Pre-Computation Scheme of Window τ NAF for Koblitz Curves Revisited

Wei Yu, Guangwu Xu

Institute of Information Engineering, Chinese Academy of Sciences yuwei_1_yw@163.com

Eurocrypt 2021

Introduction

lei Yu, Guangwu Xu Pre-Computation Scheme of Window τNAF for Koblitz Curves Re

・ロト ・聞ト ・ヨト ・ヨト

- Introduction
- Frobenius Map τ

<ロト <回 > < 注 > < 注 > 、

∃ 𝒫𝔄𝔅

- Introduction
- Frobenius Map τ
- The Complex Conjugate of τ

くロト (過) (目) (日)

3

- Introduction
- Frobenius Map τ
- The Complex Conjugate of τ
- Novel Pre-Computation

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

- Introduction
- Frobenius Map τ
- The Complex Conjugate of τ
- Novel Pre-Computation
- Scalar Multiplication

・ 回 ト ・ ヨ ト ・ ヨ ト

ъ

NIST recommends 4 Koblitz curves

- NIST FIPS 186-5(draft): digital signature standard (October of 2019)
- NIST SP 800-56A: pair-wise key-establishment schemes (April of 2018)
- NIST SP 800-57: key management (May of 2020)

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ ∽ � � �

Elliptic curve over \mathbb{F}_2 :

$$y^2 + xy = x^3 + ax^2 + 1$$
 with $a \in \mathbb{F}_2$

 $\mathbb{F}_{2^m}\text{-rational points: } \{(x,y)|y^2 + xy = x^3 + ax^2 + 1, x, y \in \mathbb{F}_{2^m}\} \cup \infty$ $E_a(\mathbb{F}_2) \text{ is a subgroup of } E_a(\mathbb{F}_{2^m})$ $|E_a(\mathbb{F}_{2^m})| = |E_a(\mathbb{F}_2)| \cdot p.$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● の Q ()~

The Weil Conjecture

Table: The value of m makes p a prime $(m < 2000)$							
a = 0	233	239	277	283	349		
	409	571	1249	1913			
a = 1	163	283	311	331	347		
	359	701	1153	1597	1621		

ヘロト 人間 とくほとくほとう

ъ

Scalar multiplication Q = nP

$$n = \sum_{i=1}^{l} c_i 2^{b_i}, \ c_i \in \mathcal{C} = \{\pm 1\}, \ b_l > b_{l-1} > \ldots > b_1 \ge 0$$

Horner's algorithm:

$$nP = \sum_{i=1}^{l} c_i 2^{b_i} P$$

伺 とく ヨ とく ヨ と

$$31 = [\Pi \times 10]$$

$$31 = 2^{4} + 2^{3} + 2^{2} + 2^{1} + 1$$

$$= 2^{5} - 1$$

$$31P = 2^{4}P + 2^{3}P + 2^{2}P + 2^{1}P + P$$

$$31P = 2(2(2(2P + P) + P) + P) + P)$$

日 とく ヨ とく

э

Introduction:Scalar Multiplication

Frobenius(Koblitz,Solinas)

$$n = \sum_{i=0}^{l-1} \epsilon_i u_i \tau^i, \epsilon_i \in \{0, 1\}$$

ヘロト 人間 ト ヘヨト ヘヨト

э

Introduction:Contributions

Wei Yu, Guangwu Xu Pre-Computation Scheme of Window TNAF for Koblitz Curves Re

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

The Frobenius map τ is an endomorphism of $E_a(\mathbb{F}_{2^m})$

$$\tau(x,y) = (x^2,y^2)$$

For each point *P* in $E_a(\mathbb{F}_{2^m})$,

$$\tau^2(P) + 2P = \mu \tau(P), \mu = (-1)^{1-a}$$

・ 回 ト ・ ヨ ト ・ ヨ ト

М

(

1 the main subgroup of
$$E_a(F_{2^m})$$

order p

3
$$\delta(P) = \mathcal{O}$$
 for every $P \in M$, $\delta = \frac{\tau^m - 1}{\tau - 1}$

イロン イロン イヨン イヨン

æ

Window **TNAF**

- **O** Reduction: $\rho \in \mathbb{Z}[\tau]$ satisfying $\rho \equiv n \pmod{\delta}$
- **2** Window τ NAF with width *w*:

$$\rho = \sum_{i=0}^{l-1} \epsilon_i u_i \tau^i, \epsilon_i \in \{-1, 1\}$$

 $\{u_k, u_{k+1}, \dots, u_{k+w-1}\}$ contains at most one nonzero element

- Solution: Compute $Q_i = c_i P$ for each $i \in I_w$
- Somputing *nP*: Employ Horner's algorithm to calculate *nP*

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● の Q ()~

Avanzi, Dimitrov, Doche, and Sica and Doche, Kohel, and Sica used complex multiplication $\bar{\tau}P$ in double-base representation. Our $\mu \bar{\tau}P$ 2**M**+2**S** μ_4 -Koblitz curve

$$\mu \bar{\tau} P = \left((X_0 + X_2)^2 : (X_0 X_3 + X_1 X_2) : (X_1 + X_3)^2 : (X_0 X_1 + X_2 X_3) \right)$$

Coordinates	$\tau(P)$	τ -affine operation	addition	mixed addition			
LD coordinates	3 S	2 S	13 M+4S	8 M +5 S			
λ -coordinates	3 S	2 S	11 M+2S	8M+2S			
μ_4 -Koblitz curve ($a = 0$)	4 S	3 S	7 M +2 S	6M+2S			
μ_4 -Koblitz curve ($a = 1$)	4 S	3 S	8M+2S	7 M +2 S			

Table: Costs of point operations on Koblitz curves

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Novel Pre-Computation

•
$$R_i = \{g + h\tau | g + h\tau \equiv i \pmod{\tau^w}, N(g + h\tau) < 2^w\}$$

•
$$I_w = \{1, 3, \cdots, 2^{w-1} - 1\}$$

•
$$C = \{c_i | c_i \in R_i, i \in I_w\}, c_1 = 1$$

pre-computation: $Q_i = c_i P$ with $c_i \in C$ for all $i \in I_w$.

Table: Novel pre-computation for width 4

	c _i		Q_i	a = 0/a = 1
				6 M +6 S
	$c_5 = -1 + \mu \tau$	$c_5 = -\mu \bar{\tau}$	$Q_5 = -\mu \bar{\tau} P$	2 M +2 S
w = 4	$c_7 = 1 + \mu \tau$	$c_7 = \mu \bar{\tau} c_5$	$Q_7 = -(\mu \bar{\tau})^2 P$	2 M +2 S
	$c_3 = -3 + \mu \tau$	$c_3 = -\mu \bar{\tau} c_7$	$Q_3 = (\mu \bar{\tau})^3 P$	2 M +2 S

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

Novel Pre-Computation

Table: Cost of pre-computations on a μ_4 -Koblitz curve

		w = 4	<i>w</i> = 5	w = 6
<i>a</i> = 0	Solinas	15 M +15 S	38 M +38 S	-
	Hankerson, Menezes, Vanstone	15 M +15 S	40 M +35 S	89M+67S
	Trost, Xu	15 M +12 S	39M+20S	87 M +36 S
	Ours	6 M +6 S	18 M +17 S	44 M +32 S
<i>a</i> = 1	Solinas	18 M +15 S	45 M +38 S	-
	Hankerson, Menezes, Vanstone	18 M +15 S	47 M +35 S	104 M +67 S
	Trost, Xu	18 M +12 S	46 M +20 S	102 M +36 S
	Ours	6 M +6 S	19 M +17 S	47 M +32 S

Two times faster, compared to the state-of-the-art

・ 同 ト ・ ヨ ト ・ ヨ ト

Table: Time cost of scalar multiplications using μ_4 -Koblitz curves in μ_5

		K1-163(w)	K-233(w)	K-283(w)	K-409(w)	K-571(w)
	τNAF	70.42	98.6	171.9	384.2	424.6
	Trost, Xu	48.9(5)	70.23(5)	114.9(5)	225(6)	268.4(6)
	Ours	44.75(6)	64.05(6)	104.3(6)	207.4(7)	243.3(7)
	regular <i>T</i> NAF	173.7	265.6	432.4	860.1	1038.5
constant-time	Trost, Xu	63.95(6)	88.7(6)	143.6(6)	283.6(6)	336.2(6,M)
	Ours	54.77(6)	78.67(7)	126.2(7)	248.8(7)	294.7(7)

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

Technique

- novel pre-computation scheme
- Ø bigger window width

Result

- 33.5%: LD coordinates
- 28.6%: λ-coordinates
- 3 14.8%: μ_4 -Koblitz curve

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

- Our pre-computation scheme is about two times faster based on μτ
 -operations.
- 2 Increase the width for window τ NAF to 7 for a better scalar multiplication.
- Our results push the scalar multiplication of Koblitz curves, a very well-studied and long-standing research area, to a significant new stage.

(画) (目) (日)

Any questions please send email to:yuwei_1_yw@163.com Thanks for your time!

Wei Yu, Guangwu Xu Pre-Computation Scheme of Window TNAF for Koblitz Curves Re

注▶ ★ 注▶