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Multi-Authority ABE (MA-ABE)

• In ABE, one central authority who verifies attributes and issues secret keys

• In reality, multiple authorities are in charge of different attributes

• DMV for “holds a driving license”

• University for “holds a Ph.D”

• Military for “veteran”

• “Multi-Authority” ABE 

• Chase ’07, …, Lewko-Waters ’11, Okamoto-Takashima ‘13, Rouselakis-Waters ‘15  



MA-ABE

• Anyone can become an authority


• No coordination except global PublicParams


• Different authorities control different attributes


• No bound on # of authorities


• Each authority can issue secret keys to users possessing attributes under 
their control 


• without any interaction with other authorities
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DMV

University

Military
GP

GP

GP

KeyGen(“PhD”)KeyGen(“DrivingLicense”) KeyGen(“Veteran”)

KeyGen(“PhD”)

Enc(“Hi”,  
     PhD AND DrivingLicense)

Enc(“Bye”,  
     PhD AND Veteran)CT2 = 

CT1 = 

Can decrypt CT2

No one can decrypt CT1 (collusion resistance)
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• How to uniquely identify a user?

• Associate a unique global verifiable identifier (𝖦𝖨𝖣) 

• The global identity of a user remains fixed for the entire lifetime of the system 

• Users have no freedom to choose their global identities

DMV MilitaryDMV Military


Distinguishable
?

SSN
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Correctness: If  then f(U) = true 𝗆𝗌𝗀′￼ = 𝗆𝗌𝗀

Security: If  then  is “hidden”

(Collusion among users and some corrupt authorities is allowed)

f(U) = false 𝗆𝗌𝗀

(Assume one attribute per authority)

(All with same GID)
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There exist an MA-ABE scheme in the GID model for access policies captured 
by DNF formulas that is statically secure against an arbitrary collusion of parties 
in the random oracle model and assuming the LWE assumption.

sub-exp. 
modulus-to-noise 

ratio

DNF = OR of ANDs
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together different key components 
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H(𝖦𝖨𝖣

Randomness is 
essentially public


MA challenge 1

Existing LWE-based CP-ABE 
schemes fail to satisfy public 

randomness


Keys should be “piecewise”.  
Master  and user  should 

consist of components specific to 
attributes

𝖯𝖪 𝖲𝖪

Should support arbitrary 
authorities joining on the fly

MA challenge 2

Existing LWE-based CP-ABE 
schemes fail to satisfy 

modular keys
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• A secret sharing scheme where sharing & reconstruction are linear functions

• Equivalent to span programs  (M, ρ)

v1,1

x6

¬x6

ℓ

s
v1,2 v1,s−1 v1,s

v2,1 v2,2 v2,s−1 v2,s

v3,1 v3,2 v3,s−1 v3,s

…

…

…

v4,1 v4,2 v4,s−1 v4,s…

vℓ,1 vℓ,2 vℓ,s−1 vℓ,s…

M ∈ ℤℓ×s
q

ρ : [ℓ] ↦ 𝗉𝖺𝗋𝗍𝗂𝖾𝗌 ∪ ¬𝗉𝖺𝗋𝗍𝗂𝖾𝗌

Monotone / non-monotone
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Additional Properties of LSSS Used in This Work

• Small reconstruction coefficients: Reconstruction of the secret can be done 
by small coefficients, i.e., coming from .


• Linear independence for unauthorized rows: Any unauthorized set of rows 
of the share generating matrix are linearly independent.

{0,1}

Open: such a monotone LSSS for NC1?

Theorem: 
There exists such a non-monotone 

LSSS* for LOGSPACE 
(implicit in GVW13)

Width of LSSS  policy size≈

A different construction 
for NC1 in the paper

Theorem: There exists such a 
monotone LSSS* for DNFs

Agrawal et al. ’20, Lewko-Waters ‘11
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CP-ABE

for 𝒞

The Recipe

Randomness tying 
different user  

components together is 
public


𝖲𝖪 Piecewise structure for 
 and user 
𝖯𝖪 𝖲𝖪

 Non-monotone 
LSSS* with linear 

ind. property for 𝒞

MA-ABE


Extension,  
non-generic


Monotone LSSS* 
with linear ind. 
property for 𝒞

for 𝒞

Why Monotone LSSS*?


In CP-ABE, central authority enforces no user 
gets the key for an attribute and its negation.


In MA-ABE, an adversary colluding with corrupt 
authority knows both.



The CP-ABE Scheme
Setup :(1λ, 𝕌)
For each attribute , sample


•  together with a trapdoor 


• 


Sample  


Output: 


 ,     

u ∈ 𝕌

Au ← ℤn×m
q A−1

u

Hu ← ℤn×m
q

y ← ℤn
q

𝖯𝖪 = (y, {Au}, {Hu}) 𝖬𝖲𝖪 = {𝖯𝖪, A−1
u }
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The CP-ABE Scheme
KeyGen( ):    //  is a set of attributes𝖬𝖲𝖪, U U

Sample  and set 


For each attribute , sample 


Output: 


̂t ← 𝗇𝗈𝗂𝗌𝖾m−1 t = (1, ̂t)

u ku ← A−1
u (Hu ⋅ t⊤)

𝖲𝖪U = ({ku}, t)

 is the (public) randomness that ties 
together different key components

t

    
𝖯𝖪 = (y, {Au}, {Hu})

𝖬𝖲𝖪 = {A−1
u }

Public nature of 
randomness is 

important for MA-ABE



The CP-ABE Scheme
Enc( ):    𝖯𝖪, msg ∈ {0,1}, (M, ρ)

Sample 


Compute:  
          


          


Output: 


s ← ℤn
q, v2, …, vs ← ℤm

q

ci = sAρ(i) + 𝗇𝗈𝗂𝗌𝖾i

̂ci = Mi ⋅

sy⊤ 0 … 0
v2
v3…
vs

− sHρ(i) + ̂𝗇𝗈𝗂𝗌𝖾i

𝖢𝖳 = ({ci}i∈[ℓ], { ̂ci}i∈[ℓ], C = 𝖬𝖲𝖡(sy⊤) ⊕ 𝗆𝗌𝗀)

    





𝖯𝖪 = (y, {Au}, {Hu})

𝖬𝖲𝖪 = {A−1
u }

𝖲𝖪U = ({ku}, t)
// M =

M1
M2…
Mℓ

∈ ℤℓ×s
q



The CP-ABE Scheme

Dec( ):     𝖲𝖪U, 𝖢𝖳
If U does not satisfy , output 

Else do the following:


 — Indices of rows of  corresponding to 

available attributes 

 — Reconstruction coefficients


Compute:        


            


Output: 


             

(M, ρ) ⊥

I M

{wi}i∈I ∈ {0,1}

K′￼ = ∑
i∈I

wi(cik⊤
ρ(i) + ̂cit⊤)

𝗆𝗌𝗀′￼ = C ⊕ 𝖬𝖲𝖡(K′￼)

    








 
          

                  

𝖯𝖪 = (y, {Au}, {Hu})

𝖬𝖲𝖪 = {A−1
u }

𝖲𝖪U = ({ku}, t)

𝖢𝖳 = ({ci}i∈[ℓ], { ̂ci}i∈[ℓ],
C = 𝖬𝖲𝖡(sy⊤)

⊕ 𝗆𝗌𝗀)



Correctness

cik⊤
ρ(i) + ̂cit⊤ = sAρ(i)k⊤

ρ(i) + Mi ⋅

sy⊤ 0 … 0
v2
v3…
vs

t⊤ − sHρ(i)t⊤

   


     

K′￼ = ∑
i∈I
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Correctness

cik⊤
ρ(i) + ̂cit⊤ = sAρ(i)k⊤

ρ(i) + Mi ⋅

sy⊤ 0 … 0
v2
v3…
vs

t⊤ − sHρ(i)t⊤

Recall Aρ(i)k⊤
ρ(i) = Hρ(i)t⊤

Reconstruction gives sy⊤

   


     

K′￼ = ∑
i∈I

wi(cik⊤
ρ(i) + ̂cit⊤)

𝗆𝗌𝗀′￼ = C ⊕ 𝖬𝖲𝖡(K′￼)

(Ignoring small noise-like terms)
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Conclusion

• The first MA-ABE for a non-trivial class of access policies from LWE

• A direct LWE-based approach for CP-ABE

Open problems:

• More expressive policies than DNFs

• Better security (we only get static)

• Better parameters (even for CP-ABE)

• Unbounded number of attributes per authority (we only get bounded)

Thank you!


