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Clock Synchronization

S

Basic setup:

- Local clocks (duration timer)
which run at approx. same speed

- PKI/CRS

- Bounded-delay network

- Majority of parties honest




Clock Synchronization

S

Goal:

Emulate “a global clock”, i.e., compute time
values that satisfy:

Approximate synchrony

Liveness

Monotonicity & limited “jumps”
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Clock Synchronization — Models

Prior models: Dynamic ad hoc model:
Fixed set of parties in the protocol. - Number of online/offline parties changes over time.
All parties active except for byzantine - No a priori knowledge of participation levels.
nodes. - Unannounced disappearance.
Relaxation: “ad hoc” model: an - Newcomers need to be bootstrapped.
unknown subset remains inactive - Security threshold relative to
Security threshold relative to size of dynamic participation level.
active party set.

Ad hoc model:
Amos Beimel, Yuval Ishai, and Eyal Kushilevitz. Ad hoc PSM
protocols: Secure computation without coordination. Eurocrypt 2017
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ldeas for Novel Clock Synchronization
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PoW is not a standard assumption for
synchronizers and this yields a rather loose clock

e an §

Bitcoin (PoW=Blockchain)
- Consistency

- Liveness

-> Block-Depth as Proxy for time
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PoS-blockchain!
- Consistency

Liveness

Source of trust: Genesis block



ldeas for Novel Clock Synchronization
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- Require a lower bound on or accurate estimate of participation...

- ...or have to assume a reliable timing service!

But maybe we can still use some ideas from those protocols?

Source of trust: Genesis block
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- - No a priori knowledge of participation levels.

- Unannounced disappearance.

- - Newcomers need to be bootstrapped.

- Security threshold relative to

- dynamic participation level.
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Main Result

S

We design the first PoS-blockchain protocol with the following features:

1) Itis securein the dynamic ad hoc setting (bounded delays, honest majority
of stake) and does not need a global clock (instead: the weaker assumption of
approx. same-speed clocks/timers).

2) Itis aclock synchronizer and allows parties (and in fact any external
observer) to compute time values that are only a bounded distance apart.

A Public Ledger A Global Clock
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local time stamps (restricted by the PoS lottery).
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Informal Idea of The Solution

S

Exchange Authenticated Sync-messages containing
local time stamps (restricted by the PoS lottery).

Reach consensus over the
set of sync-messages using
the blockchain.

(3% ()

Ah
PoS Blockchain

(Ouroboros
Genesis)
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local time stamps (restricted by the PoS lottery).

Reach consensus over the set
of sync-messages using the
blockchain.
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based on agreed set :

and observed “delays”.



Informal Idea of The Solution

S

e Exchange Authenticated Sync-messages containing

local time stamps (restricted by the PoS lottery).

Reach consensus over the set
of sync-messages using the
blockchain.

A SER PN ¢
PoS Blockchain Newcomers retrace
(Ouroboros ° honest parties’ recent
Adjust time value Genesis) adjustments.
based on agreed set :

and observed “delays”.



Informal Idea of The Solution
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Outline of this Talk

S

Recap of Ouroboros Genesis

We see what happens to Genesis when we have
local clocks/timers instead of a global clock

Presentation of Chronos



Quroboros Genesis
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Current epoch



Quroboros Genesis
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- In each slot, each party evaluates slot-leadership.
Private election, proportional to stake, including recent randomness from the chain

- A slot leader extends its most preferred chain by creating the block for this slot.

v

Epoch - 2 Epoch - 1 Current epoch
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1) Agreement on stake distribution. )
Epoch - 2 Current epoch



Quroboros Genesis

S

Randomness-Beacon Implementation:
Current seed := Hash of verifiably random values
from the chain.

VRF. Evalski("NONCE", previous seed, slot)

1) Agreement on stake distribution.
Epoch-2  2) Agreementon randomness.
3) Randomness affected by honest block(s)

Current epoch

v



Quroboros Genesis

Lottery in each slot:

A party i is leader if and only if VRF.Evalski("TEST", seed,slot) < T(stake))

- Empty slots possible
- Multiple leaders possible
- Leadership proof from VRF.

v

‘ > 1) Agreementon stake distribution.
Epoch -2 2) Agreement on randomness. Current epoch
3) Randomness affected by honest block(s)



QOuroboros Genesis — Chain Selection

gas 158 8 88 a

154348




QOuroboros Genesis — Chain Selection

Genesis Rule:
Qs
Adopt a valid new chain...
1) ...ifitis longer and does not fork by
more than k blocks from local chain.

2) ...orif it forks by more than k blocks
but has higher block density on interval INT (following the fork).

Otherwise, keep local chain.
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Time-Interval after fork
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(Protocol parameter: size of INT)




QOuroboros Genesis — Chain Selection
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Time-Interval after fork
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INT
(Protocol parameter: size of INT)




QOuroboros Genesis — Chain Selection

gas 88

S

2

Intuition:

Under the honest majority assumption, chains
held by honest parties must be denser on that

interval than maliciously crafted chains (except
with negligible probability).

Reference:

C. Badertscher, P. Gazi, A. Kiayias, A. Russell, V. Zikas.
Ouroboros Genesis: Composable Proof-of-Stake
Blockchains with Dynamic Availability. CCS 18.
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other advice than the genesis block is needed.
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Using the Genesis chain-selection rule, a newly joining party will
adopt a chain with large common prefix w.r.t. honest parties. No
other advice than the genesis block is needed.

Reason:

— The genesis rule establishes density as a proxy for honesty.

— Thus, all parties’ chains contain the stable prefix held by alert
parties, because that prefix wins any genesis (density)
comparison.




Ouroboros Genesis — Useful Property
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This argument does not assume
reliable time information!

Reason:

— The genesis rule establishes density as a proxy for honesty.

— Thus, all parties’ chains contain the stable prefix held by alert
parties, because that prefix wins any genesis (density)
comparison.
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We want. Same-Speed Assumption
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Genesis: Situation not that bad...
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If we manage to keep all honest parties somewhat close we're
kind of good.
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 Close together: Honest parties’ timestamps are never more
than A apart (order of network delay + local clock drift).
« Small adjustments needed to Ouroboros Genesis to deal with

future chains



Genesis: Situation not that bad...

S

If we manage to keep all honest parties somewhat close we're
kind of good.

 Close together: Honest parties’ timestamps are never more
than A apart (order of network delay + local clock drift).

« Small adjustments needed to Ouroboros Genesis to deal with
future chains

- (Approx.) Same-speed: Initial parties do stay close enough.
- Joining parties have a harder life...
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Genesis: Situation not that bad...
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Genesis: Situation not that bad...
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Joining party:
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Genesis chain selection rule:
- Good prefix is the densest prefix
- Genesis rule prefers densest prefix




Genesis: Situation mettheatbad...
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Genesis chain selection rule:
- Good prefix is the densest prefix
- Genesis rule prefers densest prefix

- No cut-off possible
- No reliable ledger state
.... without time-synchronization
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chain.

Small adjustments to local clocks at the end of an epoch
Based on the evidence left in the chain.
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Alert parties: Execute Ouroboros Genesis, broadcast sync-beacons
and leave evidence of beacons in the blockchain.

They perform local-clock adjustments based on the evidence in the

chain.

Small adjustments to local clocks at the end of an epoch
Based on the evidence left in the chain.

Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
Perform the very same clock adjustments to compute a good timestamp



Chronos - Overview
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This not only yields a good time-synchronizer but also a good blockchain:

- Once the time is synchronized with alert parties, the ledger state can be computed

S o
."._.._ L. . -

- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
Perform the very same clock adjustments to compute a good timestamp



Chronos
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- Alert parties: Execute Ouroboros Genesis, broadcast sync-beacons
and leave evidence of beacons in the blockchain.



Chronos — Sync-Beacons
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Epoch E
Additional “Timing Lottery” in the first part of the epoch:

- |F VRFg ("SYNC", seed, slot) < T(stake;) THEN

Beacon

S
- Broadcast Sync-Beacon: Q st

- Normal slot leaders pack transactions + beacons.




Chronos
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- They perform local-clock adjustments based on the evidence in the

chain.

Small adjustments to local clocks at the end of an epoch
Based on the evidence left in the chain.



Chronos: Synchronization Procedure
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Throughout the epochs: Record the arrival times of valid beacons (filter
out duplicates, invalid ones etc.)

At the end of each epoch: Compute local clock-adjustment.

- At the end of epoch: for each recorded beacon, do:

Beacon “— Beacon —
- RECOM := slot — ARRIVALTIME| r—wres
[ g « R J { g Q




Chronos: Synchronization Procedure
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Adjustment rule:

- At the end of epoch: add the median of recommendations
to local time:

RE(:UM[ -




Synchronization Procedure - Example
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Synchronization Procedure - Example
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Synchronization Procedure - Example
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Synchronization Procedure — Property 1
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Synchronization Procedure — Property 2
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B:h B:b B:b
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Furthermore, by honest-majority assumption:
- Median, I.e., adjustment is bounded.
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- Joining parties: Once hooked up on a prefix of the

densest chain, record beacons and retrace the evidence.
Perform the very same clock adjustments to compute a good timestamp
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Chronos: Joining Procedure 2
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Chronos: Joining Procedure
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Crucial Properties for Time-Sync:

- Fresh information: Beacons generated after
becoming online.

- Beacons validated and filtered w.r.t. fresh lottery.

- Beacons contained in common prefix.




Chronos: Joining Procedure

- Time-synchronization is possible:
- Agreement on evidence & freshness of beacons:
- Reasoning like before to conclude A-closeness.

- Clock adjustments of alert parties can be retraced exactly!
- Stop when computed timestamp is before the next sync-slot




Chronos: Joining Procedure

Time-synchronization is possible:

Agreement on evidence & freshness of beacons;
- Reasoning like before to conclude A-closeness.

Clock adjustments of alert parties can be retraced exactly!

Stop when computed timestamp is before the next sync-slot




Summary

S

Ouroboros Chronos is:
» A time synchronizer for the dynamic ad-hoc setting, ...
...where parties have access to a CRS (Genesis block);

...where parties have access to a bounded-delay diffusion
network and (approx.) same-speed clocks;

...and where the honest-majority condition holds.



Summary

S

Quroboros Chronos is:

» A PoS blockchain protocol in the dynamic ad hoc setting (with a bounded-
delay network), ...

. where parties can bootstrap the blockchain from the Genesis
Block only.

. where no external timing service is needed as new parties
bootstrap the time (based on (approx.) same-speed local clocks).

... whose security is based on the honest-stake majority assumption.
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Images: https://openclipart.org/, https://publicdomainvectors.org/

Thanks to Dominic Hicks for editing the video.
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