
Compact, Efficient, UC-secure Isogeny-based
Oblivious Transfer

Yi-Fu Lai, Steven Galbraith, Cyprien Delpech de Saint Guilhem

University of Auckland, New Zealand
imec-COSIC, KU Leuven, Belgium

10/2021

1 / 27

Content

Introduction

Preliminary

Our Construction

Conclusion and Future Work

2 / 27

Content

Introduction

Preliminary

Our Construction

Conclusion and Future Work

3 / 27

Oblivious Transfer

The “classical” requirements for an oblivious transfer scheme are:

1. Bob gets one and only one message.

2. Alice doesn’t know Bob’s choice.

Given the importance of OT as a cryptographic tool, we need a stronger
notion taking composition into account.

4 / 27

Universally-Composible (UC) Security
UC security proposed by Canetti [Can01] is a simulation based security
notion. The simulator doesn’t simulate for the adversary but for the
environment machine.

5 / 27

Research Question

▶ Two isogeny based previous works with acceptable security are
[dSGOPS18] and [Vit19]. They are UC-secure against semi-honest
adversaries.

▶ By adding an UC-secure ZK proof protocol or using the generic
transformation like [DGH+20], the protocol can upgrade to
UC-secure against malicious adversaries while it will take poly(λ)
isogeny computations.

Can we have an isogeny-based OT UC-secure against malicious
adversaries taking a constant number of isogeny computations?

6 / 27

Content

Introduction

Preliminary

Our Construction

Conclusion and Future Work

7 / 27

CSIDH

Given an odd prime p. A Montgomery curve over Fp is defined as

EA : y2 = x3 + Ax2 + x, A ∈ Fp.

▶ An elliptic curve EA defined over Fp is said to be supersingular if
|EA(Fp)| = p + 1.

Let O be an order of an imaginary quadratic field Q(
√
−p) and π ∈ O.

Let Ep(O, π) collect all (supersingular) curves over Fp, modulo
Fp-isomorphism, whose endomorphism rings over Fp are isomorphic to
O where π corresponds to the Frobenius map.

▶ We know that the ideal class group Cl(O) acts freely and
transitively on Ep(O, π).

8 / 27

CSIDH

Given an odd prime p. A Montgomery curve over Fp is defined as

EA : y2 = x3 + Ax2 + x, A ∈ Fp.

▶ An elliptic curve EA defined over Fp is said to be supersingular if
|EA(Fp)| = p + 1.

Let O be an order of an imaginary quadratic field Q(
√
−p) and π ∈ O.

Let Ep(O, π) collect all (supersingular) curves over Fp, modulo
Fp-isomorphism, whose endomorphism rings over Fp are isomorphic to
O where π corresponds to the Frobenius map.

▶ We know that the ideal class group Cl(O) acts freely and
transitively on Ep(O, π).

8 / 27

CSIDH

Given an odd prime p. A Montgomery curve over Fp is defined as

EA : y2 = x3 + Ax2 + x, A ∈ Fp.

▶ An elliptic curve EA defined over Fp is said to be supersingular if
|EA(Fp)| = p + 1.

Let O be an order of an imaginary quadratic field Q(
√
−p) and π ∈ O.

Let Ep(O, π) collect all (supersingular) curves over Fp, modulo
Fp-isomorphism, whose endomorphism rings over Fp are isomorphic to
O where π corresponds to the Frobenius map.

▶ We know that the ideal class group Cl(O) acts freely and
transitively on Ep(O, π).

8 / 27

CSIDH

Given an odd prime p. A Montgomery curve over Fp is defined as

EA : y2 = x3 + Ax2 + x, A ∈ Fp.

▶ An elliptic curve EA defined over Fp is said to be supersingular if
|EA(Fp)| = p + 1.

Let O be an order of an imaginary quadratic field Q(
√
−p) and π ∈ O.

Let Ep(O, π) collect all (supersingular) curves over Fp, modulo
Fp-isomorphism, whose endomorphism rings over Fp are isomorphic to
O where π corresponds to the Frobenius map.

▶ We know that the ideal class group Cl(O) acts freely and
transitively on Ep(O, π).

8 / 27

Quadratic Twist

The quadratic twist of EA/Fp is defined as

Et
A : dy2 = x3 + Ax2 + x, A ∈ Fp,

where d(p−1
2) = −1 mod p.

▶ We have (a ∗ E)t = a−1 ∗ Et.
▶ Moreover, when p = 3 mod 4, we have Et

0 = E0 and Et
A = E−A

(Fp-isomorphic).
▶ Accordingly, when p = 3 mod 4, we have

(a ∗ E0)t = a−1 ∗ E0 for any a ∈ Cl.

9 / 27

Quadratic Twist

The quadratic twist of EA/Fp is defined as

Et
A : dy2 = x3 + Ax2 + x, A ∈ Fp,

where d(p−1
2) = −1 mod p.

▶ We have (a ∗ E)t = a−1 ∗ Et.
▶ Moreover, when p = 3 mod 4, we have Et

0 = E0 and Et
A = E−A

(Fp-isomorphic).
▶ Accordingly, when p = 3 mod 4, we have

(a ∗ E0)t = a−1 ∗ E0 for any a ∈ Cl.

9 / 27

Assumptions

We simplify Cl(O) as Cl, Ep(O, π) as E and write a ∈ Cl, E ∈ E (ignoring
the class notation). Assume we have uniform sampling over Cl,
denoted by← Cl.

Computational CSIDH problem

Fixed E ∈ E. Given (a ∗ E, b ∗ E) where a, b← Cl. Find ab ∗ E.

Square CSIDH problem

Fixed E ∈ E. Given (a ∗ E) where a← Cl. Find a2 ∗ E

Given the order of the group Cl, they are equivalent:
▶ A proof for the case p=3 mod 4 can be found in [Fel19].
▶ A full proof for the case p=1 mod 4 can be found in our appendix.

10 / 27

Assumptions

We simplify Cl(O) as Cl, Ep(O, π) as E and write a ∈ Cl, E ∈ E (ignoring
the class notation). Assume we have uniform sampling over Cl,
denoted by← Cl.

Computational CSIDH problem

Fixed E ∈ E. Given (a ∗ E, b ∗ E) where a, b← Cl. Find ab ∗ E.

Square CSIDH problem

Fixed E ∈ E. Given (a ∗ E) where a← Cl. Find a2 ∗ E

Given the order of the group Cl, they are equivalent:
▶ A proof for the case p=3 mod 4 can be found in [Fel19].
▶ A full proof for the case p=1 mod 4 can be found in our appendix.

10 / 27

Reciprocal CSIDH Problem

The reciprocal CSIDH problem is a 2-round experiment as follows:

11 / 27

Equivalence-I

The reciprocal CSIDH Problem is as hard as the square CSIDH
problem.

Reciprocal CSIDH Problem ≤ Square CSIDH problem:

1. Say the public curve is E ∈ E, commit to X = E and obtain a
challenge a ∗ E. (Then the task is to find (a ∗ E, a−1 ∗ E).)

2. Invoke the oracle with (a ∗ E, E), obtain C ∈ E and output (a ∗ E,C).

Correctness: Write E = a−1 ∗ (a ∗ E), we have

C = a−2 ∗ (a ∗ E) = a−1 ∗ E. □

12 / 27

Equivalence-I

The reciprocal CSIDH Problem is as hard as the square CSIDH
problem.

Reciprocal CSIDH Problem ≤ Square CSIDH problem:

1. Say the public curve is E ∈ E, commit to X = E and obtain a
challenge a ∗ E. (Then the task is to find (a ∗ E, a−1 ∗ E).)

2. Invoke the oracle with (a ∗ E, E), obtain C ∈ E and output (a ∗ E,C).

Correctness: Write E = a−1 ∗ (a ∗ E), we have

C = a−2 ∗ (a ∗ E) = a−1 ∗ E. □

12 / 27

Equivalence-I

The reciprocal CSIDH Problem is as hard as the square CSIDH
problem.

Reciprocal CSIDH Problem ≤ Square CSIDH problem:

1. Say the public curve is E ∈ E, commit to X = E and obtain a
challenge a ∗ E. (Then the task is to find (a ∗ E, a−1 ∗ E).)

2. Invoke the oracle with (a ∗ E, E), obtain C ∈ E and output (a ∗ E,C).

Correctness: Write E = a−1 ∗ (a ∗ E), we have

C = a−2 ∗ (a ∗ E) = a−1 ∗ E. □

12 / 27

Equivalence-I

The reciprocal CSIDH Problem is as hard as the square CSIDH
problem.

Reciprocal CSIDH Problem ≤ Square CSIDH problem:

1. Say the public curve is E ∈ E, commit to X = E and obtain a
challenge a ∗ E. (Then the task is to find (a ∗ E, a−1 ∗ E).)

2. Invoke the oracle with (a ∗ E, E), obtain C ∈ E and output (a ∗ E,C).

Correctness: Write E = a−1 ∗ (a ∗ E), we have

C = a−2 ∗ (a ∗ E) = a−1 ∗ E. □

12 / 27

Equivalence-II

Reciprocal CSIDH Problem ≥ Square CSIDH problem: We can show
this by using the rewinding argument.

1. Say the challenge is (E, a ∗ E) where E ∈ E. (Then the task is to
find a2 ∗ E.)

2. Invoke the oracle with the public curve a ∗ E. After the oracle
commits to X ∈ E, give the challenge E to the oracle.

3. Obtain (X1, X2) from the oracle, rewind the oracle, and replace the
challenge to be X1.

4. Obtain (X′1, X
′
2) from the oracle. Output X′2.

Correctness: Since E = a−1 ∗ (a ∗ E), we have X1 = a−1 ∗ X. Thanks to
transitive action, we can write X = x ∗ E, also write X1 = (a−2x) ∗ (a ∗ E).
Hence,

X′2 = (a2x−1) ∗ X = a2 ∗ E. □

13 / 27

Equivalence-II

Reciprocal CSIDH Problem ≥ Square CSIDH problem: We can show
this by using the rewinding argument.

1. Say the challenge is (E, a ∗ E) where E ∈ E. (Then the task is to
find a2 ∗ E.)

2. Invoke the oracle with the public curve a ∗ E. After the oracle
commits to X ∈ E, give the challenge E to the oracle.

3. Obtain (X1, X2) from the oracle, rewind the oracle, and replace the
challenge to be X1.

4. Obtain (X′1, X
′
2) from the oracle. Output X′2.

Correctness: Since E = a−1 ∗ (a ∗ E), we have X1 = a−1 ∗ X. Thanks to
transitive action, we can write X = x ∗ E, also write X1 = (a−2x) ∗ (a ∗ E).
Hence,

X′2 = (a2x−1) ∗ X = a2 ∗ E. □

13 / 27

Equivalence-II

Reciprocal CSIDH Problem ≥ Square CSIDH problem: We can show
this by using the rewinding argument.

1. Say the challenge is (E, a ∗ E) where E ∈ E. (Then the task is to
find a2 ∗ E.)

2. Invoke the oracle with the public curve a ∗ E. After the oracle
commits to X ∈ E, give the challenge E to the oracle.

3. Obtain (X1, X2) from the oracle, rewind the oracle, and replace the
challenge to be X1.

4. Obtain (X′1, X
′
2) from the oracle. Output X′2.

Correctness: Since E = a−1 ∗ (a ∗ E), we have X1 = a−1 ∗ X. Thanks to
transitive action, we can write X = x ∗ E, also write X1 = (a−2x) ∗ (a ∗ E).
Hence,

X′2 = (a2x−1) ∗ X = a2 ∗ E. □

13 / 27

Equivalence-II

Reciprocal CSIDH Problem ≥ Square CSIDH problem: We can show
this by using the rewinding argument.

1. Say the challenge is (E, a ∗ E) where E ∈ E. (Then the task is to
find a2 ∗ E.)

2. Invoke the oracle with the public curve a ∗ E. After the oracle
commits to X ∈ E, give the challenge E to the oracle.

3. Obtain (X1, X2) from the oracle, rewind the oracle, and replace the
challenge to be X1.

4. Obtain (X′1, X
′
2) from the oracle. Output X′2.

Correctness: Since E = a−1 ∗ (a ∗ E), we have X1 = a−1 ∗ X. Thanks to
transitive action, we can write X = x ∗ E, also write X1 = (a−2x) ∗ (a ∗ E).
Hence,

X′2 = (a2x−1) ∗ X = a2 ∗ E. □

13 / 27

Equivalence-II

Reciprocal CSIDH Problem ≥ Square CSIDH problem: We can show
this by using the rewinding argument.

1. Say the challenge is (E, a ∗ E) where E ∈ E. (Then the task is to
find a2 ∗ E.)

2. Invoke the oracle with the public curve a ∗ E. After the oracle
commits to X ∈ E, give the challenge E to the oracle.

3. Obtain (X1, X2) from the oracle, rewind the oracle, and replace the
challenge to be X1.

4. Obtain (X′1, X
′
2) from the oracle. Output X′2.

Correctness: Since E = a−1 ∗ (a ∗ E), we have X1 = a−1 ∗ X. Thanks to
transitive action, we can write X = x ∗ E, also write X1 = (a−2x) ∗ (a ∗ E).
Hence,

X′2 = (a2x−1) ∗ X = a2 ∗ E. □

13 / 27

Equivalence-II

Reciprocal CSIDH Problem ≥ Square CSIDH problem: We can show
this by using the rewinding argument.

1. Say the challenge is (E, a ∗ E) where E ∈ E. (Then the task is to
find a2 ∗ E.)

2. Invoke the oracle with the public curve a ∗ E. After the oracle
commits to X ∈ E, give the challenge E to the oracle.

3. Obtain (X1, X2) from the oracle, rewind the oracle, and replace the
challenge to be X1.

4. Obtain (X′1, X
′
2) from the oracle. Output X′2.

Correctness: Since E = a−1 ∗ (a ∗ E), we have X1 = a−1 ∗ X. Thanks to
transitive action, we can write X = x ∗ E, also write X1 = (a−2x) ∗ (a ∗ E).
Hence,

X′2 = (a2x−1) ∗ X = a2 ∗ E. □

13 / 27

Content

Introduction

Preliminary

Our Construction

Conclusion and Future Work

14 / 27

3-Round Construction
Enc: an IND-CPA symmetric key encryption scheme.

15 / 27

3-Round Construction -Idea
Intuitively, the idea is as like (not a rigorous proof):

16 / 27

Quadratic Twist Round-Compression

Enc: IND-CPA symmetric key encryption scheme.
H: hash fuction

17 / 27

2-Round Construction -Idea
Intuitively, the idea is as like (not a rigorous proof):

18 / 27

Semi-Simulation
To extract the secret input of the controlled receiver. The main idea here
is to use extractablility in ROM and non-commiting encryption to extract
the real input. Intuitively, the non-commiting encryption, which can be
instantiated by the one-time pad, allows us to produce a dummy
ciphertext and produce a corresponding secret key later.

Hence, assuming the hardness of the reciprocal CSIDH problem, the
simulation proceeds as follows,

1. Use the non-commiting encryption to produce two dummy
ciphertexts when simulating an honest sender.

2. Observe the random oracle queries1.

3. Once the query of one of k0, k1 is made, reply with the
scheme-produced key, and the extraction is complete.

1To avoid the delay encryption attack, we add an additional mechanism on improving
the one from [BDD+17] to force the adversary to make the random oracle queries of
one of the decryption keys.

19 / 27

Semi-Simulation
To extract the secret input of the controlled receiver. The main idea here
is to use extractablility in ROM and non-commiting encryption to extract
the real input. Intuitively, the non-commiting encryption, which can be
instantiated by the one-time pad, allows us to produce a dummy
ciphertext and produce a corresponding secret key later.

Hence, assuming the hardness of the reciprocal CSIDH problem, the
simulation proceeds as follows,

1. Use the non-commiting encryption to produce two dummy
ciphertexts when simulating an honest sender.

2. Observe the random oracle queries1.

3. Once the query of one of k0, k1 is made, reply with the
scheme-produced key, and the extraction is complete.

1To avoid the delay encryption attack, we add an additional mechanism on improving
the one from [BDD+17] to force the adversary to make the random oracle queries of
one of the decryption keys.

19 / 27

Semi-Simulation
To extract the secret input of the controlled receiver. The main idea here
is to use extractablility in ROM and non-commiting encryption to extract
the real input. Intuitively, the non-commiting encryption, which can be
instantiated by the one-time pad, allows us to produce a dummy
ciphertext and produce a corresponding secret key later.

Hence, assuming the hardness of the reciprocal CSIDH problem, the
simulation proceeds as follows,

1. Use the non-commiting encryption to produce two dummy
ciphertexts when simulating an honest sender.

2. Observe the random oracle queries1.

3. Once the query of one of k0, k1 is made, reply with the
scheme-produced key, and the extraction is complete.

1To avoid the delay encryption attack, we add an additional mechanism on improving
the one from [BDD+17] to force the adversary to make the random oracle queries of
one of the decryption keys.

19 / 27

Correction
Recently, a discussion with the third author indicates there is a fixable
bug in the paper.

Merging the mechanism and the ciphertext is sufficient if the
distinguishing security notion is a non-abort version.

20 / 27

Correction

If abort is part of the output of the functionality, the receiver should show
the ability to decrypt before obtaining the ciphertext.

21 / 27

Quadratic Twist Trapdoor
To have UC-security, we need to extract the secret input of the
adversary controlling the sender. The key idea here is to setup a
trapdoored reciprocal CSIDH problem:

Trapdoor Setup:

1. td← Cl

2. Return: (td ∗ E0, td)

Reciprocal CSIDH Problem Solver
when the public curve E = td ∗ E0

1. Commit to X = b ∗ E where b← Cl

2. Receive, say, E′ from the challenger

3. Return: (b ∗ E′, tdb ∗ (td−1 ∗ (E′))t)

Correctness:
Say E′ = a ∗ E. Since X = b ∗ E, it suffices to show
td ∗ (td−1 ∗ (E′))t = a−1 ∗ E.
By using propositions, we have

LHS = td ∗ (td ∗ (tda)−1 ∗ E0) = RHS . □

22 / 27

Quadratic Twist Trapdoor
To have UC-security, we need to extract the secret input of the
adversary controlling the sender. The key idea here is to setup a
trapdoored reciprocal CSIDH problem:

Trapdoor Setup:

1. td← Cl

2. Return: (td ∗ E0, td)

Reciprocal CSIDH Problem Solver
when the public curve E = td ∗ E0

1. Commit to X = b ∗ E where b← Cl

2. Receive, say, E′ from the challenger

3. Return: (b ∗ E′, tdb ∗ (td−1 ∗ (E′))t)

Correctness:
Say E′ = a ∗ E. Since X = b ∗ E, it suffices to show
td ∗ (td−1 ∗ (E′))t = a−1 ∗ E.
By using propositions, we have

LHS = td ∗ (td ∗ (tda)−1 ∗ E0) = RHS . □

22 / 27

Quadratic Twist Trapdoor
To have UC-security, we need to extract the secret input of the
adversary controlling the sender. The key idea here is to setup a
trapdoored reciprocal CSIDH problem:

Trapdoor Setup:

1. td← Cl

2. Return: (td ∗ E0, td)

Reciprocal CSIDH Problem Solver
when the public curve E = td ∗ E0

1. Commit to X = b ∗ E where b← Cl

2. Receive, say, E′ from the challenger

3. Return: (b ∗ E′, tdb ∗ (td−1 ∗ (E′))t)

Correctness:
Say E′ = a ∗ E. Since X = b ∗ E, it suffices to show
td ∗ (td−1 ∗ (E′))t = a−1 ∗ E.
By using propositions, we have

LHS = td ∗ (td ∗ (tda)−1 ∗ E0) = RHS . □

22 / 27

Quadratic Twist Trapdoor
To have UC-security, we need to extract the secret input of the
adversary controlling the sender. The key idea here is to setup a
trapdoored reciprocal CSIDH problem:

Trapdoor Setup:

1. td← Cl

2. Return: (td ∗ E0, td)

Reciprocal CSIDH Problem Solver
when the public curve E = td ∗ E0

1. Commit to X = b ∗ E where b← Cl

2. Receive, say, E′ from the challenger

3. Return: (b ∗ E′, tdb ∗ (td−1 ∗ (E′))t)

Correctness:
Say E′ = a ∗ E. Since X = b ∗ E, it suffices to show
td ∗ (td−1 ∗ (E′))t = a−1 ∗ E.
By using propositions, we have

LHS = td ∗ (td ∗ (tda)−1 ∗ E0) = RHS . □

22 / 27

The Other Half Simulation

1. Setup the trapdoor for the public curve E for the protocol.

2. Invoke the reciprocal CSIDH problem solver (Step 1) to produce B.

3. Upon receiving the curve A ∈ E from the controlled sender, invoke
the reciprocal CSIDH problem solver to obtain (k′0, k

′
1) ∈ E2.

4. Decrypt the ciphertexts with H(k′0),H(k′1) and complete the
simulation.

23 / 27

Content

Introduction

Preliminary

Our Construction

Conclusion and Future Work

24 / 27

Conclusion and Future Work

Proposal PKS PKR # IsoS # IsoR rounds Adv Model
[dSGOPS18] I 1 1 3 2 2 Semi-honest
[dSGOPS18] II 3 1 5 2 3 Semi-honest
[Vit19] 2 1 4 2 3 Semi-honest
[AFMP20] I 2λ 2 4λ λ + 2 2 Malicious
This work 1 1 3 2 2 Semi-honest
This work 1 1 5 4 4 2 Malicious

Table 1: Comparison between isogeny-based OTs on efficiency with respect to
the number of elliptic curves in the communication/ the number of isogeny
computations for the sender and the receiver. The security parameter is
denoted by λ.

Moreover, the underlying assumption, the reciprocal CSIDH problem, is
as hard as the computational CSIDH problem.

2A correction corresponding to the previous change.
25 / 27

Conclusion and Future Work

Efficient: taking only a constant number of isogeny computations.

1. (Minor) Can we have a quantum-friendly reductions between the
reciprocal CSIDH problem and the CSIDH problem?

2. Can we have a round-optimal efficient isogeny-based OT?

3. Can we have an efficient adaptively UC-secure isogeny-based OT?

26 / 27

Thanks for you listening!

27 / 27

	Introduction
	Preliminary
	Our Construction
	Conclusion and Future Work

