
Towards Accountability in CRS Generation

Hila Dahari

Weizmann Institute
of Science

Vipul Goyal

CMU and NTT
Research

Prabhanjan Ananth

UCSB

Eurocrypt 2021

Gilad Asharov

Bar-Ilan
University

Non-Interactive Zero-Knowledge (NIZK) [BFM88]

Ⱬ

The model:

× Let ╛be an NP-language

× Given ●, the prover wants to convince the

verifier that ●in ╛without revealing any

additional information about ●. [GMR85] Proverr Verifierr

●ᶰὒ
Here the
proof: Ⱬ

accept/reject

Non-Interactive Zero-Knowledge (NIZK) [BFM88]

Ⱬ

The model:

× For a singlemessage zero-knowledge proof, we

require trusted set-up, specifically, we require a

common reference string. [GO94, FLS90]

Proverr Verifierr

●ᶰὒ
Here the
proof: Ⱬ

accept/reject

Common Reference String (CRS) Model [BFM88,D00,FF00]

The model:The parties share a trusted public string

from a known distribution.

Motivation:

ÅNon-interactive zero-knowledge for NP [GO94, FLS90]

ÅMalicious two round MPC [MW16, GS18, BL18]

πρπππρρππρρρρρπρπρρρπρȣ

Non-Interactive Zero-Knowledge (NIZK) [BFM88]

Ⱬ

Proverr

●ᶰὒ
Here the
proof: Ⱬ

Completeness: If ●ᶰ╛, the verifier acceptsw.h.p

Soundness: If ●ɵ ╛, the verifier rejectsw.h.p

Zero knowledge: If ●ᶰ╛, the verifier cannot learn

any additional information from the proof Ⱬ.

More formally, ɱ╢such that for all ●ᶰ╛:

╢●ḙ ╒╡╢ȟⱫ

Verifierr

accept/reject

NIZK in the Common Reference String (CRS) [FLS90]

However, in the real world,

1. Who generates the CRS?

2. What happens if the CRSis maliciously generated?

πρπππρρπρρρρρπρπρρρπρȣ

Ⱬ

Proverr Verifierr

Related Works

Weaker notions of security:

Å Zap [DworkNaor00]

Å Super-polynomial simulation security [Pas03]

Å Multi-string model [GrothOstrovsky07]

Å Unreliable CRS[GoyalKatz08, GargGoyalJainSahai11]

Å NIZKs with an untrusted CRS [BellareFuchsbauerScafuro16]

CRS generation in the real world

Paranoia, the destroyer: Za Wilcox, brother of

Zcash CEO Zooko Wilcox, sets about destroying

a computer used to generate the cryptographic
parameters needed to start Zcash

Who generates the CRS?

×MPCςmultiple parties generate together the CRS.

https://www.youtube.com/watch?v=D6dY-3x3teM

https://www.youtube.com/watch?v=D6dY-3x3teM

CRS generation in the real world

Who generates the CRS?

× A trusted party

In real life, do there really exist trusted parties?

CRS generation in the real world

× If a maliciousparty recoversprivate information, but keepsit to themselves –impossibleto

protect against

× If the maliciousparty usesthe private information, we want to prove they acted maliciously

Our Talk

× Our focus: a party who tries to sellprivate information is held accountable

× We introduce the notion of accountabilityin CRS generation

× We studyaccountabilityfor NIZK, 2PC, and specifically,OT

Our Results: Informally,

× NIZK:Under standard assumptions, we get NIZKfor all of NP with accountabilityin CRS generation

× 2PC: There is a two-party functionality for which it is impossibleto achieve accountability

× 2PC: Under standard assumptions, we get 2PCfor a large class of functionalities with accountability

in CRS generation

Our setting: A party called Authority generates the CRS.

× The authority is an honest party –

Everything works

CRS generation in the real world

πρπππρρπρρρρρπρπρρρπρȣ

Ⱬ

Proverr Verifierr

Authorityr

CRS generation in the real world

πρπππρρρρρρρρπρȣ

Ⱬ

Proverr Verifierr

MaliciousAuthorityr

Our setting: A party called Authority generates the CRS.

× The authority is a malicious party –

ü A maliciousauthority generates CRSwith

trapdoors.

ü The prover uses the “bad” CRSto generate a NIZK

and send it to the verifier

CRS generation in the real world

πρπππρρρρρρρρπρȣ

MaliciousAuthorityr

Our setting: A party called Authority generates the CRS.

× The authority is a malicious party –

ü The maliciousauthority extracts from the proof Ⱬ

(using the trapdoors in the CRS) the private

information ◌

Given:Ⱬ, CRS
(with trapdoors)

Extract private
information: ◌

CRS generation in the real world

πρπππρρρρρρρρπρȣ

MaliciousAuthorityr

Our setting: A party called Authority generates the CRS.

× The authority is a malicious party –

ü The maliciousauthority sets up a backdoor

service thatsellsthe private information ◌for

profit

Ⱬȟ/w{

◌

Ⱬ

◌

CRS generation in the real world

× The authority is amalicious party –

The authority canmaliciouslygenerate the CRSȟwith

trapdoors, recover private information,

and use the backdoorservice to sell the private

information for profit.

Backdoor
service

πρπππρρρρρρρρπρȣ

Ⱬ

Proverr Verifierr

MaliciousAuthorityr

CRS generation in the real world

Our goal: Be able to use the backdoorservice to

generate a proof that:

1. The CRS was maliciouslygenerated

2. The authority was dishonest

πρπππρρρρρρρρπρȣ

Ⱬ

Proverr Verifierr

MaliciousAuthorityr

Backdoor
service

CRS generation in the real world

πρπππρρρρρρρρπρȣ

MaliciousAuthorityr

× Specifically, to construct an extractor that by usingthe

backdoorservice can generate a proof that the

authority maliciouslygenerated the CRS

Ⱬȟ/w{

◌

Ⱬ

◌

MaliciousAuthorityr

CRS generation in the real world

× If the backdoorservice will recognize the extractor,

it will not open the proof, thus the queriesshould

look like “real”.

ḙ
Ⱬ

◌ᴂ

Ⱬᴂ

Extractorr

◌

Extractthe witness
from the proof

using the trapdoor
in the CRS

CRS generation in the real world

πρπππρρρρρρρρπρȣ

Ⱬ

Proverr Verifierr

MaliciousAuthorityr

Our approach: Design a CRS generation

protocol that satisfies an accountabilityproperty.

Backdoor
service

CRS generation in the real world

πρπππρρρρρρρρπρȣ

Ⱬ

Proverr Verifierr

MaliciousAuthorityr

Judger

Authority is

malicious
Here the

evidence: Ⱳ

honest/corrupted

Let (GenCRS, Prove, Verify, Judge) be a

four PPT algorithms, such that:

Å (GenCRS, Prove, Verify) is a NIZK proof

system

Å Judge(syntax) –

Å Input: a CRS, and anevidence Ⱳ

Å Output: honest/corrupted CRS

Backdoor
service

CRS generation in the real world

πρπππρρρρρρρρπρȣ

Ⱬ

Proverr Verifierr

MaliciousAuthorityr

Judger honest/corrupted

Accountability: If the authority is malicious,

and sellsyour information,

you can use the backdoorservice to

generate a publicly verifiable proof.

* For example: to convince a judge in the court

Backdoor
service

Authority is

malicious
Here the

evidence: Ⱳ

CRS generation in the real world

πρπππρρρρρρρρπρȣ

Ⱬ

Proverr Verifierr

MaliciousAuthorityr

Judger honest/corrupted

Defamation free: If the authority is honest,

one cannotgenerate a proof against the authority

that is accepted by Judge.

Formally, ᶅ ὖὖὝmalicious partyὃȟthere

exists a negligible function ‘ẗsuch that for all‗:

ὖὶ[WǳŘƎŜό/w{Σ═/w{ƻǳǘǇǳǘǎŎƻǊǊǳǇǘŜŘ/w{] ‘‗

where /w{NGenCRS(ρ)

Backdoor
service

Authority is

malicious
Here the

evidence: Ⱳ

CRS generation in the real world

πρπππρρρρρρρρπρȣ

Ⱬ

Proverr Verifierr

MaliciousAuthorityr

Judger honest/corrupted

We say that (GenCRS, Prove, Verify, Judge) has

Malicious Authority Security for NIZK if:

Å (GenCRS, Prove, Verify) is a NIZK proof

system

Å (GenCRS, Prove, Verify, Judge) satisfies both,

accountability anddefamation free.

Backdoor
service

Authority is

malicious
Here the

evidence: Ⱳ

Accountability

Sample ὼȟύ

“ᴺὖὶέὺὩὅὙὛzȟὼȟύ “

ύ

Acc.Real

The output is ρiff: Ὑὼȟύᴂ ρ

Malicious

Authority

ὅὙὛᶻ

Accountability

Sample ●ȟ◌

ⱫᴺὖὶέὺὩ╒╡╢zȟ●ȟ◌ “

ύ

Acc.Real

The output is ρiff: Ὑὼȟύᴂ ρ

Malicious

Authority

╒╡╢ᶻ

ȣ

Ⱬ

MaliciousAuthorityr

Prover
●ȟ◌

Verifier
● r

Accountability

Sample●ȟ◌

ⱫᴺὖὶέὺὩ╒╡╢zȟὼȟύ Ⱬ

◌

Acc.Real

The output is ρiff: Ὑὼȟύᴂ ρ

Malicious

Authority

╒╡╢ᶻ

MaliciousAuthorityr

Ⱬ

◌

Ⱬȟ╒╡╢ᶻ

◌

Accountability

Sampleὼȟύ

“ᴺὖὶέὺὩὅὙὛzȟὼȟύ “

ύ

Acc.Real

ὅὙὛᶻ

“

ύ

Acc.Ext

ὅὙὛᶻȟⱲ

The output is ρiff: Ὑὼȟύᴂ ρ

Malicious

Authority

Extractorr

Sampleὼȟύ

“ᴺὖὶέὺὩὅὙὛᶻȟὼȟύ

Extractorr

Malicious

Authority

Judger

ὅὙὛᶻ

The output is ρif the Judgewill be convinced
by the evidenceⱲthat ὅὙὛᶻis corrupted

ὅὙὛzȟⱲ

Accountability
Acc.Real

ὅὙὛᶻ

“

ύ

Acc.Ext

The output is ρif the Judgewill be convinced
by the evidenceⱲthat ὅὙὛᶻis corrupted

The output is ρiff: Ὑὼȟύᴂ ρ

Extractorr

Sampleὼȟύ

“ᴺὖὶέὺὩὅὙὛᶻȟὼȟύ

Accountability:ᶪ004authorityὃthat succeeds in ἋἫἫȢἠἭἩἴ, there exists an 004ŜȄǘǊŀŎǘƻǊὉthat succeeds in ἋἫἫȢἏὀἼ

Malicious

Authority

Sampleὼȟύ

“ᴺὖὶέὺὩὅὙὛzȟὼȟύ “

ύ Malicious

Authority

ὅὙὛᶻ

ὅὙὛzȟⱲ

Theorem (Informal). Assuming SXDH on bilinear maps, there exists a NIZK for NP language in the
CRS model satisfying both the accountabilityand the defamation-free properties.

Our Results

Positive Results

High Level of Our
Construction

Rerandomize

sample ►

Malicious Authority Security for NIZK

Proverr Verifierr

MaliciousAuthorityr

╝╘╩╚

╒╡╢ ╬╒╡╢ ὅέάπȠЉ

Starting point: Force the CRSauthority to add a

commitment to the CRS. Then, the proof is the ability to open

the commitment.

If the authority is malicious, then from the obtained witness

the extractor can recoverthe secret Љin the CRSand prove to

the judge

Tools:Re-rendomizablebit commitment scheme [GOS06,ADKL19]

ὅέάπȠЉṥ►ὅέάπȠЉ

Malicious Authority Security for NIZK

Proverr Verifierr

MaliciousAuthorityr

╝╘╩╚έὪ╬

╒╡╢ ╬╒╡╢ ὅέάπȠЉ

Extractorr

Statement: ╬ ὅέάπȠ●

Witness: ●

Љṥ►

╝╘╩╚έὪ╬

Sample►andrerandomize

Statement: ╬ ὅέάπȠЉṥ►

Witness: Љṥ►

ὅέάπȠЉ ὅέάπȠЉṥ►

Toy example, not an NPC language

Malicious Authority Security for NIZK

Extract Љ

Statement: ╬ ὅέάπȠЉṥ►

Witness: Љṥ►

Extractorr

Statement: ╬ ὅέάπȠ●

Witness: ●

Љṥ►

Judger

Check:if╬╒╡╢ ὅέάπȠЉ

Output: corruptedCRS

Љȟ╬╒╡╢

Proverr Verifierr

MaliciousAuthorityr

╒╡╢ ╬╒╡╢ ὅέάπȠЉ

╝╘╩╚έὪ╬

╝╘╩╚έὪ╬

Toy example, not an NPC language

Malicious Authority Security for NIZK

Proverr Verifierr

MaliciousAuthorityr

╝╘╩╚έὪ╬

╒╡╢ ╬╒╡╢ ὅέάπȠЉ

Extractorr

Statement: ╬ ὅέάπȠ●

Witness: ●

Љṥ►

╝╘╩╚έὪ╬

Sample►andrerandomize

Statement: ╬ ὅέάπȠЉṥ►

Witness: Љṥ►

ὅέάπȠЉ ὅέάπȠЉṥ►

Accountability follows from

perfect rerandomization.

Defamation freefollows from

the security of the commitment.

Challenges

× In the paper, we extend this idea to an NPC problem (a variant of Circuit Satisfiability)

× A major challenge is to generatea NIZK while the extractor does not know the witness

MaliciousAuthorityr

╒╡╢ ╬╒╡╢ ὅέάπȠЉ

Extractorr

Љṥ►

╝╘╩╚έὪ╬

Sample►andrerandomize

Statement: ╬ ὅέάπȠЉṥ►

Witness: Љṥ►

ὅέάπȠЉ ὅέάπȠЉṥ►

Challenges

× Our approach is to force the authority to add more information to the CRS.

However, if the authority is a maliciousparty, how can the prover checkthat the

additional information is valid?

× We cannot use NIZK since it will require CRS

More Results –
Accountability in 2PC

2PC in CRS model

× We cannotachieve malicious 2 rounds 2PC in the plain model [MW16, GS18, BL18]

× In the CRS model, we can achieve malicious 2 rounds 2PC, but a corrupted authority can recoverthe

private inputs

Can we achieve accountabilityin CRS generation for 2PC?

× We extend the definition of accountability for 2PC

Strong Accountability

In 2PC protocol the authority can be active–and corrupted one of the parties during the protocol.

We call such a case strong accountability, and we ask whether strong accountability is achievable.

Our Results - OT

Positive Results

Theorem (Informal). Assuming IO for P/poly [BGI+01,GGH+16] and SXDH on bilinear groups, there
exists a two-round maliciously secure OT in the CRS model satisfying both strong accountability
and defamation-free properties.

Theorem (Informal). Assuming SXDH on bilinear maps, there exists a two-round maliciously secure
OT in the CRS model satisfying both weak accountability and defamation-free.

Our Results – 2PC

Positive Results

Theorem (Informal). Assuming SXDH on bilinear maps, there exists a two-round maliciously secure
two-party computation protocol for G satisfying both weak accountability and defamation-free.

Theorem (Informal). There exists a two-party functionality F such that there does not exist any
secure two-party computation protocol for F in the CRS model satisfying both (weak)
accountabilityand defamation-free properties.

Impossibility Result

* The class of functions Gincludes for instance: oblivious transfer, private information retrieval, subset sum, and
more.

Our Results – 2PC

Positive Results

Theorem (Informal). Assuming SXDH on bilinear maps, there exists a two-round maliciously secure
two-party computation protocol for G satisfying both weak accountability and defamation-free.

Theorem (Informal). There exists a two-party functionality F such that there does not exist any
secure two-party computation protocol for F in the CRS model satisfying both (weak)
accountabilityand defamation-free properties.

Impossibility Result

