On the ideal shortest vector problem over random rational primes

Qi Cheng

School of Computer Science University of Oklahoma

> Oct 2021 EuroCrypt

This is a joint work with Yanbin Pan, Jun Xu and Nick Wadleigh.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Quantum resistant.
- Fast operation (addition and multiplication on small numbers, no exponentiation)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Quantum resistant.
- Fast operation (addition and multiplication on small numbers, no exponentiation)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Worst case hardness

- Quantum resistant.
- Fast operation (addition and multiplication on small numbers, no exponentiation)
- Worst case hardness
- Low dimensional lattice problem is easy \rightarrow Key size Problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Quantum resistant.
- Fast operation (addition and multiplication on small numbers, no exponentiation)
- Worst case hardness
- \blacktriangleright Low dimensional lattice problem is easy \rightarrow Key size Problem \rightarrow Ideal lattice

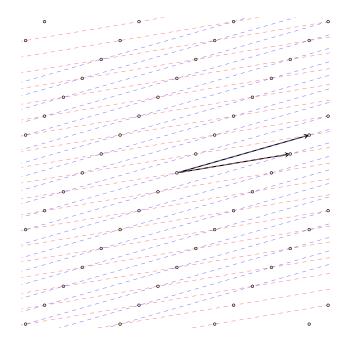
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Given *n* linearly independent vectors $b_1, \ldots, b_n \in \mathbb{R}^m$ $(n \le m)$, the lattice generated by them is the set of vectors

$$L(\mathbf{b}_1,\ldots,\mathbf{b}_n) = \{\sum_{i=1}^n x_i \mathbf{b}_i : x_i \in \mathbb{Z}\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The vectors b_1, \ldots, b_n form a basis of the lattice.



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@





(ロトメ団トメヨトメヨト ヨーのえぐ

The shortest vector

- Hermite bound: $\sqrt{n}det(L)^{1/n}$ (uniform)
- On average has length $(1 + o(1))\sqrt{\frac{n}{2e\pi}}det(L)^{1/n}$ (Gauss Heuristic)
- Must have length less than $(1 + o(1))\sqrt{\frac{2n}{e\pi}}det(L)^{1/n}$. (The Minkowski Convex Body Theorem)

The shortest vector

- Hermite bound: $\sqrt{n}det(L)^{1/n}$ (uniform)
- On average has length $(1 + o(1))\sqrt{\frac{n}{2e\pi}}det(L)^{1/n}$ (Gauss Heuristic)
- Must have length less than $(1 + o(1))\sqrt{\frac{2n}{e\pi}}det(L)^{1/n}$. (The Minkowski Convex Body Theorem)

SVP, approx-SVP, Hermite-SVP: find vectors of length $\leq \lambda_1, \gamma \lambda_1$ and $\gamma det(L)^{1/n}$ respectively.

Number Rings

- A number field over \mathbf{Q} : $L = \mathbf{Q}[x]/(x^N + \cdots)$
- ▶ The ring of integers O_L is a free **Z**-module. If monogenic, then $\alpha \in O_L$ may be chosen so that

$$O_L = \mathbf{Z} + \alpha \mathbf{Z} + \alpha^2 \mathbf{Z} + \dots + \alpha^{N-1} \mathbf{Z}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Canonical embeddings

A number field \mathbb{K} of degree N over \mathbf{Q} has exactly N embeddings into \mathbb{C} : $\sigma_1, \sigma_2, \cdots, \sigma_N$. The canonical embedding $\Sigma_{\mathbb{K}}$ sends \mathbb{K} to \mathbb{C}^N :

$$\Sigma_{\mathbb{K}}: \mathbb{K} \to \mathbb{C}^{N}, \ a \mapsto (\sigma_{1}(a), \sigma_{2}(a), \cdots, \sigma_{N}(a)).$$

The image of $\Sigma_{\mathbb{K}}$ falls into a subspace in \mathbb{C}^N , which is isomorphic to \mathbf{R}^N as an inner product space.

Example
$$Q[x]/(x^4 + 1)$$
:
 $1 \to (1, 1, 1, 1) \in \mathbb{C}^4$ or $(\sqrt{2}, 0, \sqrt{2}, 0) \in \mathbb{R}^4$.
 $1 + x \to (1 + \zeta_8, 1 + \zeta_8^7, 1 + \zeta_8^3, 1 + \zeta_8^5)$ or
 $(\sqrt{2}Re(1 + \zeta_8), \sqrt{2}Im(1 + \zeta_8), \sqrt{2}Re(1 + \zeta_8^3), \sqrt{2}Im(1 + \zeta_8^3) \in \mathbb{R}^4$.

The *coefficient embedding*, is most commonly used in cryptographic constructions. If monogenic, map $\beta = a_0 + a_1\alpha + ... + a_{N-1}\alpha^{N-1}$ to its coefficient vector, $C(\beta) := (a_0, a_1, ..., a_{N-1})$. Example $Q[x]/(x^4 + 1)$: $1 \rightarrow (1, 0, 0, 0) \in \mathbb{Z}^4$. $1 + 2x \rightarrow (1, 2, 0, 0) \in \mathbb{Z}^4$

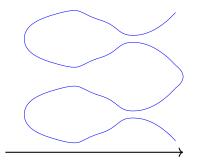
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ideal Lattices

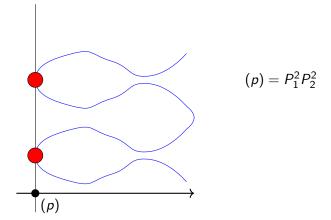
_

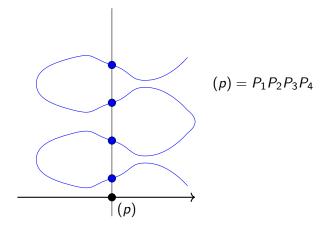
_

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

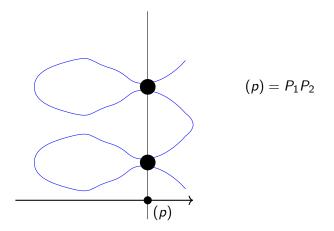


◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆





◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●



Let G be the Galois group of \mathbb{L} over \mathbb{Q} . The decomposition group, D, and decomposition field, \mathbb{K} , for \mathfrak{p}_1 are defined as:

 $D:=\{\sigma\in G:\sigma(\mathfrak{p}_1)=\mathfrak{p}_1\},\$

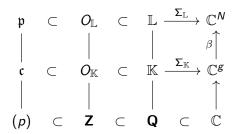
$$\mathbb{K} := \{ x \in \mathbb{L} : \forall \sigma \in D, \sigma(x) = x \}.$$

▶ If p unramified, then D is isomorphic to $Gal((O_L/\mathfrak{p}_1)/F_p)$

 If p₁ = (p, x^{N/g} + · · ·), then the degree of K over Q is g, and det(p₁ ∩ K) = p.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A diagram



Here β is (up to permutation) just the linear embedding given by repeating each coordinate N/g times.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The main theorem

Theorem

Suppose \mathbb{L}/\mathbb{Q} is a finite Galois extension with degree N, and suppose \mathfrak{p} is a prime ideal of $O_{\mathbb{L}}$ lying over an unramified rational prime p such that $pO_{\mathbb{L}}$ has g distinct prime ideal factors in $O_{\mathbb{L}}$. If \mathbb{K} is the decomposition field of \mathfrak{p} , then a solution to Hermite-SVP with factor γ in the sublattice $\mathfrak{c} = \mathfrak{p} \cap O_{\mathbb{K}}$ under the canonical embedding of \mathbb{K} will also be a solution to Hermite-SVP in \mathfrak{p} with factor $\frac{\sqrt{N/g}}{N_{\mathbb{K}}(\operatorname{disc}(\mathbb{L}/\mathbb{K}))^{1/(2N)}} \cdot \gamma \ (\leq \sqrt{\frac{N}{g}} \cdot \gamma)$ under the canonical embedding of \mathbb{L} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Power of two cyclotomic fields

Theorem

For any prime ideal $\mathfrak{p} = (p, f(\zeta))$ in $\mathbf{Z}[\zeta]$, where p is an odd prime and f(x) is some irreducible factor of $x^{2^n} + 1$ in $\mathbf{F}_p[x]$. Write

$$p = \begin{cases} 2^A \cdot m + 1, & \text{if } p \equiv 1 \pmod{4}; \\ 2^A \cdot m - 1, & \text{if } p \equiv 3 \pmod{4}, \end{cases}$$

for some odd m and $A \ge 2$, and let

$$r = \begin{cases} \min\{A-1,n\}, & \text{if } p \equiv 1 \pmod{4}; \\ \min\{A,n\}, & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

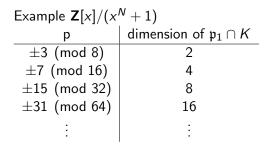
Then given an oracle that can solve SVP for 2^r -dimensional lattices, a shortest nonzero vector in \mathfrak{p} can be found in $poly(2^n, \log_2 p)$ time with the coefficient embedding.

Power of two cyclotomic fields

Theorem

Let $N = 2^n$, where n is a positive integer. Let \mathfrak{p} be a prime ideal in the ring $\mathbf{Z}[x]/(x^N + 1)$, and suppose \mathfrak{p} contains a prime number $p \equiv \pm 3 \pmod{8}$. Then under the coefficient embedding, the shortest vector in \mathfrak{p} can be found in time poly $(N, \log p)$, and the length of the shortest vector is exactly \sqrt{p} .

Complexity of Prime Ideals



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Average case complexity

To select a random prime ideal, one fixes a large M, uniformly randomly selects a prime number in the set

 $\{p \text{ is a prime } : p < M\},\$

and then uniformly randomly selects a prime ideal lying over p.
Select a prime ideal uniformly at random from the set

 $\{\mathfrak{p} \text{ prime ideal} : p \in \mathfrak{p}, p \text{ is a prime}, p < M\}.$

We select uniformly at random a prime ideal from the set

 $\{\mathfrak{p} \text{ prime ideal} : \mathcal{N}(\mathfrak{p}) < M\},\$

where $\mathcal{N}(\mathfrak{p})$ is the norm of the ideal \mathfrak{p} .

Let $N = 2^n$, where *n* is a positive integer. Let \mathcal{I} be an ideal in the ring $\mathbf{Z}[x]/(x^N + 1)$ with prime factorization

$$\mathcal{I}=\mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_k.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If each \mathfrak{p}_i contains a prime integer $\equiv \pm 3 \pmod{8}$, the shortest vector in \mathcal{I} can be found in time $poly(N, \log(\mathcal{N}(\mathcal{I})))$.

Open problems

> The length of the shortest vectors in prime ideals lying over rational primes not congruent to $\pm 3 \pmod{8}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The worst case hardness of prime ideal lattice SVP for power-of-two cyclotomic fields is also left open. The end

Thank you !