Compact, Efficient, UC-secure Isogeny-based Oblivious Transfer

1/27

Introduction

Preliminary

Our Construction

Conclusion and Future Work

Introduction

Preliminary

Our Construction

Conclusion and Future Work

The "classical" requirements for an oblivious transfer scheme are:

- 1. Bob gets one and only one message.
- 2. Alice doesn't know Bob's choice.

Given the importance of OT as a cryptographic tool, we need a stronger notion taking composition into account.

Universally-Composible (UC) Security

UC security proposed by Canetti [Can01] is a simulation based security notion. The simulator doesn't simulate for the adversary but for the environment machine.

- Two isogeny based previous works with acceptable security are [dSGOPS18] and [Vit19]. They are UC-secure against semi-honest adversaries.
- By adding an UC-secure ZK proof protocol or using the generic transformation like [DGH+20], the protocol can upgrade to UC-secure against malicious adversaries while it will take *poly*(λ) isogeny computations.

Can we have an isogeny-based OT UC-secure against malicious adversaries taking a constant number of isogeny computations?

Introduction

Preliminary

Our Construction

Conclusion and Future Work

$$E_A: y^2 = x^3 + Ax^2 + x, A \in \mathbb{F}_p.$$

An elliptic curve E_A defined over \mathbb{F}_p is said to be supersingular if $|E_A(\mathbb{F}_p)| = p + 1$.

$$E_{\mathbf{A}}: y^2 = x^3 + \mathbf{A}x^2 + x, A \in \mathbb{F}_p.$$

- An elliptic curve E_A defined over \mathbb{F}_p is said to be supersingular if $|E_A(\mathbb{F}_p)| = p + 1$.
- Let *O* be an order of an imaginary quadratic field $Q(\sqrt{-p})$ and $\pi \in O$.

$$E_A: y^2 = x^3 + Ax^2 + x, A \in \mathbb{F}_p.$$

An elliptic curve E_A defined over \mathbb{F}_p is said to be supersingular if $|E_A(\mathbb{F}_p)| = p + 1$.

Let *O* be an order of an imaginary quadratic field $Q(\sqrt{-p})$ and $\pi \in O$. Let $\mathcal{E}_p(O, \pi)$ collect all (supersingular) curves over \mathbb{F}_p , modulo \mathbb{F}_p -isomorphism, whose endomorphism rings over \mathbb{F}_p are isomorphic to *O* where π corresponds to the Frobenius map.

$$E_A: y^2 = x^3 + Ax^2 + x, A \in \mathbb{F}_p.$$

An elliptic curve E_A defined over \mathbb{F}_p is said to be supersingular if $|E_A(\mathbb{F}_p)| = p + 1$.

Let *O* be an order of an imaginary quadratic field $Q(\sqrt{-p})$ and $\pi \in O$. Let $\mathcal{E}_p(O, \pi)$ collect all (supersingular) curves over \mathbb{F}_p , modulo \mathbb{F}_p -isomorphism, whose endomorphism rings over \mathbb{F}_p are isomorphic to *O* where π corresponds to the Frobenius map.

We know that the ideal class group Cl(O) acts freely and transitively on ε_p(O, π).

Quadratic Twist

The quadratic twist of E_A/\mathbb{F}_p is defined as

$$E_A^t: dy^2 = x^3 + Ax^2 + x, \ A \in \mathbb{F}_p,$$

where $d^{(\frac{p-1}{2})} = -1 \mod p$.

The quadratic twist of E_A/\mathbb{F}_p is defined as

$$E_A^t: dy^2 = x^3 + Ax^2 + x, \ A \in \mathbb{F}_p,$$

where $d^{(\frac{p-1}{2})} = -1 \mod p$.

- We have $(a * E)^t = a^{-1} * E^t$.
- Moreover, when $p = 3 \mod 4$, we have $E_0^t = E_0$ and $E_A^t = E_{-A}$ (\mathbb{F}_p -isomorphic).

• Accordingly, when $p = 3 \mod 4$, we have

$$(a * E_0)^t = a^{-1} * E_0$$
 for any $a \in Cl$.

We simplify Cl(O) as Cl, $\mathcal{E}_p(O, \pi)$ as \mathcal{E} and write $a \in Cl$, $E \in \mathcal{E}$ (ignoring the class notation). Assume we have uniform sampling over Cl, denoted by $\leftarrow Cl$.

Computational CSIDH problem

Fixed $E \in \mathcal{E}$. Given (a * E, b * E) where $a, b \leftarrow Cl$. Find ab * E.

Square CSIDH problem

Fixed $E \in \mathcal{E}$. Given (a * E) where $a \leftarrow Cl$. Find $a^2 * E$

We simplify Cl(O) as Cl, $\mathcal{E}_p(O, \pi)$ as \mathcal{E} and write $a \in Cl$, $E \in \mathcal{E}$ (ignoring the class notation). Assume we have uniform sampling over Cl, denoted by $\leftarrow Cl$.

Computational CSIDH problem

Fixed $E \in \mathcal{E}$. Given (a * E, b * E) where $a, b \leftarrow Cl$. Find ab * E.

Square CSIDH problem

Fixed $E \in \mathcal{E}$. Given (a * E) where $a \leftarrow Cl$. Find $a^2 * E$

Given the order of the group *Cl*, they are equivalent:

- A proof for the case $p=3 \mod 4$ can be found in [Fel19].
- A full proof for the case $p=1 \mod 4$ can be found in our appendix.

The reciprocal CSIDH problem is a 2-round experiment as follows:

Reciprocal CSIDH Problem \leq **Square CSIDH problem:**

1. Say the public curve is $E \in \mathcal{E}$, commit to X = E and obtain a challenge a * E. (Then the task is to find $(a * E, a^{-1} * E)$.)

Reciprocal CSIDH Problem \leq **Square CSIDH problem:**

- 1. Say the public curve is $E \in \mathcal{E}$, commit to X = E and obtain a challenge a * E. (Then the task is to find $(a * E, a^{-1} * E)$.)
- 2. Invoke the oracle with (a * E, E), obtain $C \in \mathcal{E}$ and output (a * E, C).

Reciprocal CSIDH Problem \leq **Square CSIDH problem:**

- 1. Say the public curve is $E \in \mathcal{E}$, commit to X = E and obtain a challenge a * E. (Then the task is to find $(a * E, a^{-1} * E)$.)
- 2. Invoke the oracle with (a * E, E), obtain $C \in \mathcal{E}$ and output (a * E, C).

Correctness: Write $E = a^{-1} * (a * E)$, we have

$$C = a^{-2} * (a * E) = a^{-1} * E.$$

Reciprocal CSIDH Problem \geq **Square CSIDH problem:** We can show

this by using the *rewinding argument*.

1. Say the challenge is (E, a * E) where $E \in \mathcal{E}$. (Then the task is to find $a^2 * E$.)

- 1. Say the challenge is (E, a * E) where $E \in \mathcal{E}$. (Then the task is to find $a^2 * E$.)
- 2. Invoke the oracle with the public curve a * E. After the oracle commits to $X \in \mathcal{E}$, give the challenge *E* to the oracle.

- 1. Say the challenge is (E, a * E) where $E \in \mathcal{E}$. (Then the task is to find $a^2 * E$.)
- 2. Invoke the oracle with the public curve a * E. After the oracle commits to $X \in \mathcal{E}$, give the challenge *E* to the oracle.
- 3. Obtain (X_1, X_2) from the oracle, rewind the oracle, and replace the challenge to be X_1 .

- 1. Say the challenge is (E, a * E) where $E \in \mathcal{E}$. (Then the task is to find $a^2 * E$.)
- 2. Invoke the oracle with the public curve a * E. After the oracle commits to $X \in \mathcal{E}$, give the challenge *E* to the oracle.
- 3. Obtain (X_1, X_2) from the oracle, rewind the oracle, and replace the challenge to be X_1 .
- 4. Obtain (X'_1, X'_2) from the oracle. Output X'_2 .

- 1. Say the challenge is (E, a * E) where $E \in \mathcal{E}$. (Then the task is to find $a^2 * E$.)
- 2. Invoke the oracle with the public curve a * E. After the oracle commits to $X \in \mathcal{E}$, give the challenge *E* to the oracle.
- 3. Obtain (X_1, X_2) from the oracle, rewind the oracle, and replace the challenge to be X_1 .
- 4. Obtain (X'_1, X'_2) from the oracle. Output X'_2 .

Correctness: Since $E = a^{-1} * (a * E)$, we have $X_1 = a^{-1} * X$. Thanks to transitive action, we can write X = x * E, also write $X_1 = (a^{-2}x) * (a * E)$. Hence,

$$X'_2 = (a^2 x^{-1}) * X = a^2 * E. \quad \Box$$

Introduction

Preliminary

Our Construction

Conclusion and Future Work

14/27

3-Round Construction

Enc: an IND-CPA symmetric key encryption scheme. **Public Curve**: *E*

Input: (m_0, m_1) $a \stackrel{\$}{\leftarrow} Cl$ $k_0 = a * B$ $k_1 = a^{-1} * B$ A = a * E B $Enc_{k_0}(m_0)$ $Enc_{k_1}(m_1)$

3-Round Construction -Idea

Intuitively, the idea is as like (not a rigorous proof):

Quadratic Twist Round-Compression

Enc: IND-CPA symmetric key encryption scheme. *H*: hash fuction

Input: (m_0, m_1)

 $a \leftarrow Cl$ $k_0 = a * B$ $k_1 = a^{-1} * B$

A = a * E $Enc_{H(k_0)}(m_0)$ $Enc_{H(k_1)}(m_1)$

Public Curve: E

В

Input: $\sigma \in \{0,1\}$ $b \leftarrow Cl$ Set B = b * E. If $\sigma = 1$, set $B = B^t$.

2-Round Construction -Idea

Intuitively, the idea is as like (not a rigorous proof):

Semi-Simulation

To extract the secret input of the controlled receiver. The main idea here is to use extractability in ROM and non-commiting encryption to extract the real input. Intuitively, the non-commiting encryption, which can be instantiated by the one-time pad, allows us to produce a dummy ciphertext and produce a corresponding secret key later.

¹To avoid the delay encryption attack, we add an additional mechanism on improving the one from [BDD+17] to force the adversary to make the random oracle queries of one of the decryption keys.

Semi-Simulation

To extract the secret input of the controlled receiver. The main idea here is to use extractability in ROM and non-commiting encryption to extract the real input. Intuitively, the non-commiting encryption, which can be instantiated by the one-time pad, allows us to produce a dummy ciphertext and produce a corresponding secret key later.

Hence, assuming the hardness of the reciprocal CSIDH problem, the simulation proceeds as follows,

¹To avoid the delay encryption attack, we add an additional mechanism on improving the one from [BDD+17] to force the adversary to make the random oracle queries of one of the decryption keys.

Semi-Simulation

To extract the secret input of the controlled receiver. The main idea here is to use extractability in ROM and non-commiting encryption to extract the real input. Intuitively, the non-commiting encryption, which can be instantiated by the one-time pad, allows us to produce a dummy ciphertext and produce a corresponding secret key later.

Hence, assuming the hardness of the reciprocal CSIDH problem, the simulation proceeds as follows,

- 1. Use the non-commiting encryption to produce two dummy ciphertexts when simulating an honest sender.
- 2. Observe the random oracle queries¹.
- 3. Once the query of one of k_0, k_1 is made, reply with the scheme-produced key, and the extraction is complete.

¹To avoid the delay encryption attack, we add an additional mechanism on improving the one from [BDD+17] to force the adversary to make the random oracle queries of one of the decryption keys.

Recently, a discussion with the third author indicates there is a fixable bug in the paper.

Merging the mechanism and the ciphertext is sufficient if the distinguishing security notion is a non-abort version.

If abort is part of the output of the functionality, the receiver should show the ability to decrypt before obtaining the ciphertext.

To have UC-security, we need to extract the secret input of the adversary controlling the sender. The key idea here is to setup a trapdoored reciprocal CSIDH problem:

To have UC-security, we need to extract the secret input of the adversary controlling the sender. The key idea here is to setup a trapdoored reciprocal CSIDH problem:

Trapdoor Setup:

- 1. td $\leftarrow Cl$
- 2. **Return**: (td * *E*₀, td)

To have UC-security, we need to extract the secret input of the adversary controlling the sender. The key idea here is to setup a trapdoored reciprocal CSIDH problem:

Trapdoor Setup:

- 1. td $\leftarrow Cl$
- **2. Return**: $(td * E_0, td)$

Reciprocal CSIDH Problem Solver when the public curve $E = td * E_0$

- 1. Commit to X = b * E where $b \leftarrow Cl$
- 2. Receive, say, E' from the challenger
- **3. Return**: $(b * E', \text{td}b * (\text{td}^{-1} * (E'))^t)$

To have UC-security, we need to extract the secret input of the adversary controlling the sender. The key idea here is to setup a trapdoored reciprocal CSIDH problem:

Trapdoor Setup:

- 1. td $\leftarrow Cl$
- **2. Return**: $(td * E_0, td)$

Reciprocal CSIDH Problem Solver when the public curve $E = td * E_0$

- 1. Commit to X = b * E where $b \leftarrow Cl$
- 2. Receive, say, E' from the challenger
- **3. Return**: $(b * E', \text{td}b * (\text{td}^{-1} * (E'))^t)$

Correctness:

Say E' = a * E. Since X = b * E, it suffices to show td $* (td^{-1} * (E'))^t = a^{-1} * E$. By using propositions, we have

$$LHS = \mathsf{td} * (\mathsf{td} * (\mathsf{td}a)^{-1} * E_0) = RHS. \quad \Box$$

The Other Half Simulation

Public Curve: E

В

Input: $\sigma \in \{0,1\}$

Input: (m_0, m_1)

 $A \in \mathcal{E}$ $Enc_{H(k_0)}(\widetilde{m_0})$ $Enc_{H(k_1)}(\widetilde{m_1})$

- 1. Setup the trapdoor for the public curve E for the protocol.
- 2. Invoke the reciprocal CSIDH problem solver (Step 1) to produce *B*.
- 3. Upon receiving the curve $A \in \mathcal{E}$ from the controlled sender, invoke the reciprocal CSIDH problem solver to obtain $(k'_0, k'_1) \in \mathcal{E}^2$.
- 4. Decrypt the ciphertexts with $H(k'_0)$, $H(k'_1)$ and complete the simulation.

Introduction

Preliminary

Our Construction

Conclusion and Future Work

Conclusion and Future Work

Proposal	PK _S	PK_R	# Isos	# Iso _R	rounds	Adv Model
[dSGOPS18] I	1	1	3	2	2	Semi-honest
[dSGOPS18] II	3	1	5	2	3	Semi-honest
[Vit19]	2	1	4	2	3	Semi-honest
[AFMP20] I	2λ	2	4λ	$\lambda + 2$	2	Malicious
This work	1	1	3	2	2	Semi-honest
This work	1	1	5	4	4 ²	Malicious

Table 1: Comparison between isogeny-based OTs on efficiency with respect to the number of elliptic curves in the communication/ the number of isogeny computations for the sender and the receiver. The security parameter is denoted by λ .

Moreover, the underlying assumption, the reciprocal CSIDH problem, is as hard as the computational CSIDH problem.

²A correction corresponding to the previous change.

Efficient: taking only a constant number of isogeny computations.

- 1. (Minor) Can we have a quantum-friendly reductions between the reciprocal CSIDH problem and the CSIDH problem?
- 2. Can we have a round-optimal efficient isogeny-based OT?
- 3. Can we have an efficient adaptively UC-secure isogeny-based OT?

Thanks for you listening!

