
Dynamic Ad Hoc Clock Synchronization

Eurocrypt 2021

Christian

Badertscher

IOHK

Peter

Gaži

IOHK

Aggelos

Kiayias

IOHK & Univ. of Edinburgh

Alexander

Russell

IOHK & Univ. of Connecticut

Vassilis

Zikas

Purdue Univ.

https://ia.cr/2019/838

Clock Synchronization

Basic setup:

- Local clocks (duration timer)

which run at approx. same speed

- PKI / CRS

- Bounded-delay network

- Majority of parties honest

Clock Synchronization

Goal:

Emulate “a global clock”, i.e., compute time

values that satisfy:

- Approximate synchrony

- Liveness

- Monotonicity & limited “jumps”

Clock Synchronization

Realization of a Global Clock Functionality

(with -synchrony)

𝑡 ∈ [T − ε, 𝑇 + 𝜀]

𝑡 ∈ [T − ε, 𝑇 + 𝜀]

𝑡 ∈ [T − ε, 𝑇 + 𝜀]

𝑡 ∈ [T − ε, 𝑇 + 𝜀]

𝐓

ε

Clock Synchronization – Models

Prior models:

- Fixed set of parties in the protocol.

- All parties active except for byzantine

nodes.

- Relaxation: “ad hoc” model: an

unknown subset remains inactive

- Security threshold relative to size of

active party set.

Dynamic ad hoc model:

- Number of online/offline parties changes over time.

- No a priori knowledge of participation levels.

- Unannounced disappearance.

- Newcomers need to be bootstrapped.

- Security threshold relative to

dynamic participation level.

Ad hoc model:

Amos Beimel, Yuval Ishai, and Eyal Kushilevitz. Ad hoc PSM

protocols: Secure computation without coordination. Eurocrypt 2017

Ideas for Novel Clock Synchronization

Bitcoin (PoW-blockchain)

- Consistency

- Liveness

Ideas for Novel Clock Synchronization

Bitcoin (PoW-blockchain)

- Consistency

- Liveness

→ Block-depth as proxy for time

Ideas for Novel Clock Synchronization

Bitcoin (PoW-blockchain)

- Consistency

- Liveness

→ Block-Depth as Proxy for time

PoW is not a standard assumption for

synchronizers and this yields a rather loose clock

Ideas for Novel Clock Synchronization

PoS-blockchain!

- Consistency

- Liveness

Source of trust: Genesis block

Ideas for Novel Clock Synchronization

PoS-blockchain!

- Consistency

- Liveness

Source of trust: Genesis block

- Require a lower bound on or accurate estimate of participation…

- …or have to assume a reliable timing service!

But maybe we can still use some ideas from those protocols?

Clock Synchronization – Dynamic Ad Hoc Setting

Prior models:

- Fixed set of parties in the protocol.

- All parties active except for byzantine

nodes. Honest majority.

- Relaxation: Ad hoc: active subset of

parties fixed but not known.

- Security threshold relative to size of

active party set.

Dynamic ad hoc:

- Number of online/offline parties changes over time.

- No a priori knowledge of participation levels.

- Unannounced disappearance.

- Newcomers need to be bootstrapped.

- Security threshold relative to

dynamic participation level.

Is Clock Synchronization possible

in this setting?

Clock Synchronization – Dynamic Ad Hoc Setting

Prior models:

- Fixed set of parties in the protocol.

- All parties active except for byzantine

nodes. Honest majority.

- Relaxation: Ad hoc: active subset of

parties fixed but not known.

- Security threshold relative to size of

active party set.

Dynamic ad hoc:

- Number of online/offline parties changes over time.

- No a priori knowledge of participation levels.

- Unannounced disappearance.

- Newcomers need to be bootstrapped.

- Security threshold relative to

dynamic participation level.

YES - and even more…

Main Result

We design the first PoS-blockchain protocol with the following features:

Main Result

We design the first PoS-blockchain protocol with the following features:

1) It is secure in the dynamic ad hoc setting (bounded delays, honest majority

of stake) and does not need a global clock (instead: the weaker assumption of

approx. same-speed clocks/timers).

Main Result

Chronos =

A Global Clock

+

We design the first PoS-blockchain protocol with the following features:

1) It is secure in the dynamic ad hoc setting (bounded delays, honest majority

of stake) and does not need a global clock (instead: the weaker assumption of

approx. same-speed clocks/timers).

2) It is a clock synchronizer and allows parties (and in fact any external

observer) to compute time values that are only a bounded distance apart.

Informal Idea of The Solution

PoS Blockchain

(Ouroboros

Genesis)

Informal Idea of The Solution

PoS Blockchain

(Ouroboros

Genesis)

1
Exchange authenticated sync-messages containing

local time stamps (restricted by the PoS lottery).

Informal Idea of The Solution

PoS Blockchain

(Ouroboros

Genesis)

1

2
Reach consensus over the

set of sync-messages using

the blockchain.

Exchange Authenticated Sync-messages containing

local time stamps (restricted by the PoS lottery).

Informal Idea of The Solution

PoS Blockchain

(Ouroboros

Genesis)

1

2
Reach consensus over the set

of sync-messages using the

blockchain.

3
Adjust time value

based on agreed set

and observed “delays”.

Exchange Authenticated Sync-messages containing

local time stamps (restricted by the PoS lottery).

Informal Idea of The Solution

PoS Blockchain

(Ouroboros

Genesis)

1

2
Reach consensus over the set

of sync-messages using the

blockchain.

3
Adjust time value

based on agreed set

and observed “delays”.

4
Newcomers retrace

honest parties’ recent

adjustments.

Exchange Authenticated Sync-messages containing

local time stamps (restricted by the PoS lottery).

Informal Idea of The Solution

Newcomers retrace

honest parties’ recent

adjustments.

Exchange authenticated sync-messages containing local

time stamps (restricted by the PoS lottery).

PoS Blockchain

(Ouroboros

Genesis)

2
Reach consensus over the set

of sync-messages using the

blockchain.

3
Adjust time value

based on agreed set

and observed “delays”.

4

1

The construction is not as modular as suggested here:

− Messages are authenticated and filtered based on the PoS lottery.

− Ouroboros Genesis has to be modified, including a new procedure

to bootstrap ledger state & the time.

Informal Idea of The Solution

Outline of this Talk

1. Recap of Ouroboros Genesis

2. We see what happens to Genesis when we have

local clocks/timers instead of a global clock

3. Presentation of Chronos

Ouroboros Genesis

Epoch - 2 Epoch - 1 Current epoch

Ouroboros Genesis

Epoch - 2 Epoch - 1 Current epoch

- In each slot, each party evaluates slot-leadership.
Private election, proportional to stake, including recent randomness from the chain

- A slot leader extends its most preferred chain by creating the block for this slot.

Ouroboros Genesis

Epoch - 2 Epoch - 1 Current epoch

Ouroboros Genesis

Epoch - 2 Epoch - 1 Current epoch

Ouroboros Genesis

Epoch - 2 Current epoch
1) Agreement on stake distribution.

Ouroboros Genesis

Epoch - 2 Current epoch

𝑉𝑅𝐹. 𝐸𝑣𝑎𝑙𝑠𝑘𝑖
"NONCE", 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑒𝑒𝑑, 𝑠𝑙𝑜𝑡

Randomness-Beacon Implementation:

Current seed := Hash of verifiably random values

from the chain.

1) Agreement on stake distribution.

2) Agreement on randomness.

3) Randomness affected by honest block(s)

Ouroboros Genesis

Epoch - 2 Current epoch
1) Agreement on stake distribution.

2) Agreement on randomness.

3) Randomness affected by honest block(s)

Lottery in each slot:

A party i is leader if and only if

- Empty slots possible

- Multiple leaders possible

- Leadership proof from VRF.

𝑉𝑅𝐹. 𝐸𝑣𝑎𝑙𝑠𝑘𝑖
"TEST", 𝒔𝒆𝒆𝒅, 𝑠𝑙𝑜𝑡 < 𝑇(𝒔𝒕𝒂𝒌𝒆𝒊)

Ouroboros Genesis – Chain Selection

Ouroboros Genesis – Chain Selection

Genesis Rule:

Adopt a valid new chain…

1) …if it is longer and does not fork by

more than k blocks from local chain.

2) … or if it forks by more than k blocks

but has higher block density on interval INT (following the fork).

Otherwise, keep local chain.

Ouroboros Genesis – Chain Selection

INT
(Protocol parameter: size of INT)

Time-Interval after fork

Ouroboros Genesis – Chain Selection

INT
(Protocol parameter: size of INT)

Time-Interval after fork

Ouroboros Genesis – Chain Selection

Intuition:

Under the honest majority assumption, chains

held by honest parties must be denser on that

interval than maliciously crafted chains (except

with negligible probability).

Reference:

C. Badertscher, P. Gaži, A. Kiayias, A. Russell, V. Zikas.

Ouroboros Genesis: Composable Proof-of-Stake

Blockchains with Dynamic Availability. CCS 18.

Ouroboros Genesis – Useful Property

Using the Genesis chain-selection rule, a newly joining party will

adopt a chain with large common prefix w.r.t. honest parties. No

other advice than the genesis block is needed.

Using the Genesis chain-selection rule, a newly joining party will

adopt a chain with large common prefix w.r.t. honest parties. No

other advice than the genesis block is needed.

Reason:

− The genesis rule establishes density as a proxy for honesty.

− Thus, all parties’ chains contain the stable prefix held by alert

parties, because that prefix wins any genesis (density)

comparison.

Ouroboros Genesis – Useful Property

Using the Genesis chain-selection rule, a newly joining party will

adopt a chain with large common prefix w.r.t. honest parties. No

other advice than the genesis block is needed.

This argument does not assume

reliable time information!

Reason:

− The genesis rule establishes density as a proxy for honesty.

− Thus, all parties’ chains contain the stable prefix held by alert

parties, because that prefix wins any genesis (density)

comparison.

Ouroboros Genesis – Useful Property

So far: Availability of a Global Clock

Time axis:

Clock Functionality

So far: Availability of a Global Clock

Time axis:

Slot Axis:

So far: Availability of a Global Clock

Time axis:

Slot Axis:

s

s

s

NOW

We want: Same-Speed Assumption

Time axis:

Slot Axis:

s

s+2

s-1

We want: Same-Speed Assumption

Time axis:

Slot Axis:

s

s+2

s-1

NOW

Genesis: Situation not that bad…

If we manage to keep all honest parties somewhat close we’re

kind of good.

Genesis: Situation not that bad…

If we manage to keep all honest parties somewhat close we’re

kind of good.

• Close together: Honest parties’ timestamps are never more

than Δ apart (order of network delay + local clock drift).

• Small adjustments needed to Ouroboros Genesis to deal with

future chains

Genesis: Situation not that bad…

If we manage to keep all honest parties somewhat close we’re

kind of good.

• Close together: Honest parties’ timestamps are never more

than Δ apart (order of network delay + local clock drift).

• Small adjustments needed to Ouroboros Genesis to deal with

future chains

→ (Approx.) Same-speed: Initial parties do stay close enough.

→ Joining parties have a harder life…

Genesis: Situation not that bad…

Stable prefix of alert parties

Genesis: Situation not that bad…

Stable prefix of alert parties

Joining party:

Genesis: Situation not that bad…

Stable prefix of alert parties

Joining party:

Genesis chain selection rule:

- Good prefix is the densest prefix

- Genesis rule prefers densest prefix

Genesis: Situation not that bad…

Stable prefix of alert parties

Joining party:

Genesis chain selection rule:

- Good prefix is the densest prefix

- Genesis rule prefers densest prefix

- No cut-off possible

- No reliable ledger state

…. without time-synchronization

Chronos - Overview

Chronos - Overview

- Alert parties: Execute Ouroboros Genesis, broadcast sync-beacons

and leave evidence of beacons in the blockchain.

Chronos - Overview

- Alert parties: Execute Ouroboros Genesis, broadcast sync-beacons

and leave evidence of beacons in the blockchain.

- They perform local-clock adjustments based on the evidence in the

chain.
- Small adjustments to local clocks at the end of an epoch

- Based on the evidence left in the chain.

- Alert parties: Execute Ouroboros Genesis, broadcast sync-beacons

and leave evidence of beacons in the blockchain.

- They perform local-clock adjustments based on the evidence in the

chain.
- Small adjustments to local clocks at the end of an epoch

- Based on the evidence left in the chain.

- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
- Perform the very same clock adjustments to compute a good timestamp

Chronos - Overview

- Alert parties: broadcast time-beacons and leave evidence of

beacons in the blockchain.

- They perform local-clock adjustments based on the evidence in the

chain.
- Small adjustments to local clocks at the end of an epoch

- Based on the evidence left in the chain.

- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
- Perform the very same clock adjustments to compute a good timestamp

This not only yields a good time-synchronizer but also a good blockchain:

→ Once the time is synchronized with alert parties, the ledger state can be computed

Chronos - Overview

Chronos

- Alert parties: Execute Ouroboros Genesis, broadcast sync-beacons

and leave evidence of beacons in the blockchain.

- They perform local-clock adjustments based on the evidence in the

chain.
- Small adjustments to local clocks at the end of an epoch

- Based on the evidence left in the chain.

- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
- Perform the very same clock adjustments to compute a good timestamp

Chronos – Sync-Beacons

Chronos

- Alert parties: Execute Ouroboros Genesis, broadcast time-beacons

and leave evidence of beacons in the blockchain.

- They perform local-clock adjustments based on the evidence in the

chain.
- Small adjustments to local clocks at the end of an epoch

- Based on the evidence left in the chain.

- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
- Perform the very same clock adjustments to compute a good timestamp

Chronos: Synchronization Procedure

- Throughout the epochs: Record the arrival times of valid beacons (filter

out duplicates, invalid ones etc.)

- At the end of each epoch: Compute local clock-adjustment.

Chronos: Synchronization Procedure

Adjustment rule:

- At the end of epoch: add the median of recommendations

to local time:

Synchronization Procedure - Example

slbob=T-y

T

Beacon

sl

sl := T-x

slalice=T-z

Synchronization Procedure - Example

T T + δ’T + δ

slbob=T-y

Beacon

sl := T-x

slalice=T-z

sl

Synchronization Procedure - Example

(T-z + r) + (T-x) - (T-z + δ)

= r + (T-x) - δ

T T + δ’T + δ T + r

slbob=T-y

Beacon

sl := T-x

slalice=T-z

sl

Synchronization Procedure - Example

r’ + (T-x) - δ

T + δ’T + δ T + r T + r’

r’ + (T-x) – δ’

T

slbob=T-y

Beacon

sl := T-x

slalice=T-z

sl

T + δ’T + δ T + r T + r’T

Synchronization Procedure – Property 1

T-y T-y

Beacon

sl := T-x

T-z

sl

r’ + (T-x) - δ

Local Clocks are Δ-close!
(because |δ’- δ| ≤ Δ)

r’ + (T-x) – δ’

Synchronization Procedure – Property 2

Furthermore, by honest-majority assumption:

→ Median, i.e., adjustment is bounded.

Chronos

- Alert parties: Execute Ouroboros Genesis, broadcast time-beacons

and leave evidence of beacons in the blockchain.

- They perform local-clock adjustments based on the evidence in the

chain.
- Small adjustments to local clocks at the end of an epoch

- Based on the evidence left in the chain.

- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
- Perform the very same clock adjustments to compute a good timestamp

Chronos: Joining Procedure

Chronos: Joining Procedure

Chronos: Joining Procedure

Chronos: Joining Procedure

Chronos: Joining Procedure

Chronos: Joining Procedure

B B

Chronos: Joining Procedure

B B

Crucial Properties for Time-Sync:

- Fresh information: Beacons generated after

becoming online.

- Beacons validated and filtered w.r.t. fresh lottery.

- Beacons contained in common prefix.

Chronos: Joining Procedure

- Time-synchronization is possible:

- Agreement on evidence & freshness of beacons:

→ Reasoning like before to conclude Δ-closeness.

- Clock adjustments of alert parties can be retraced exactly!

- Stop when computed timestamp is before the next sync-slot

Chronos: Joining Procedure

- Time-synchronization is possible:

- Agreement on evidence & freshness of beacons:

→ Reasoning like before to conclude Δ-closeness.

- Clock adjustments of alert parties can be retraced exactly!

- Stop when computed timestamp is before the next sync-slot

Note:

Any external observer

can perform these

operations.

Summary

Ouroboros Chronos is:

➢ A time synchronizer for the dynamic ad-hoc setting, …

…where parties have access to a CRS (Genesis block);

…where parties have access to a bounded-delay diffusion

network and (approx.) same-speed clocks;

…and where the honest-majority condition holds.

Summary

Ouroboros Chronos is:

➢ A PoS blockchain protocol in the dynamic ad hoc setting (with a bounded-

delay network), …

… where parties can bootstrap the blockchain from the Genesis

Block only.

… where no external timing service is needed as new parties

bootstrap the time (based on (approx.) same-speed local clocks).

… whose security is based on the honest-stake majority assumption.

Ouroboros Chronos =

A Global Clock

+

Images: https://openclipart.org/, https://publicdomainvectors.org/

Thanks to Dominic Hicks for editing the video.

https://openclipart.org/
https://publicdomainvectors.org/

