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Overview

• Most NIST PQC finalists (5/7) are based on hard lattice problems.

• Practical cryptanalysis is important to pick concrete parameters.
• Lattice sieving algorithms have the best practical and asymptotic runtime.
• How fit are (different) sieving algorithms for specialized hardware?
• Including more advanced sieving techniques.
• First GPU implementation using all state-of-the-art sieving techniques.
• Improves both runtime and energy efficiency by two orders of magnitude.
• Significantly improve several lattice problem records.
• First optimized implementation of the asymptotic best known sieve [BDGL].
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TU Darmstadt Lattice Challenge

• Gives an indication of the concrete hardness of SVP.

• Given: ‘Random’ d -dimensional lattice L (Goldstein and Mayer)
• Goal: Find a v ∈ L s.t.

‖v‖ ≤ 1.05 · GH(L) ≈ 1.05 · λ1(L).
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Tensor Cores

• Very efficient (low precision) matrix multiplication.

• 16-bit precision is good enough.
• Up to 108 16-bit Tflops! [2018 model we used]
• Newest model > 300 16-bit Tflops.
• The current best CPU would reach at most ≈ 5 16-bit Tflops.
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G6K, Albrecht et al. 2019

• Open source sieving framework/implementation.

• Advanced sieving: Combines all state-of-the-art results/‘tricks’.
• Fully parallel (CPU, single machine).
• SVP record at dimension 155 in ±14 days

• 4× 18 cpu cores.
• ≈ 256GiB memory.

• Enumeration: dimension 152 using 800.000 core hours!.
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Sieving Process

Bucketing Reducing Insertion

Database

Loop until target saturation achieved
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Bucketing

0 c

Partition the sphere.

Only check all pairs
within each bucket.

Increases reduction
probability per pair.
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Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).

• [BGJ1] Random spherical cones.

•
√

N buckets of size
√

N.
• time 20.349d+o(d).
• Trick: Replace random directions with random lattice vectors.
• Compute inner products with lattice vectors: Tensor cores!

• [BDGL] Structured spherical cones (product code).

• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!
• time 20.292d+o(d) for k = θ(log n).
• Trick: Implicit directions using permutations and Hadamard transform.
• Suitable for CPU (AVX2) and GPU.
• AVX2 CPU implementation merged into G6K, fastest CPU sieve.
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Bucketing Quality
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Reducing

• For each pair v,w in a bucket check if ‖v ± w‖ < C .

• ‖v ± w‖2 = ‖v‖2 + ‖w‖2 ± 2〈v,w〉.
• Need to compute pairwise inner products 〈v,w〉: Tensor cores!.
• Sparse output: only return successful pairs.
• FLOP: O(d · B2), data: O(d · B), ratio improves for larger bucket size B.
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BGJ1 vs BDGL
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Dimensions for Free [Duc18]

• Sieve in a projected sublattice πl (L) (projected away from first l basis vectors).

• Lift the database back to the full lattice [Babai lifting].

1 dl

• Finds the shortest vector for l = O
(

d
log(d)

)
.

• Progressive sieving: decrease l step-by-step.
• On the fly lifting: lift any shortish vector we encounter.
• Can we efficiently detect if vi − vj might lift to a short vector [BDD problem]?
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Dual Hash

• For short dual vectors z1, . . . , zk ∈ D we define the dual hash

H(t) := (〈t, zi〉)i .

• If dist(L, t) is small, then dist(Zk ,H(t)) is small.
• For l = 16, k = 48 seems enough for a strong correlation.
• H(ti − tj ) = H(ti )− H(tj ), so O(k) operations per pair.
• Suitable for GPUs.
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Dual Hash
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Saving Memory

• G6K stores lot’s of information per vector y =
∑d

i=1 xi bi :

• [x1, . . . , xd ]. (2d)
• [〈y, b̃1〉/

∥∥∥b̃1

∥∥∥ , . . . , 〈y, b̃d〉/
∥∥∥b̃d

∥∥∥]. (4d)
• ‖y‖2. (8)
• Unique Identifier (8)
• Lift target t. (4l)
• Dual Hash (4l)
• Popcount (d/4)

• Remove all except x, ‖y‖2 and unique identifier.
• Reduces memory by ±60%.
• Compute everything on the GPU, overhead of O(B · d2) for a bucket size B.
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New SVP records

Dimension 180!
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Conclusion

• Lattice sieving algorithms can efficiently be implemented on GPUs.

• Memory bottlenecks disappear when buckets are large enough.
• Extra benefit of saving memory with negligible overhead.
• BDGL beats BGJ1 in practice on CPUs, but the cross-over for GPUs lies much

higher.
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