Dynamic Ad Hoc Clock Synchronization

Eurocrypt 2021

Christian Peter Aggelos
Badertscher Gazi Kiayias
IOHK IOHK IOHK & Univ. of Edinburgh
Alexander Vassilis
Russell Zikas
IOHK & Univ. of Connecticut Purdue Univ.

https://ia.cr/2019/838

Clock Synchronization

S

Basic setup:

- Local clocks (duration timer)
which run at approx. same speed

- PKI/CRS

- Bounded-delay network

- Majority of parties honest

Clock Synchronization

S

Goal:

Emulate “a global clock”, i.e., compute time
values that satisfy:

Approximate synchrony

Liveness

Monotonicity & limited “jumps”

Clock Synchronization

g [T—¢T+ €] &
t €E[T—eT+e| o “1‘1“"”'" ,,”
g @« 0T Realization of a Global Clock Functionality
,/\ ag (with e-synchrony)

//7 5\\

/l’/l:?\\\‘\\
E[T—s,T+e]‘ ’g
Q t E[T—¢T+¢€]

Clock Synchronization — Models

Prior models: Dynamic ad hoc model:
Fixed set of parties in the protocol. - Number of online/offline parties changes over time.
All parties active except for byzantine - No a priori knowledge of participation levels.
nodes. - Unannounced disappearance.
Relaxation: “ad hoc” model: an - Newcomers need to be bootstrapped.
unknown subset remains inactive - Security threshold relative to
Security threshold relative to size of dynamic participation level.
active party set.

Ad hoc model:
Amos Beimel, Yuval Ishai, and Eyal Kushilevitz. Ad hoc PSM
protocols: Secure computation without coordination. Eurocrypt 2017

ldeas for Novel Clock Synchronization

S

4

Bitcoin (PoW-blockchain)
- Consistency

Liveness

ldeas for Novel Clock Synchronization

S

4

Bitcoin (PoW-blockchain)
- Consistency

Liveness

-> Block-depth as proxy for time

ldeas for Novel Clock Synchronization

S

PoW is not a standard assumption for
synchronizers and this yields a rather loose clock

e an §

Bitcoin (PoW=Blockchain)
- Consistency

- Liveness

-> Block-Depth as Proxy for time

ldeas for Novel Clock Synchronization

S

4

PoS-blockchain!
- Consistency

Liveness

Source of trust: Genesis block

ldeas for Novel Clock Synchronization

S

- Require a lower bound on or accurate estimate of participation...

- ...or have to assume a reliable timing service!

But maybe we can still use some ideas from those protocols?

Source of trust: Genesis block

Clock Synchronization — Dynamic Ad Hoc Setting

S

Dynamic ad hoc:

- - Number of online/offline parties changes over time.
- - No a priori knowledge of participation levels.

- Unannounced disappearance.

- - Newcomers need to be bootstrapped.

- Security threshold relative to

- dynamic participation level.

Clock Synchronization — Dynamic Ad Hoc Setting

S

Dynamic ad hoc:

- - Number of online/offline parties changes over time.
- - No a priori knowledge of participation levels.

- Unannounced disappearance.

- - Newcomers need to be bootstrapped.

- Security threshold relative to

- dynamic participation level.

Main Result

S

We design the first PoS-blockchain protocol with the following features:

Main Result

S

We design the first PoS-blockchain protocol with the following features:

1) Itis securein the dynamic ad hoc setting (bounded delays, honest majority
of stake) and does not need a global clock (instead: the weaker assumption of
approx. same-speed clocks/timers).

Main Result

S

We design the first PoS-blockchain protocol with the following features:

1) Itis securein the dynamic ad hoc setting (bounded delays, honest majority
of stake) and does not need a global clock (instead: the weaker assumption of
approx. same-speed clocks/timers).

2) Itis aclock synchronizer and allows parties (and in fact any external
observer) to compute time values that are only a bounded distance apart.

A Public Ledger A Global Clock
Block #k Block #k+1 Block #k+2

Wiy,
N)
R L

Block #1

g—a g—2 S =
Chronos = |8 &2 llall=] | T 2AS

g—2 g—2 VAN
\

S

S

SER PN ¢
PoS Blockchain

(Ouroboros
Genesis)

Informal Idea of The Solution

S

Exchange authenticated sync-messages containing
local time stamps (restricted by the PoS lottery).

SER PN ¢
Ah
PoS Blockchain

(Ouroboros
Genesis)

Informal Idea of The Solution

S

Exchange Authenticated Sync-messages containing
local time stamps (restricted by the PoS lottery).

Reach consensus over the
set of sync-messages using
the blockchain.

(3% ()

Ah
PoS Blockchain

(Ouroboros
Genesis)

Informal Idea of The Solution

S

e Exchange Authenticated Sync-messages containing

local time stamps (restricted by the PoS lottery).

Reach consensus over the set
of sync-messages using the
blockchain.

A SER PN ¢
PoS Blockchain
(Ouroboros
Adjust time value Genesis)
based on agreed set :

and observed “delays”.

Informal Idea of The Solution

S

e Exchange Authenticated Sync-messages containing

local time stamps (restricted by the PoS lottery).

Reach consensus over the set
of sync-messages using the
blockchain.

A SER PN ¢
PoS Blockchain Newcomers retrace
(Ouroboros ° honest parties’ recent
Adjust time value Genesis) adjustments.
based on agreed set :

and observed “delays”.

Informal Idea of The Solution

S

Outline of this Talk

S

Recap of Ouroboros Genesis

We see what happens to Genesis when we have
local clocks/timers instead of a global clock

Presentation of Chronos

Quroboros Genesis

S

Current epoch

Quroboros Genesis

S

- In each slot, each party evaluates slot-leadership.
Private election, proportional to stake, including recent randomness from the chain

- A slot leader extends its most preferred chain by creating the block for this slot.

v

Epoch - 2 Epoch - 1 Current epoch

Quroboros Genesis

S

Current epoch

v

Quroboros Genesis

S

Current epoch

Quroboros Genesis

S

g

158888
-+

1) Agreement on stake distribution.)
Epoch - 2 Current epoch

Quroboros Genesis

S

Randomness-Beacon Implementation:
Current seed := Hash of verifiably random values
from the chain.

VRF. Evalski("NONCE", previous seed, slot)

1) Agreement on stake distribution.
Epoch-2 2) Agreementon randomness.
3) Randomness affected by honest block(s)

Current epoch

v

Quroboros Genesis

Lottery in each slot:

A party i is leader if and only if VRF.Evalski("TEST", seed,slot) < T(stake))

- Empty slots possible
- Multiple leaders possible
- Leadership proof from VRF.

v

‘ > 1) Agreementon stake distribution.
Epoch -2 2) Agreement on randomness. Current epoch
3) Randomness affected by honest block(s)

QOuroboros Genesis — Chain Selection

gas 158 8 88 a

154348

QOuroboros Genesis — Chain Selection

Genesis Rule:
Qs
Adopt a valid new chain...
1) ...ifitis longer and does not fork by
more than k blocks from local chain.

2) ...orif it forks by more than k blocks
but has higher block density on interval INT (following the fork).

Otherwise, keep local chain.

QOuroboros Genesis — Chain Selection

il 88888 8 88 a
1514848

Time-Interval after fork

'\ j
!
INT

(Protocol parameter: size of INT)

QOuroboros Genesis — Chain Selection

2

L

Time-Interval after fork

\ J

|
INT
(Protocol parameter: size of INT)

QOuroboros Genesis — Chain Selection

gas 88

S

2

Intuition:

Under the honest majority assumption, chains
held by honest parties must be denser on that

interval than maliciously crafted chains (except
with negligible probability).

Reference:

C. Badertscher, P. Gazi, A. Kiayias, A. Russell, V. Zikas.
Ouroboros Genesis: Composable Proof-of-Stake
Blockchains with Dynamic Availability. CCS 18.

Ouroboros Genesis — Useful Property

S

Using the Genesis chain-selection rule, a newly joining party will
adopt a chain with large common prefix w.r.t. honest parties. No
other advice than the genesis block is needed.

Ouroboros Genesis — Useful Property

S

Using the Genesis chain-selection rule, a newly joining party will
adopt a chain with large common prefix w.r.t. honest parties. No
other advice than the genesis block is needed.

Reason:

— The genesis rule establishes density as a proxy for honesty.

— Thus, all parties’ chains contain the stable prefix held by alert
parties, because that prefix wins any genesis (density)
comparison.

Ouroboros Genesis — Useful Property

S

/

\

This argument does not assume
reliable time information!

Reason:

— The genesis rule establishes density as a proxy for honesty.

— Thus, all parties’ chains contain the stable prefix held by alert
parties, because that prefix wins any genesis (density)
comparison.

So far: Availability of a Global Clock

\\
L
=9 3=
= a$
// 7 5 \\
‘s 6 WY
I,“ nwh

g Clock Functionality

Time axis;:

So far: Availability of a Global Clock

Slot AXis:

S

O L e e e S
s

Time axis;:

L

So far: Availability of a Global Clock

Slot AXis:

S

o |

n
———
———

Time axis;:

L

We want. Same-Speed Assumption

Slot AXis: Iy

C

So 2%,
g 52
%o as
“g 6 B
G S+2

N,
o az
B od
0,7 5.~

ZARS

P
S,
So 2,
B o
%o /\ g

27 2%

ZERS

RO AN

s-1

Time axis;:

We want. Same-Speed Assumption

Slot AXis: Iy

C

o L L | L

S,
So kY
B a2
B 3
0,7 L
SR
RO | | | | | | | |
e,
S,
So 2%
B a2
2/ N
RS
RO AN

s-1

Time axis;:

Genesis: Situation not that bad...

S

If we manage to keep all honest parties somewhat close we're
kind of good.

Genesis: Situation not that bad...

S

If we manage to keep all honest parties somewhat close we're
kind of good.

 Close together: Honest parties’ timestamps are never more
than A apart (order of network delay + local clock drift).
« Small adjustments needed to Ouroboros Genesis to deal with

future chains

Genesis: Situation not that bad...

S

If we manage to keep all honest parties somewhat close we're
kind of good.

 Close together: Honest parties’ timestamps are never more
than A apart (order of network delay + local clock drift).

« Small adjustments needed to Ouroboros Genesis to deal with
future chains

- (Approx.) Same-speed: Initial parties do stay close enough.
- Joining parties have a harder life...

Genesis: Situation not that bad...

2
-8 -

|
2 Stable prefix of alert parties

Genesis: Situation not that bad...

Joining party:

N\
PN
W <- - - —
R \ }
<7

|
2 Stable prefix of alert parties

© ©

Genesis: Situation not that bad...

.
a

Joining party:

8 Y -8 -

\\
Stable prefix of alert parties

O
RPAIX
4 N
XA

>,

Y
Q)
KK
\1%

© ©
(13 R

Genesis chain selection rule:
- Good prefix is the densest prefix
- Genesis rule prefers densest prefix

Genesis: Situation mettheatbad...

2
2

Joining party:

9 <7
dl
A
N
%

A
iu‘!}\
/X

K
Y

<
AR
: V} 2
R
\1%"“

&

\l---m;— —

Stable prefix of alert parties

888N - —
\ J
|

Genesis chain selection rule:
- Good prefix is the densest prefix
- Genesis rule prefers densest prefix

- No cut-off possible
- No reliable ledger state
.... without time-synchronization

Chronos - Overview

)
S

Chronos - Overview

)
S

- Alert parties: Execute Ouroboros Genesis, broadcast sync-beacons
and leave evidence of beacons in the blockchain.

Chronos - Overview

)
S

Alert parties: Execute Ouroboros Genesis, broadcast sync-beacons
and leave evidence of beacons in the blockchain.

They perform local-clock adjustments based on the evidence in the

chain.

Small adjustments to local clocks at the end of an epoch
Based on the evidence left in the chain.

Chronos - Overview

)
S

Alert parties: Execute Ouroboros Genesis, broadcast sync-beacons
and leave evidence of beacons in the blockchain.

They perform local-clock adjustments based on the evidence in the

chain.

Small adjustments to local clocks at the end of an epoch
Based on the evidence left in the chain.

Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
Perform the very same clock adjustments to compute a good timestamp

Chronos - Overview

)
S

This not only yields a good time-synchronizer but also a good blockchain:

- Once the time is synchronized with alert parties, the ledger state can be computed

S o
."._.._ L. . -

- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
Perform the very same clock adjustments to compute a good timestamp

Chronos

S

- Alert parties: Execute Ouroboros Genesis, broadcast sync-beacons
and leave evidence of beacons in the blockchain.

Chronos — Sync-Beacons

S

;8 88 50

Epoch E
Additional “Timing Lottery” in the first part of the epoch:

- |F VRFg ("SYNC", seed, slot) < T(stake;) THEN

Beacon

S
- Broadcast Sync-Beacon: Q st

- Normal slot leaders pack transactions + beacons.

Chronos

S

- They perform local-clock adjustments based on the evidence in the

chain.

Small adjustments to local clocks at the end of an epoch
Based on the evidence left in the chain.

Chronos: Synchronization Procedure

S

Throughout the epochs: Record the arrival times of valid beacons (filter
out duplicates, invalid ones etc.)

At the end of each epoch: Compute local clock-adjustment.

- At the end of epoch: for each recorded beacon, do:

Beacon “— Beacon —
- RECOM := slot — ARRIVALTIME| r—wres
[g « R J { g Q

Chronos: Synchronization Procedure

S

Adjustment rule:

- At the end of epoch: add the median of recommendations
to local time:

RE(:UM[-

Synchronization Procedure - Example

Synchronization Procedure - Example

T T+5 T+&

Synchronization Procedure - Example

"/\ (T-z+71) + (T-X) - (T-z + B)
=r+(T-x)-5

T T+5 T+& T

Synchronization Procedure - Example

T T+3 T+& T+r T+r

Synchronization Procedure — Property 1

S

r+(T-x)— 0o’

r+(T-x)-o

Synchronization Procedure — Property 2

e

B:h B:b B:b
RECOM e RECOM | I8 o RECOM e RECOM FS:[_ RECOM | % o

Furthermore, by honest-majority assumption:
- Median, I.e., adjustment is bounded.

Chronos

S

- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
Perform the very same clock adjustments to compute a good timestamp

Chronos: Joining Procedure

S

\VURDy
\\‘\ /'
S 3
- -
<
(S \\\

Chronos: Joining Procedure 2

S

[
»

Chronos: Joining Procedure

o 2

Chronos: Joining Procedure

o 2

Chronos: Joining Procedure

u Q
R
SR

Chronos: Joining Procedure

u Q
R
SR

Chronos: Joining Procedure

S

Crucial Properties for Time-Sync:

- Fresh information: Beacons generated after
becoming online.

- Beacons validated and filtered w.r.t. fresh lottery.

- Beacons contained in common prefix.

Chronos: Joining Procedure

- Time-synchronization is possible:
- Agreement on evidence & freshness of beacons:
- Reasoning like before to conclude A-closeness.

- Clock adjustments of alert parties can be retraced exactly!
- Stop when computed timestamp is before the next sync-slot

Chronos: Joining Procedure

Time-synchronization is possible:

Agreement on evidence & freshness of beacons;
- Reasoning like before to conclude A-closeness.

Clock adjustments of alert parties can be retraced exactly!

Stop when computed timestamp is before the next sync-slot

Summary

S

Ouroboros Chronos is:
» A time synchronizer for the dynamic ad-hoc setting, ...
...where parties have access to a CRS (Genesis block);

...where parties have access to a bounded-delay diffusion
network and (approx.) same-speed clocks;

...and where the honest-majority condition holds.

Summary

S

Quroboros Chronos is:

» A PoS blockchain protocol in the dynamic ad hoc setting (with a bounded-
delay network), ...

. where parties can bootstrap the blockchain from the Genesis
Block only.

. where no external timing service is needed as new parties
bootstrap the time (based on (approx.) same-speed local clocks).

... whose security is based on the honest-stake majority assumption.

A Public Ledger

Block #1

D |

Ouroboros Chronos =

Block #k Block #k+1 Block #k+2
83

e—.p
| g—2

.

2—2

A Global Clock

Wy,
N s
\\\\" 2,

P
o 2%

Images: https://openclipart.org/, https://publicdomainvectors.org/

Thanks to Dominic Hicks for editing the video.

https://openclipart.org/
https://publicdomainvectors.org/

