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Perspective

This work

Subtractive sets↔ lattice-based Schnorr-like arguments

Concurrent works on Lattice-based Schnorr-like arguments

• [BCS21] Jonathan Bootle, Alessandro Chiesa, Katerina Sotiraki:
Sumcheck Arguments and their Applications,
CRYPTO’21

• [ACK21] Thomas Attema, Ronald Cramer, Lisa Kohl:
A Compressed Sigma-Protocol Theory for Lattices,
CRYPTO’21
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Every other lattice talk needs this slide!

Short Integer Solution (SIS) overR

Fix q,β . Given (A,y), find x such that{
Ax = y mod q

‖x‖ ≤ β .

Motivating Problem

Proving knowledge of SIS witness x.

• h,k ∈ N: dimensions
• q ∈ N: modulus
• β ∈ N: norm bound
• R: ring (+,− and× but not always÷, e.g. Z)
• Rq :=R/qR

• A ∈Rh×k
q : matrix

• x ∈Rk : vector
• y ∈Rh

q : vector

• ‖·‖: infinity norm
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Proving Knowledge of SIS

Rs,β ((A,y),x) := (Ax = s ·y mod q ∧ ‖x‖ ≤ β )

where s ∈R is called the “slack” (s = 1 =⇒ no slack)

(A,y),x (A,y)

b
P V...

• Completeness for R1,β : If R1,β ((A,y),x) = 1 then V accepts (A,y), i.e. b = 1.
• κ -Knowledge Soundness for Rs,β ′ : There exists efficient knowledge extactor E such that

if P convinces V to accept (A,y) with probability ρ > κ ,
then EP extracts x̃ such that Rs,β ′ ((A,y), x̃) = 1 with probability ρ−κ .

• Challenge: Design 〈P,V〉 to minimise

• knowledge error κ

• “slack” s
• “stretch” β ′

β
À
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Landscape

Pre-2019

• PCP-based: // Probabilistically-checkable proofs
ï PCP (e.g. for R1CS) + commitments
� logarithmic-size proof, no slack (s = 1), no stretch β ′ = β

D Super-polynomial modulus q
• Stern-like:

ï combinatorial (cut-and-choose)
� no slack (s = 1), no stretch β ′ = β

D linear-size proof, Ω(1) knowledge error (need Ω(λ ) repetition)

• Schnorr-like:

ï algebraic
� 1/poly(λ ) knowledge error (O (λ/ log λ ) repetition)
� linearity =⇒ recursive composition (“Bulletproof folding”) =⇒ logarithmic-size proof
D slack s 6= 1, stretch β ′/β > 1 (amplified by recursive composition)
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Landscape

Post-2019

• Stern+Schnorr:
ï Schnorr but with extra non-linear constraints
� 1/poly(λ ) knowledge error, no slack (s = 1), no stretch β ′ = β

D non-linearity =⇒ not “Bulletproof” compatible

Question

Keep linearity and 1/poly(λ ) knowledge error of Schnorr, but reduce slack and stretch?
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Schnorr-like Protocol 1

Parameters: C ⊆R: challenge set, γ ∈ N: norm bound, κ = 1
|C| : knowledge error

P ((A,y),x) V (A,y)

u←$Rk

v := Au v

c c←$C

x̂ := u + c ·x x̂ return

{
Ax̂ = v + c ·y mod q
‖x̂‖ ≤ γ
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Knowledge Extractor

• Recall verification equation

Ax̂
?
= v + c ·y mod q

• Run P twice on c0,c1 to get v, x̂0, x̂1 such that

A(x̂0 x̂1) = (v y)

(
1 1
c0 c1

)
mod q

• Try to solve the following dual Vandermonde system for z overR:(
1 1
c0 c1

)
z = s ·

(
0
1

)
• Output x̃ := (x̂0 x̂1)z such that

Ax̃ = A(x̂0 x̂1)z = (v y)

(
1 1
c0 c1

)
z = s ·y mod q
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Schnorr-like Protocol 2: Lattice Bulletproof [Bootle et al. @ Crypto’20]

Parameters: C ⊆R: challenge set, γ ∈ N: norm bound, κ = 2
|C| : knowledge error

Structural Assumptions: A = (A0 A1), x =

(
x0

x1

)
, y = Ax = A0x0 + A1x1 mod q

P ((A,y),x) V (A,y)

y01 := A0x1, y10 := A1x0
y01,y10

c c←$C

x̂ := x0 + c ·x1
x̂ return

{
(c ·A0 + A1) x̂ = y10 + c ·y + c2 ·y01 mod q
‖x̂‖ ≤ γ
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Lattice Bulletproof Knowledge Extractor

• Recall verification equation (c ·A0 + A1) x̂
?
= y10 + c ·y + c2 ·y01 mod q

• Run P 3 times on c0,c1,c2 to get y01,y10, x̂0, x̂1, x̂2 such that

A

(
c0x̂0 c1x̂1 c2x̂2

x̂0 x̂1 x̂2

)
= (y10 y y01)

(
1 1 1
c0 c1 c2

c2
0 c2

1 c2
2

)
mod q

• Try to solve the following dual Vandermonde system for z overR:(
1 1 1
c0 c1 c2

c2
0 c2

1 c2
2

)
z = s ·

(
0
1
0

)

• Output x̃ :=

(
c0x̂0 c1x̂1 c2x̂2

x̂0 x̂1 x̂2

)
z such that

Ax̃ = A

(
c0x̂0 c1x̂1 c2x̂2

x̂0 x̂1 x̂2

)
z = (y10 y y01)

(
1 1 1
c0 c1 c2

c2
0 c2

1 c2
2

)
z = s ·y mod q
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(s, t)-Subtractive Sets overR

For what challenges c0, . . . ,ct−1 and slack s is the following dual Vandermonde system solvable overR?
1 1 . . . 1
c0 c1 . . . ct−1
...

...
. . .

...
ct−1

0 ct−1
1 . . . ct−1

t−1

z = s ·


w0

w1
...

wt−1

 (*)

Observation. If ∏j∈Zt\{i}(ci − cj) | s for all i ∈ Zt , then Equation (*) is solvable overR.

Definition. A set C ⊆n R is (s, t)-subtractive if for any t-subset T = {c0, . . . ,ct−1} ⊆t C it holds
that ∏j∈Zt\{i}(ci − cj) | s for all i ∈ Zt . If s = 1 we say C is subtractive.
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(s, t)-Subtractive Sets overR

Definition. A set C ⊆n R is (s, t)-subtractive if for any t-subset T = {c0, . . . ,ct−1} ⊆t C it holds
that ∏j∈Zt\{i}(ci − cj) | s for all i ∈ Zt . If s = 1 we say C is subtractive.

A Note about Secret Sharing over R. If C ⊆n R is (s, t)-subtractive, then for any T =
{c0, . . . ,ct−1} ⊆t C, the following Vandermonde system is solvable overR:

1 c0 . . . ct−1
0

1 c1 . . . ct−1
1

...
...

. . .
...

1 ct−1
t−1 . . . ct−1

t−1

z = s ·


w0

w1
...

wt−1


=⇒ t-out-of-n secret sharing overR.
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(s, t)-Subtractive Sets overR

Definition. A set C ⊆n R is (s, t)-subtractive if for any t-subset T = {c0, . . . ,ct−1} ⊆t C it holds
that ∏j∈Zt\{i}(ci − cj) | s for all i ∈ Zt . If s = 1 we say C is subtractive.

Sample Implications.
• (s,3)-subtractive set of size n =⇒ Lattice Bulletproof with slack s and knowledge error 2/n
• (s, t)-subtractive set of size n =⇒ Lattice-based t-out-of-n threshold primitives
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• (s,3)-subtractive set of size n =⇒ Lattice Bulletproof with slack s and knowledge error 2/n
• (s, t)-subtractive set of size n =⇒ Lattice-based t-out-of-n threshold primitives

Challenge. Find large (poly-size) (s, t)-subtractive sets with small slack s over interestingR,
e.g. cyclotomic ringsR= Z[ζm] where ζm is a primitive m-th root of unity, m = poly(λ ).
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Our Results overR = Z[ζm]

• Power-of-2 cyclotomic rings m = 2`:
� Construct family of (s, t)-subtractive sets of size n for a wide range of s, t,n,

e.g. (2,3)-subtractive set of size n = m/2 + 1 ( =⇒ Bulletproof with slack 2)
D Impossibility of family of (2, t)-subtractive sets {Cm}m of size |Cm|> m + 1

• Prime-power cyclotomic rings m = p`:
� Construct family of subtractive sets of size p ( =⇒ Bulletproof with no slack)
D Impossibility of subtractive set C of size |C|> p

À Proof system for SIS overR:

� Better lattice Bulletproof (m = 2`):
[Bootle et al. @ Crypto’20]

slack k3

stretch k3 logm+4.5
→

[This work]
slack k

stretch k2 logm+0.58

D LetR have an ideal q with q cosets. For 3-move 1-challenge public-coin proofs with “algebraic”
knowledge extractor, knowledge error κ < q−1 is impossible unless s ∈ q.

À Application to threshold secret sharing overR, e.g. distributed PRF
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Some Math Background and Intuition

Our results critically rely on the presence and absence of ideals inR.

• For c ∈R, ideal 〈c〉 := cR= {c · r : r ∈R}= {allR elements divisible by c}.

Definition. (s, t)-subtractive set C: For any T ⊆t C, any c ∈ T , we have s ∈
〈
∏c′∈T\{c}(c− c′)

〉
.

How hard is it to construct large (s, t)-subtractive sets for small s?

• We want lots of elements to divide the small s.
• IfR= Z, it is difficult:

• s = 1: The only invertible elements in Z are−1,1.
• s = 2: The only factors of 2 are−2,−1,1,2.

• Z[ζ2` ]: 1−ζ k
2`

divides 2 whenever 2` - k .

• Z[ζp` ]:
1−ζ k

p`

1−ζ
p`

is invertible whenever gcd(p,k) = 1.
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Prime-Power Cyclotomic Rings Z[ζp`]

Theorem. The set C is subtractive and |C|= p.

C = {µ0,µ1, . . . ,µp−1} µk =
1−ζ k

1−ζ

Proof.

• µk = 1−ζ k

1−ζ
is invertible overR whenever gcd(p,k) = 1.

• For i < j < p we have

µj −µi =
1−ζ j

1−ζ
− 1−ζ i

1−ζ
=

ζ i −ζ j

1−ζ
= ζ

i · 1−ζ j−i

1−ζ
= ζ

i ·µj−i

which is invertible overR.
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Prime-Power Cyclotomic Rings Z[ζp`]

Theorem. There is no subtractive set C of size |C|> p.

Proof.

• The ideal I = 〈1−ζ 〉 has p cosets and 1 /∈ I .
• Let C be a subtractive set of size |C|> p.
• Pigeonhole principle =⇒ There exist c0,c1 ∈ C such that c0− c1 ∈ I .
• C is subtractive =⇒ c0− c1 is invertible =⇒ 1 ∈ I , a contradiction.

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 15/19



Prime-Power Cyclotomic Rings Z[ζp`]

Theorem. There is no subtractive set C of size |C|> p.

Proof.
• The ideal I = 〈1−ζ 〉 has p cosets and 1 /∈ I .

• Let C be a subtractive set of size |C|> p.
• Pigeonhole principle =⇒ There exist c0,c1 ∈ C such that c0− c1 ∈ I .
• C is subtractive =⇒ c0− c1 is invertible =⇒ 1 ∈ I , a contradiction.

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 15/19



Prime-Power Cyclotomic Rings Z[ζp`]

Theorem. There is no subtractive set C of size |C|> p.

Proof.
• The ideal I = 〈1−ζ 〉 has p cosets and 1 /∈ I .
• Let C be a subtractive set of size |C|> p.

• Pigeonhole principle =⇒ There exist c0,c1 ∈ C such that c0− c1 ∈ I .
• C is subtractive =⇒ c0− c1 is invertible =⇒ 1 ∈ I , a contradiction.

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 15/19



Prime-Power Cyclotomic Rings Z[ζp`]

Theorem. There is no subtractive set C of size |C|> p.

Proof.
• The ideal I = 〈1−ζ 〉 has p cosets and 1 /∈ I .
• Let C be a subtractive set of size |C|> p.
• Pigeonhole principle =⇒ There exist c0,c1 ∈ C such that c0− c1 ∈ I .

• C is subtractive =⇒ c0− c1 is invertible =⇒ 1 ∈ I , a contradiction.

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 15/19



Prime-Power Cyclotomic Rings Z[ζp`]

Theorem. There is no subtractive set C of size |C|> p.

Proof.
• The ideal I = 〈1−ζ 〉 has p cosets and 1 /∈ I .
• Let C be a subtractive set of size |C|> p.
• Pigeonhole principle =⇒ There exist c0,c1 ∈ C such that c0− c1 ∈ I .
• C is subtractive =⇒ c0− c1 is invertible =⇒ 1 ∈ I , a contradiction.

Subtractive Sets over Cyclotomic Rings Russell W. F. Lai 15/19



Power-of-2 Cyclotomic Rings Z[ζ2`]

Theorem. For 0≤ i ≤ `, s ∈ 〈1−ζ 〉dlog te2i−1

, the set C is (s, t)-subtractive and |C|= 2i + 1.

C =
{

0,1,ζ ,ζ 2, . . . ,ζ 2i−1
}
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Power-of-2 Cyclotomic Rings Z[ζ2`]

Theorem. The set C is (2,3)-subtractive and |C|= ϕ(m) + 1 = m/2 + 1.

C =
{

0,1,ζ ,ζ 2, . . . ,ζ ϕ(m)−1
}

Proof.

1. Ignore the 0. It’s for free.

2. WLOG, let T = {ζ a,ζ b,ζ c} ⊆ C with 0≤ a < b < c < ϕ(m).

3. We want to show that 2 ∈ 〈(ζ a−ζ b)(ζ a−ζ c)〉 := I .

4. ζ a is invertible =⇒ I = 〈(1−ζ b−a)(1−ζ c−a)〉.
5. Routine calculation =⇒ I = 〈1−ζ 〉Ev(b−a)+Ev(c−a).

6. Ev(b−a) + Ev(c−a)≤ ϕ(m) =⇒ 2 ∈ 〈1−ζ 〉ϕ(m) ⊆ I .
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3. We want to show that 2 ∈ 〈(ζ a−ζ b)(ζ a−ζ c)〉 := I .

4. ζ a is invertible =⇒ I = 〈(1−ζ b−a)(1−ζ c−a)〉.
5. Routine calculation =⇒ I = 〈1−ζ 〉Ev(b−a)+Ev(c−a).

6. Ev(b−a) + Ev(c−a)≤ ϕ(m) =⇒ 2 ∈ 〈1−ζ 〉ϕ(m) ⊆ I .
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Power-of-2 Cyclotomic Rings Z[ζ2`]

Theorem. There is no family of (2, t)-subtractive sets {Cm}m of size |Cm|> m + 1.

Proof.

• It suffices to find m such that |Cm| ≤ m + 1.

• Let m = 2` ≥ 4, m + 1 prime (Fermat prime), e.g. m + 1 = 5,17,257,65537.
• Any factor I of 〈m + 1〉 has m + 1 cosets and 2 /∈ I .
• Let C be (2, t)-subtractive and |C|> m + 1.
• Pigeonhole principle =⇒ There exist c0,c1 ∈ C such that c0− c1 ∈ I .
• C is (2, t)-subtractive =⇒ (c0− c1) | 2 =⇒ 2 ∈ I , a contradiction.
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Conclusion

• Formalisation of (s, t)-subtractive sets
• Applications to Schnorr-like arguments and threshold secret sharing
• Construction of poly(λ )-size (s, t)-subtractive sets with (almost) matching impossibility results
• Improved lattice Bulletproof instantiation
• Impossibility of better knowledge error assuming algebraic extractors
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