive and $|\mathcal C|=\varphi(m)+1=m/2+1$. $\mathcal C=\left\{0,1,\zeta,\zeta^2,\dots,\zeta^{\phi(m)-1}\right\}$

- 1. Ignore the 0. It's for free.
- 2. WLOG, let $T = \{\zeta^a, \zeta^b, \zeta^c\} \subseteq \mathcal{C}$ with $0 \le a < b < c < \varphi(m)$.
- 3. We want to show that $2 \in \langle (\zeta^a \zeta^b)(\zeta^a \zeta^c) \rangle := \mathcal{I}$.
- 4. ζ^a is invertible $\Longrightarrow \mathcal{I} = \langle (1 \zeta^{b-a})(1 \zeta^{c-a}) \rangle$.
- 5. Routine calculation $\Longrightarrow \mathcal{I} = \langle 1 \zeta \rangle^{\operatorname{Ev}(b-a) + \operatorname{Ev}(c-a)}$.
- 6. $\operatorname{Ev}(b-a) + \operatorname{Ev}(c-a) \leq \varphi(m) \implies 2 \in \langle 1-\zeta \rangle^{\varphi(m)} \subseteq \mathcal{I}.$

Theorem. There is no family of (2, t)-subtractive sets $\{C_m\}_m$ of size $|C_m| > m + 1$.

Theorem. There is no family of (2, t)-subtractive sets $\{C_m\}_m$ of size $|C_m| > m + 1$.

Proof.

• It suffices to find m such that $|C_m| \leq m+1$.

Theorem. There is no family of (2, t)-subtractive sets $\{C_m\}_m$ of size $|C_m| > m + 1$.

- It suffices to find m such that $|C_m| \leq m+1$.
- Let $m = 2^{\ell} \ge 4$, m+1 prime (Fermat prime), e.g. m+1 = 5, 17, 257, 65537.

Theorem. There is no family of (2,t)-subtractive sets $\{C_m\}_m$ of size $|C_m|>m+1$.

- It suffices to find m such that $|C_m| \leq m+1$.
- Let $m = 2^{\ell} \ge 4$, m+1 prime (Fermat prime), e.g. m+1 = 5, 17, 257, 65537.
- Any factor \mathcal{I} of $\langle m+1 \rangle$ has m+1 cosets and $2 \notin \mathcal{I}$.

Theorem. There is no family of (2, t)-subtractive sets $\{C_m\}_m$ of size $|C_m| > m + 1$.

- It suffices to find m such that $|C_m| \leq m+1$.
- Let $m = 2^{\ell} \ge 4$, m+1 prime (Fermat prime), e.g. m+1 = 5, 17, 257, 65537.
- Any factor $\mathcal I$ of $\langle m+1 \rangle$ has m+1 cosets and $2 \notin \mathcal I$.
- Let C be (2, t)-subtractive and |C| > m + 1.

Theorem. There is no family of (2, t)-subtractive sets $\{C_m\}_m$ of size $|C_m| > m + 1$.

- It suffices to find m such that $|C_m| \leq m+1$.
- Let $m = 2^{\ell} \ge 4$, m+1 prime (Fermat prime), e.g. m+1 = 5, 17, 257, 65537.
- Any factor \mathcal{I} of $\langle m+1 \rangle$ has m+1 cosets and $2 \notin \mathcal{I}$.
- Let C be (2, t)-subtractive and |C| > m + 1.
- Pigeonhole principle \implies There exist $c_0, c_1 \in \mathcal{C}$ such that $c_0 c_1 \in \mathcal{I}$.

Theorem. There is no family of (2, t)-subtractive sets $\{C_m\}_m$ of size $|C_m| > m + 1$.

- It suffices to find m such that $|C_m| \leq m+1$.
- Let $m = 2^{\ell} \ge 4$, m+1 prime (Fermat prime), e.g. m+1 = 5, 17, 257, 65537.
- Any factor \mathcal{I} of $\langle m+1 \rangle$ has m+1 cosets and $2 \notin \mathcal{I}$.
- Let C be (2, t)-subtractive and |C| > m + 1.
- Pigeonhole principle \implies There exist $c_0, c_1 \in \mathcal{C}$ such that $c_0 c_1 \in \mathcal{I}$.
- \mathcal{C} is (2,t)-subtractive $\implies (c_0-c_1) \mid 2 \implies 2 \in \mathcal{I}$, a contradiction.

Conclusion

- Formalisation of (s, t)-subtractive sets
- Applications to Schnorr-like arguments and threshold secret sharing
- Construction of $poly(\lambda)$ -size (s,t)-subtractive sets with (almost) matching impossibility results
- Improved lattice Bulletproof instantiation
- Impossibility of better knowledge error assuming algebraic extractors

Paper ia.cr/2021/202

Blog Post russell-lai.hk/2021/07/15/subtractive-sets-over-cyclotomic-rings/

Russell W. F. Lai Friedrich-Alexander-Universität Erlangen-Nürnberg russell.lai@cs.fau.de russell-lai.hk