Structured Encryption and Dynamic Leakage Suppression

Marilyn George Brown University Seny Kamara Brown University

Tarik Moataz Aroki Systems

Encryption

(Untrusted) Server

Encryption

(Untrusted) Server

Encryption

FHE, PPE, STE ...

DS

(Untrusted) Server

Can leaked information be used? Leakage Attacks [IKK12,...]

Can leakage be eliminated completely? Leakage Suppression

Can leaked information be used? Leakage Attacks [IKK12,...]

Can leakage be eliminated completely? Leakage Suppression

Can leaked information be used? Leakage Attacks [IKK12,...]

Preliminaries: Data Structures

Preliminaries: Data Structures

Array RAM Read and Write

Preliminaries: Data Structures

Array RAM Read and Write

Dictionary Get and Put

Preliminaries: Data Structures

Array RAM Read and Write

Dictionary Get and Put

Multi-map Get and Put

Query equality:
Are two queries to the EMM on the same label?

Query equality: Are two queries to the EMM on the same label?

Query equality: Are two queries to the EMM on the same label?

Query equality: Are two queries to the EMM on the same label?

Volume:

How many values correspond to a query?

Volume:

How many values correspond to a query?

Volume:

How many values correspond to a query?

Operation identity: Which operation is the client running?

Operation identity:

Operation identity:

Operation identity: Which operation is the client running?

Operation identity:
Which operation is the client running?

Operation equality:
Are two operations on the same label?

Operation equality:
Are two operations on the same label?

Leakage Suppression

Can leakage be eliminated completely?

(Untrusted) Server

Leakage Suppression

(Untrusted) Server

13

Can leakage be eliminated completely?

Query Equality Pattern: Static Framework [кмо18]

Leakage Suppression

(Untrusted) Server

Can leakage be eliminated completely?

Query Equality Pattern: Static Framework [кмо18]

Volume Pattern: Computational Volume-Hiding [KM19] Volume-Hiding via Hashing [PPYY19]

• Black-box ORAM simulation

Black-box ORAM simulation

• Black-box ORAM simulation

Black-box ORAM simulation

• Black-box ORAM simulation

Black-box ORAM simulation

• Black-box ORAM simulation

• Black-box ORAM simulation

Black-box ORAM simulation

Black-box ORAM simulation

Black-box ORAM simulation

Custom-made Oblivious Data Structures [WNL+14]

Can we suppress query equality for general data structures more efficiently?

October 2021 EUROCRYPT 2021 16

Square-root ORAM [GO96]

Square-root ORAM [GO96]

Query-equality leaking Array (Main Memory)

Zero-leakage Dictionary (Cache)

October 2021 EUROCRYPT 2021 16

Square-root ORAM [GO96]

Query-equality leaking Array (Main Memory)

Zero-leakage Dictionary (Cache) Can be viewed as leakage suppression

Square-root ORAM [GO96]

Query-equality leaking Array (Main Memory)

Zero-leakage Dictionary (Cache) Can be viewed as leakage suppression

Can be generalized to more complex data structures and STE schemes

Square-root ORAM [GO96]

Query-equality leaking Array (Main Memory)

Zero-leakage Dictionary (Cache) Can be viewed as leakage suppression

Can be generalized to more complex data structures and STE schemes

More efficient than blackbox ORAM simulation

As efficient as custommade oblivious data structures

Square-root ORAM [GO96]

Query-equality leaking Array (Main Memory)

Zero-leakage Dictionary (Cache) Can be viewed as leakage suppression

Can be generalized to more complex data structures and STE schemes

More efficient than blackbox ORAM simulation

As efficient as custommade oblivious data structures

The framework only produces static schemes

Suppression Framework

October 2021 EUROCRYPT 2021 17

Can query equality leakage be suppressed in the dynamic setting?

Is it possible to create a dynamic query equality suppression framework?

Operation equality across all dynamic operations (Add, Edit, Delete) must be suppressed

Operation equality across all dynamic operations (Add, Edit, Delete) must be suppressed

Operation equality across all dynamic operations (Add, Edit, Delete) must be suppressed

Operation equality across all dynamic operations (Add, Edit, Delete) must be suppressed

- Operation identity leakage
- Volume leakage

Operation equality across all dynamic operations (Add, Edit, Delete) must be suppressed

- Operation identity leakage
- Volume leakage
 - o Input volume-hiding schemes, volume leakage already suppressed

Operation equality across all dynamic operations (Add, Edit, Delete) must be suppressed

- Operation identity leakage
- Volume leakage
 - o Input volume-hiding schemes, volume leakage already suppressed
 - Many volume-hiding schemes have limited dynamicity and must be 'upgraded' using our framework

L1 → (V11, V12, V13)

L2 → (V21, V22)

L₃ → (v₃1, v₃2, v₃3)

 $L_4 \rightarrow \overline{(V_{41})}$

epoch length $\lambda = 3$

L₁ \rightarrow (v₁₁, v₁₂, v₁₃) L₂ \rightarrow (v₂₁, v₂₂) L₃ \rightarrow (v₃₁, v₃₂, v₃₃) L₄ \rightarrow (v₄₁)

October 2021 EUROCRYPT 2021 21

Query L1

Query L1

Query L1

L1 in cache?

Read Cache

Query L1

L1 in cache?

Query L1

Query L1
Add L5

Add L₅

Read Cache

Query L1

Add L₅

L5 in cache?

Query L1

Add L₅

Query L1

Add L₅

L₅ in cache?

Query L1
Add L5

epoch length $\lambda = 3$

Query L1

Add L₅

Edit L1

epoch length $\lambda = 3$

Query L1

Add L₅

Edit L1

epoch length $\lambda = 3$

Query L1

Add L₅

Edit L1

Read Cache

Query L1

Add L₅

Edit L1

Query L1

Add L₅

Edit L1

Query L1

Add L₅

Edit L1

Query L1

Add L₅

Edit L1

Query L1

Add L₅

Edit L1

freshness

RAM

Rebuilding: Sort and Shuffle

Rebuilding: Sort and Shuffle

Rebuilding: Sort and Shuffle

31

31

31

Rebuilding: Update

Efficiency Measure	Our framework applied to AVLH [KM19]	Black-box simulation with Path ORAM [SPS14]	Standard Dynamic EMM [π_{bas}^{dyn} , CJJ+14]
Client State (Mbits)			
Server Storage (Mbits)			
Communication (Mbits)			
Leakage			

Efficiency Measure	Our framework applied to AVLH [KM19]	Black-box simulation with Path ORAM [SPS14]	Standard Dynamic EMM [π_{bas}^{dyn} , CJJ+14]
Client State (Mbits)	0.486	4.78	0.066
Server Storage (Mbits)	44.062	52424.7	20.992
Communication (Mbits)	1827.1	1995.534	10.485
Leakage	Total number of labels, values, max. tuple length Updated number of labels, values, max. tuple length (after λ operations)	(Upper-bound) number of labels, max. tuple length	Volume, Query equality

Efficiency Measure	Our framework applied to AVLH [KM19]	Black-box simulation with Path ORAM [SPS14]	Standard Dynamic EMM [π_{bas}^{dyn} , CJJ+14]
Client State (Mbits)	0.486	4.78	0.066
Server Storage (Mbits)	44.062	52424.7	20.992
Communication (Mbits)	1827.1	1995.534	10.485
Leakage	Total number of labels, values, max. tuple length Updated number of labels, values, max. tuple length (after λ operations)	(Upper-bound) number of labels, max. tuple length	Volume, Query equality

Efficiency Measure	Our framework applied to AVLH [KM19]	Black-box simulation with Path ORAM [SPS14]	Standard Dynamic EMM [π_{bas}^{dyn} , CJJ+14]
Client State (Mbits)	0.486	4.78	0.066
Server Storage (Mbits)	44.062	52424.7	20.992
Communication (Mbits)	1827.1	1995.534	10.485
Leakage	Total number of labels, values, max. tuple length Updated number of labels, values, max. tuple length (after λ operations)	(Upper-bound) number of labels, max. tuple length	Volume, Query equality

Dynamic Framework: In Summary

- We construct a **dynamic operation equality suppressing** framework, answering an open question [KMO18]
- We apply our framework to AVLH [KM19] and PBS [KM018] to produce three new fully-dynamic almost-zero leakage STE schemes
- We prove that for certain natural assumptions, our schemes are asymptotically more efficient than black-box ORAM simulation
- Please see our paper for more details!