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Perspective

Subtractive sets < lattice-based Schnorr-like arguments

Concurrent works on Lattice-based Schnorr-like arguments

e [BCS21] Jonathan Bootle, Alessandro Chiesa, Katerina Sotiraki:
Sumcheck Arguments and their Applications,
CRYPTO’21

e [ACK21] Thomas Attema, Ronald Cramer, Lisa Kohl:
A Compressed Sigma-Protocol Theory for Lattices,
CRYPTO’21
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Every other lattice talk needs this slide!

h, k € N: dimensions

g € N: modulus

B € N: norm bound

R:ring (+, — and X but not always =+, e.g. Z)
Rq:=R/qR

Short Integer Solution (SIS) over R

Fix g, B. Given (A,y), find x such that
{Ax =y mod g
x| < B.

Ac RZX": matrix
x € RX: vector

y€e Rg: vector

||| infinity norm
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Every other lattice talk needs this slide!

h, k € N: dimensions

g € N: modulus

B € N: norm bound

R:ring (+, — and X but not always =+, e.g. Z)
Rq:=R/qR

Short Integer Solution (SIS) over R

Fix g, B. Given (A,y), find x such that
{Ax =y mod g
x| < B.

Ac RZX": matrix
x € RX: vector

y€e Rg: vector

Motivating Problem

Proving knowledge of SIS witness x.

||| infinity norm
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Proving Knowledge of SIS

Rep ((A,y),x) = (Ax=s-ymod g A |)x|| < B)
where s € R is called the “slack” (s =1 == no slack)
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(AiZax (LY)
Rsp ((Ay),x) = (Ax=s-ymod g A [x|| <)
where s € R is called the “slack” (s =1 == no slack) P : vV
b
—
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(AiZax (LY)
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where s € R is called the “slack” (s =1 == no slack) P vV
b
—

e Completeness for R g: If Ry g ((A,y),x) = 1then ) accepts (A,y), i.e. b=1.
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where s € R is called the “slack” (s =1 == no slack) P : vV
b
—

e Completeness for R g: If Ry g ((A,y),x) = 1then ) accepts (A,y), i.e. b=1.
* K-Knowledge Soundness for R, g: There exists efficient knowledge extactor £ such that
if P convinces V to accept (A,y) with probability p > K,
then EF extracts % such that Rsp'((A,y),X) =1 with probability p — K.
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Proving Knowledge of SIS

(AiZax (LY)
Rsp ((A,y),x) := (Ax=s-ymod g A [[x|| < B)
where s € R is called the “slack” (s =1 == no slack) P : vV
b
—

e Completeness for R g: If Ry g ((A,y),x) = 1then ) accepts (A,y), i.e. b=1.
* K-Knowledge Soundness for R, g: There exists efficient knowledge extactor £ such that
if P convinces V to accept (A,y) with probability p > K,
then EF extracts % such that Rsp'((A,y),X) =1 with probability p — K.
e Challenge: Design (P, V) to minimise

e knowledge error K
* “slack” s

o “stretch”%, @
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Landscape
Pre-2019
e PCP-based: // Probabilistically-checkable proofs

1 PCP (e.g. for R1CS) + commitments
logarithmic-size proof, no slack (s = 1), no stretch ' = 3
[E) Super-polynomial modulus q

e Stern-like:

e Schnorr-like:
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Landscape
Pre-2019
e PCP-based: // Probabilistically-checkable proofs

1 PCP (e.g. for R1CS) + commitments
logarithmic-size proof, no slack (s = 1), no stretch ' = 3
[E) Super-polynomial modulus q
e Stern-like:
i combinatorial (cut-and-choose)
no slack (s = 1), no stretch B’ = 8
[ linear-size proof, (1) knowledge error (need (A ) repetition)
e Schnorr-like:
i algebraic
1/poly(A) knowledge error (O(A /log A) repetition)
linearity — recursive composition (“Bulletproof folding”) — logarithmic-size proof
[E) slack s # 1, stretch '/ > 1 (amplified by recursive composition)

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 419



Chair of
Applied Cryptography

Landscape

Post-2019

e Stern+Schnorr:

i Schnorr but with extra non-linear constraints
1/poly(A) knowledge error, no slack (s = 1), no stretch 8’ = f3
[ non-linearity = not “Bulletproof” compatible
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Landscape

Post-2019

e Stern+Schnorr:

i Schnorr but with extra non-linear constraints
1/poly(A) knowledge error, no slack (s = 1), no stretch 8’ = f3
[ non-linearity = not “Bulletproof” compatible

Question

Keep linearity and 1/poly(A ) knowledge error of Schnorr, but reduce slack and stretch?
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Schnorr-like Protocol 1

Parameters: C C R:challenge set, Y € N: normbound, k= ﬁ: knowledge error

P((A.y),x) V(A,y)
u—s$RF
v:=Au v
_—
c
c+$C
. % AX=v+c-ymodq
X:=utc-x X return{ -
— %]l <7v
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Knowledge Extractor

¢ Recall verification equation

A)“(;v—l—c'y mod q
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Knowledge Extractor

¢ Recall verification equation

e Run P twice on cg, ¢y

A)“(;v—l—c'y mod q

toget Vv,Xo,X; suchthat

. . 11
AR %)= (v v)(CO 01) mod g
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Knowledge Extractor

¢ Recall verification equation

A)“(;v—l—c'y mod q

e Run Ptwiceon c¢g,ci toget v,Xo,X; such that
PN 1 1
A(Xo X1)=(v y) (Co c1> mod g

e Try to solve the following dual Vandermonde system for z over R:

(o o)r==()
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Knowledge Extractor

¢ Recall verification equation

A)“(;v—l—c'y mod q

e Run Ptwiceon c¢g,ci toget v,Xo,X; such that
PN 1 1
A(Xo X1)=(v y) (Co c1> mod g

e Try to solve the following dual Vandermonde system for z over R:

(1 1 ) (0>
z=s-

Co C 1

e Output X:=(Xo X{)z such that

AX=A(X Xi)z=(v y)<c10 ;1>z:s-ymodq
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Schnorr-like Protocol 2: Lattice Bulletproof [Bootle et al. @ Crypto’20]

Parameters: C C R: challenge set, Y € N: norm bound, k= ‘%|: knowledge error

Structural Assumptions: A= (Ay Aq), x= (10), y = Ax = AgXo +Aix; mod g

1

P((Ay),x) V(Ay)

Yot := AoX1, Y10 := A1Xo w}

c

- c<+s$C
R = . X (c-Ag+A)X=yio+c y+c® yor mod g
X=X+ C X __ % retumn {||’A‘| <y
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Lattice Bulletproof Knowledge Extractor

?

e Recall verification equation  (c-Ag+A{)X =yio+c-y+c® yp mod q
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Lattice Bulletproof Knowledge Extractor

?
e Recall verification equation  (c-Ag+A{)X =yio+c-y+c® yp mod q
e Run’P 3timeson ¢y, ci,c0 toget Yoi,Yi0,Xo,X1,Xo  such that
1 1 1

CoXo CiXi CoXo
Al ¢ c < =(yio ¥ Yo1)|{ @ ¢ ¢ | modg
Xo X4 X2 2 2 2
c; €5 G
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e Recall verification equation  (c-Ag+A{)X =yio+c-y+c® yp mod q
e Run’P 3timeson ¢y, ci,c0 toget Yoi,Yi0,Xo,X1,Xo  such that
1 1 1

CoXo CiXi CoXo
Al ¢ c < =(yio ¥ Yo1)|{ @ ¢ ¢ | modg
Xo X1 X2 2 2 2
c; €5 G

e Try to solve the following dual Vandermonde system for z over R:

1 1 1 0
Ch € Clz=s-|1
2 2 c 0
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Lattice Bulletproof Knowledge Extractor

?
e Recall verification equation  (c-Ag+A{)X =yio+c-y+c® yp mod q
e Run’P 3timeson ¢y, ci,c0 toget Yoi,Yi0,Xo,X1,Xo  such that
1 1 1

C()),Eo 019(1 Cg)?g
Al % - = =(yio ¥ Yo1)|{ @ ¢ ¢ | modg
Xo X4 X2 2 2 2
cg ¢ G

e Try to solve the following dual Vandermonde system for z over R:

1 1 1 0
Ch € Clz=s-|1
2 2 c 0
- CoXg C1Xy X
e Qutput x:= or0 MA ®2%2 ) 2 such that
Xo X1 Xo
CoXg C1Xy X oo
Ax=A( 20 7" ) z—(yi0 Yy Yoi)|w c & |z=s-ymodq
Xo X4 Xo 2 2 2
cg ¢ G

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 9/19



@

Chair of

Applied Cryptography

(s, t)-Subtractive Sets over R

For what challenges ¢y, ..., ¢;_1 and slack s is the following dual Vandermonde system solvable over R?

(*)
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(s, t)-Subtractive Sets over R

For what challenges ¢y, ..., ¢;_1 and slack s is the following dual Vandermonde system solvable over R?

1 1 1 Wo
Co Cq P o/ W
zZ=s§- . (*)
t—1 t—1 t—1
G Cy cee Gy Wi_4

Observation. If [T;cz, (1 (¢i — ¢;) | s for all i € Z;, then Equation (+) is solvable over R.
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For what challenges ¢y, ..., ¢;_1 and slack s is the following dual Vandermonde system solvable over R?

1 1 1 Wo
Co Cq P o/ W
zZ=s§- . (*)
t—1 t—1 t—1
G Cy cee Gy Wi_4

Observation. If [T;cz, (1 (¢i — ¢;) | s for all i € Z;, then Equation (+) is solvable over R.

Definition. A set C C,, R is (s, t)-subtractive if for any t-subset T = {co,...,c—1} C; C it holds
that [Tjez,\ (i1 (¢i — ¢;) | sforalli € Z;. If s =1 we say C is subtractive.

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 10/19



Chair of
Applied Cryptography

(s, t)-Subtractive Sets over R

Definition. A set C C, R is (s, t)-subtractive if for any t-subset T = {cy,...,c—1} C; C it holds
that [Tjez,\ (1 (¢i — ;) | sforalli € Z;. If s =1 we say C is subtractive.

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 1119



Chair of
Applied Cryptography

(s, t)-Subtractive Sets over R

Definition. A set C C, R is (s, t)-subtractive if for any t-subset T = {cy,...,c—1} C; C it holds
that [Tjez,\ (1 (¢i — ;) | sforalli € Z;. If s =1 we say C is subtractive.

A Note about Secret Sharing over R. If C C, R is (s,t)-subtractive, then for any T =

{co, 200 c,_1} C, C, the following Vandermonde system is solvable over R:
1 t—1

Co ... Gy Wo
1 C 0{71 wy
Z=3S
t—1 t—1
1 Ci_4 cee Gy Wi

= t-out-of-n secret sharing over K.
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(s, t)-Subtractive Sets over R

Definition. A set C C, R is (s, t)-subtractive if for any t-subset T = {cy,...,c—1} C; C it holds
that [Tjez,\ (1 (¢i — ;) | sforalli € Z;. If s =1 we say C is subtractive.

Sample Implications.
* (s,3)-subtractive set of size n = Lattice Bulletproof with slack s and knowledge error 2/n
* (s, t)-subtractive set of size n = Lattice-based t-out-of-n threshold primitives
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(s, t)-Subtractive Sets over R

Definition. A set C C, R is (s, t)-subtractive if for any t-subset T = {cy,...,c—1} C; C it holds
that [Tjez,\ (1 (¢i — ;) | sforalli € Z;. If s =1 we say C is subtractive.

Sample Implications.
* (s,3)-subtractive set of size n = Lattice Bulletproof with slack s and knowledge error 2/n
* (s, t)-subtractive set of size n = Lattice-based t-out-of-n threshold primitives

Challenge. Find large (poly-size) (s, t)—subtractive sets with small slack s over interesting R,
e.g. cyclotomic rings R = Z[{,| where , is a primitive m-th root of unity, m = poly(4).
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Our Results over R = Z[(,)]

® Power-of-2 cyclotomic rings m = 2t
Construct family of (s, t)-subtractive sets of size n for a wide range of s, t, n,
e.g. (2,3)-subtractive set of size n = m/2+41 (= Bulletproof with slack 2)
(=) Impossibility of family of (2, t)-subtractive sets {Cp },, of size [Crn| > m+1

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 12119



Chair of
Applied Cryptography

Our Results over R = Z[(,)]

® Power-of-2 cyclotomic rings m = 2t
Construct family of (s, t)-subtractive sets of size n for a wide range of s, t, n,
e.g. (2,3)-subtractive set of size n = m/2+41 (= Bulletproof with slack 2)
(=) Impossibility of family of (2, t)-subtractive sets {Cp },, of size [Crn| > m+1

* Prime-power cyclotomic rings m = pg:

Construct family of subtractive sets of size p (== Bulletproof with no slack)
B Impossibility of subtractive set C of size [C| > p

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 12119



Chair of
Applied Cryptography

Our Results over R = Z[(,)]

® Power-of-2 cyclotomic rings m = 2t
Construct family of (s, t)—subtractive sets of size n for a wide range of s, t, n,
e.g. (2,3)-subtractive set of size n = m/2+41 (= Bulletproof with slack 2)
(=) Impossibility of family of (2, t)-subtractive sets {Cp },, of size [Crn| > m+1
® Prime-power cyclotomic rings m = pg:
Construct family of subtractive sets of size p (== Bulletproof with no slack)
B Impossibility of subtractive set C of size [C| > p

® Proof system for SIS over R

[Bootle et al. @ Crypto’20] [This work]
Better lattice Bulletproof (m = 2¢):  slack | k° — slack | k
stretch | k3logm+45 stretch | k2logm+0.58

B Let R have an ideal q with g cosets. For 3-move 1-challenge public-coin proofs with “algebraic”
knowledge extractor, knowledge error k < g~ is impossible unless s € qg.
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Our Results over R = Z[(,)]

® Power-of-2 cyclotomic rings m = 2t
Construct family of (s, t)—subtractive sets of size n for a wide range of s, t, n,
e.g. (2,3)-subtractive set of size n = m/2+41 (= Bulletproof with slack 2)
(=) Impossibility of family of (2, t)-subtractive sets {Cp },, of size [Crn| > m+1
® Prime-power cyclotomic rings m = pg:
Construct family of subtractive sets of size p (== Bulletproof with no slack)
B Impossibility of subtractive set C of size [C| > p

® Proof system for SIS over R

[Bootle et al. @ Crypto’20] [This work]
Better lattice Bulletproof (m = 2¢):  slack | k° — slack | k
stretch | k3logm+45 stretch | k2logm+0.58

B Let R have an ideal q with g cosets. For 3-move 1-challenge public-coin proofs with “algebraic”
knowledge extractor, knowledge error k < g~ is impossible unless s € qg.

®© Application to threshold secret sharing over R, e.g. distriouted PRF
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Some Math Background and Intuition

Our results critically rely on the presence and absence of ideals in R.
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Some Math Background and Intuition

Our results critically rely on the presence and absence of ideals in R.

e Forc € R, ideal (c) :=cR ={c-r:re R} = {all R elements divisible by c}.

Definition. (s, t)-subtractive set C: Forany T C; C, any ¢ € T,we have s € ([]yer (e} (¢ —¢'))-

How hard is it to construct large (s, t)-subtractive sets for small s?

e We want lots of elements to divide the small s.
o If R =7, itis difficult:
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Our results critically rely on the presence and absence of ideals in R.
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¢ We want lots of elements to divide the small s.

e If' R =Z, itis difficult:
e s =1: The only invertible elements in Z are —1,1.
e s—=2: The only factors of 2 are —2, —1,1,2.

o Z[Cy]: 1— Ck divides 2 whenever 2 { k.
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Some Math Background and Intuition

Our results critically rely on the presence and absence of ideals in R.

e Forc € R, ideal (c) :=cR ={c-r:re R} = {all R elements divisible by c}.

Definition. (s, t)-subtractive set C: Forany T C; C, any ¢ € T,we have s € ([]yer (e} (¢ —¢'))-

How hard is it to construct large (s, t)-subtractive sets for small s?

¢ We want lots of elements to divide the small s.
e If' R =Z, itis difficult:
e s =1: The only invertible elements in Z are —1,1.
e s—=2: The only factors of 2 are —2, —1,1,2.
k

o Z[Cy]: 1— Ck divides 2 whenever 2 { k.
&
4

¢ 2y

1_
—# is invertible whenever gcd(p, k) = 1.
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Theorem. The set C is subtractive and |C| = p.

C = {lo, 1, .., p1} Hx = 1—¢
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Prime-Power Cyclotomic Rings Z[Cpg]

Theorem. The set C is subtractive and |C| = p.
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Theorem. The set C is subtractive and |C| = p.

C:{N07H1w--,ﬂp—1} Wi = 1—¢
Proof.
k

° U= % is invertible over R whenever gcd(p, k) = 1.

e Forij < j< pwe have
R A e T e <R

Hj— i = - = =" =0
1-¢ 1-¢ 1-¢ 1-¢
which is invertible over R.
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Theorem. There is no subtractive set C of size |C| > p.

Proof.
» Theideal Z = (1 —{) has pcosets and 1 ¢ Z.
e Let C be a subtractive set of size |C| > p.
e Pigeonhole principle = There exist ¢y, ¢; € C such that ¢g — ¢y € Z.
e (C is subtractive —> ¢, — ¢y is invertible =—> 1 € Z, a contradiction.
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Power-of-2 Cyclotomic Rings Z[{]

Theorem. For0 << /{,s€ (1— C>“°g’]2i71, the set C is (s, t)-subtractive and |C| = 2/ +1.

c={o1,¢,¢%....¢77"}

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 16/19



Chair of
Applied Cryptography

Power-of-2 Cyclotomic Rings Z[{]

Theorem. The set C is (2, 3)-subtractive and |[C| = @(m) +1 = m/2+41.

c={0,1,¢,¢2...,¢7m~'}

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 17/19



Chair of
Applied Cryptography

Power-of-2 Cyclotomic Rings Z[{]

Theorem. The set C is (2, 3)-subtractive and |[C| = @(m) +1 = m/2+41.

c={0,1,¢,¢2...,¢7m~'}

Proof.
1. Ignore the 0. It’s for free.

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 17/19



Chair of
Applied Cryptography

Power-of-2 Cyclotomic Rings Z[{]

Theorem. The set C is (2, 3)-subtractive and |[C| = @(m) +1 = m/2+41.

c={0,1,¢,¢2...,¢7m~'}

Proof.
1. Ignore the 0. It’s for free.
2. WLOG, let T={{2, (b {°} CCwitho<a<b<c< @(m).

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 17/19



Chair of
Applied Cryptography

Power-of-2 Cyclotomic Rings Z[{]

Theorem. The set C is (2, 3)-subtractive and |[C| = @(m) +1 = m/2+41.

c={0,1,¢,¢2...,¢7m~'}

Proof.
1. Ignore the 0. It’s for free.
2. WLOG, let T={{2, (b {°} CCwitho<a<b<c< @(m).
3. We want to show that 2 € ((§@— £?)(§2—£°)) :=T.

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 17/19



Chair of
Applied Cryptography

Power-of-2 Cyclotomic Rings Z[{]

Theorem. The set C is (2, 3)-subtractive and |[C| = @(m) +1 = m/2+41.

C:{o,1,§,§2,...,§"’(m)“}

Proof.

—_

. Ignore the 0. It’s for free.

2. WLOG, let T={{2, (b {°} CCwitho<a<b<c< @(m).
3. We want to show that 2 € ((§@— £?)(§2—£°)) :=T.

4. Gisinvertible = Z = ((1—{*3)(1 —{°2)).
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Theorem. The set C is (2, 3)-subtractive and |[C| = @(m) +1 = m/2+41.

cz{o,1,§,§2,...,§¢(m>—1}

Proof.
1. Ignore the 0. It’s for free.
2. WLOG, let T={{2, (b {°} CCwitho<a<b<c< @(m).
3. We want to show that 2 € ((§@— £?)(§2—£°)) :=T.
4. Gisinvertible = Z = ((1—{*3)(1 —{°2)).
5
6

. Routine calculaton = Z = (1 — C)EV(b_aHEV(C_a)_

_Ev(b—a)+Ev(c—a) < o(m) = 2 (1—-¢)?M C 1.
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Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 18/19



Chair of
Applied Cryptography

Power-of-2 Cyclotomic Rings Z[{]
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* It suffices to find m such that |Cp,| < m+1.
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Theorem. There is no family of (2, t)-subtractive sets {Cp, } ,, of size |Cp| > m+1.

Proof.
* It suffices to find m such that |C| < m+1.
o Letm=2>4m+1 prime (Fermat prime), e.g. m+1 =5,17,257,65537.
e Any factor Z of (m+1) has m+1 cosetsand 2 ¢ Z.

Let C be (2, t)-subtractive and |C| > m+1.

¢ Pigeonhole principle = There exist ¢y, ¢y € C such that ¢g — ¢y € Z.

Cis (2,t)-subtractive = (¢y—¢1) | 2 = 2 € Z, a contradiction.
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Conclusion

e Formalisation of (s, t)-subtractive sets

e Applications to Schnorr-like arguments and threshold secret sharing

* Construction of poly(A )-size (s, t)-subtractive sets with (almost) matching impossibility results
e Improved lattice Bulletproof instantiation

¢ |Impossibility of better knowledge error assuming algebraic extractors
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