# Improving Revocation for Group Signature with Redactable Signature

Olivier Sanders Orange Labs





Users interact with the group manager to join the group



#### **Group Manager**



- Users can sign on behalf of the group
- Signatures are anonymous, except for an appointed entity

GS allows anonymous access to a service



#### **Group Manager**







Verifier

- Group Signature is standardized at ISO
- Variants (DAA, EPID) are embedded in billions of devices



**Group Manager** 











User 1

User 2

User 3

User 4

User 5

Adding users is easy...



**Group Manager** 



Adding users is easy... Revoking them is much harder!

common event: end of subscription, loss of credentials, bad behaviour

## Revocation Strategy 1



GM generates a new public key and runs Join with unrevoked users

|           | GM | User | Verifier |
|-----------|----|------|----------|
| Practical | X  | *    | ~        |

|      | Sign | Verif |
|------|------|-------|
| Perf | -    | -     |

## **Revocation Strategy 2**



#### **Group Manager**



- Every entity must retrieve E<sub>T</sub> at each time period T
- User uses  $E_T$  to prove that he is still active
- Revocation postponed to the next time period

|           | GM | User | Verifier |
|-----------|----|------|----------|
| Practical | -  | *    | ~        |

|      | Sign | Verif |
|------|------|-------|
| Perf | *    | ~     |

### Revocation Strategy 3



- Revoked users are immediately added to the Revocation List
- Signatures are tested against each element of RL: linear cost

|           | GM | User | Verifier |
|-----------|----|------|----------|
| Practical | -  | -    | ~        |

|      | Sign | Verif |
|------|------|-------|
| Perf | -    | *     |

#### **GS** Variants

Variants of GS with some revocation features exist

- Direct Anonymous Attestation:
  - users can be forced to use the same pseudonym
  - remove anonymity of all signers
- EPID:
  - users prove they have not generated revoked signatures
  - complexity increases with the number of revoked signatures

⇒ no fully satisfying solution

## **GS** with Time-Bound Keys

- GS with time-bound keys<sup>1</sup> distinguish two kinds of revocations:
  - natural revocation (NR) predictable at the joining time
  - premature revocation (PR) due to unpredictable events
- NR handled by assigning an expiry period T to each user key
  - $\Rightarrow$  signatures can't be generated at time periods T + i
- PR handled using Revocation Lists
  - ⇒ shorter RLs due to NR
- state-of-the-art: Emura et al<sup>2</sup> use strategy 2 to instantiate NR

<sup>&</sup>lt;sup>1</sup>Chu, Liu, Huang and Zhou. Verifier-local revocation group signatures with time-bound keys, AsiaCCS, 2012

<sup>&</sup>lt;sup>2</sup>Emura, Hayashi and Ishida. *Group signatures with time-bound keys revisited: A new model and an efficient construction*, AsiaCCS, 2017

#### Our Contributions



Current model only considers an expiry time T

- signing keys are useless after T
- signing keys are activated at the period  $(T_0)$  of Join



Our keys can be associated with any set of periods

• Example 1: subscription starts at a later period



Our keys can be associated with any set of periods

• Example 2: periodic access to a service (e.g. during weekends, etc)



Our keys can be associated with any set of periods

- Revocation is no longer definitive: key is either active or inactive
- Need to deal with both backward and forward unlinkability

We use Unlinkable Redactable Signature<sup>3</sup>



#### 1 signature $\sigma$ on n messages

<sup>&</sup>lt;sup>3</sup>Camenisch, Dubovitskaya, Haralambiev and Kohlweiss, *Composable and modular anonymous credentials: Definitions and practical constructions*, Asiacrypt, 2015

We use Unlinkable Redactable Signature<sup>3</sup>



a signature  $\sigma'$  can be derived on a subset of messages

<sup>&</sup>lt;sup>3</sup>Camenisch, Dubovitskaya, Haralambiev and Kohlweiss, *Composable and modular anonymous credentials: Definitions and practical constructions*, Asiacrypt, 2015

We use Unlinkable Redactable Signature<sup>3</sup>



no need to know the redacted messages to check  $\sigma'$ 

<sup>&</sup>lt;sup>3</sup>Camenisch, Dubovitskaya, Haralambiev and Kohlweiss, *Composable and modular anonymous credentials: Definitions and practical constructions*, Asiacrypt, 2015

We use Unlinkable Redactable Signature<sup>3</sup>



signatures derived from  $\sigma$  are unlinkable

<sup>&</sup>lt;sup>3</sup>Camenisch, Dubovitskaya, Haralambiev and Kohlweiss, *Composable and modular anonymous credentials: Definitions and practical constructions*, Asiacrypt, 2015

#### **Our Construction**

#### Basic idea:



**Group Manager** 

User



• During Join, users obtain a URS  $\sigma$  on  $\{m_i\}$ 

 $m_i = 0 \Leftrightarrow \text{user inactive at } T_0 + i$ 

#### **Our Construction**

#### Basic idea:



group signature is valid  $\Leftrightarrow \sigma'$  valid and  $m_i \neq 0$ 

No Update information  $E_T$ 

## Security

- Traceability relies on URS unforgeability
- Non frameability: non-zero  $m_i$  set as the user's secret key
  - $\Rightarrow$  non-zero  $m_i$  cannot be revealed
- Premature revocation: Tokens  $t_i$  are generated to revoke user at period  $T_0 + i$ 
  - backward unlinkability:  $t_i$  useless for signatures issued before  $T_0 + i$
  - forward unlinkability:  $t_i$  useless for signatures issued after  $T_0 + i$ 
    - ⇒ anonymity needs more than URS unlinkability

We need specific URS schemes

- A recent URS<sup>4</sup> fulfils these requirements but  $O(n^2)$  public key not enough practical for large number n of time periods
- We introduce a variant with O(n) public key
  - asymmetric bilinear group  $e: \mathbb{G}_1 imes \mathbb{G}_2 o \mathbb{G}_T$
  - GM secret key :  $(x,y) \in \mathbb{Z}_p^2$
  - $(\sigma_1, \sigma_1^{\mathsf{x}+\sum_{i=1}^n y^i \underline{\mathsf{m}_i}})$  signature on  $(\underline{\mathsf{m}_1}, \dots, \underline{\mathsf{m}_n})$  with  $\sigma_1 \xleftarrow{\$} \mathbb{G}_1$

 $<sup>^4\</sup>mathsf{Sanders},$  Efficient Redactable Signature and Application to Anonymous Credentials, PKC 2020

- $\sigma_1' \leftarrow \sigma_1^r$  for  $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- $\sigma_2' \leftarrow \sigma_2' \cdot (\sigma_1')^t$ , for  $t \stackrel{\$}{\leftarrow} \mathbb{Z}_p$

- $\sigma_1' \leftarrow \sigma_1^r$  for  $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- $\sigma_2' \leftarrow \sigma_2' \cdot (\sigma_1')^t$ , for  $t \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- $\widetilde{\sigma}' \leftarrow \widetilde{g}^t \prod_{j \in \overline{\mathcal{I}}} (\widetilde{g}^{y^j})^{m_j}$  with  $\{\widetilde{g}^{y^j} \in \mathbb{G}_2\}_j \subset \mathsf{pk} \text{ and } \overline{\mathcal{I}} = [1, n] \setminus \mathcal{I}$

- $\sigma_1' \leftarrow \sigma_1^r$  for  $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- $\sigma_2' \leftarrow \sigma_2' \cdot (\sigma_1')^t$ , for  $t \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- $\widetilde{\sigma}' \leftarrow \widetilde{g}^t \prod_{j \in \overline{\mathcal{I}}} (\widetilde{g}^{y^j})^{m_j}$  with  $\{\widetilde{g}^{y^j} \in \mathbb{G}_2\}_j \subset \mathsf{pk} \text{ and } \overline{\mathcal{I}} = [1, n] \setminus \mathcal{I}$
- $c_i \leftarrow \operatorname{H}(\sigma_1'||\sigma_2'||\widetilde{\sigma}'||\mathcal{I}||i)$  for  $i \in \mathcal{I}$

- $\sigma_1' \leftarrow \sigma_1^r$  for  $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- $\sigma_2' \leftarrow \sigma_2^r \cdot (\sigma_1')^t$ , for  $t \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- $\widetilde{\sigma}' \leftarrow \widetilde{g}^t \prod_{j \in \overline{\mathcal{I}}} (\widetilde{g}^{y^j})^{m_j}$  with  $\{\widetilde{g}^{y^j} \in \mathbb{G}_2\}_j \subset \mathsf{pk} \text{ and } \overline{\mathcal{I}} = [1, n] \setminus \mathcal{I}$
- $c_i \leftarrow \operatorname{H}(\sigma_1'||\sigma_2'||\widetilde{\sigma}'||\mathcal{I}||i)$  for  $i \in \mathcal{I}$
- $\sigma_3' = \prod_{i \in \mathcal{I}} [(g^{y^{n+1-i}})^t \cdot \prod_{j \in \overline{\mathcal{I}}} (g^{y^{n+1-i+j}})^{m_j}]^{c_i}$  with  $\{g^{y^k} \in \mathbb{G}_1\}_k \subset \mathsf{pk}$

• 
$$\sigma_1' \leftarrow \sigma_1^r$$
 for  $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ 

• 
$$\sigma_2' \leftarrow \sigma_2' \cdot (\sigma_1')^t$$
, for  $t \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ 

• 
$$\widetilde{\sigma}' \leftarrow \widetilde{g}^t \prod_{j \in \overline{\mathcal{I}}} (\widetilde{g}^{y^j})^{m_j}$$
 with  $\{\widetilde{g}^{y^j} \in \mathbb{G}_2\}_j \subset \mathsf{pk} \; \mathsf{and} \; \overline{\mathcal{I}} = [1, n] \setminus \mathcal{I}$ 

• 
$$c_i \leftarrow \operatorname{H}(\sigma_1'||\sigma_2'||\widetilde{\sigma}'||\mathcal{I}||i)$$
 for  $i \in \mathcal{I}$ 

• 
$$\sigma_3' = \prod_{i \in \mathcal{I}} [(g^{y^{n+1-i}})^t \cdot \prod_{j \in \overline{\mathcal{I}}} (g^{y^{n+1-i+j}})^{m_j}]^{c_i}$$
 with  $\{g^{y^k} \in \mathbb{G}_1\}_k \subset \mathsf{pk}$ 

Verification of 
$$\sigma'=\left(\sigma'_1,\sigma'_2,\sigma'_3,\widetilde{\sigma}'\right)\in\mathbb{G}^3_1\times\mathbb{G}_2$$

$$e(\sigma_1',\widetilde{\sigma}'\cdot\widetilde{g}^{x}\textstyle\prod_{i\in\mathcal{I}}(\widetilde{g}^{y^i})^{m_i})=e(\sigma_2',\widetilde{g})\,\wedge\,e(\sigma_3',\widetilde{g})=e(\textstyle\prod_{i\in\mathcal{I}}(g^{y^{n+1-i}})^{c_i},\widetilde{\sigma}')$$

## Our Group Signature

#### In our case

- $\mathcal{I} = \{i^*\}$  with  $i^*$  the current time period
- $m_i = \text{usk if } i \in \mathcal{T} \text{ set of active time periods and } m_i = 0 \text{ otherwise}$

#### Complexity

- $\sigma_1' \leftarrow \sigma_1^r \longrightarrow 1 \text{exp in } \mathbb{G}_1$
- $\sigma_2' \leftarrow \sigma_2' \cdot (\sigma_1')^t \longrightarrow 2\exp \text{ in } \mathbb{G}_1$
- $\bullet \ \widetilde{\sigma}' \leftarrow \widetilde{g}^t [\prod_{j \in \overline{\mathcal{I}} \cap \mathcal{T}} \widetilde{g}^{y^j}]^{\mathsf{usk}} \quad \to 2\mathsf{exp} \ \mathsf{in} \ \mathbb{G}_2$
- $c_{i^*} \leftarrow \operatorname{H}(\sigma_1'||\sigma_2'||\widetilde{\sigma}'||\{i^*\}||i^*) \rightarrow 1$ hash
- $\bullet \ \sigma_{\mathbf{3}}' = [(g^{y^{n+1-i^*}})^t \cdot [\prod_{j \in \overline{\mathcal{I}} \cap \mathcal{T}} g^{y^{n+1-i^*+j}}]^{\mathsf{usk}}]^{c_{i^*}} \quad \to 3\mathsf{exp} \ \mathsf{in} \ \mathbb{G}_1$
- Proof of Knowledge of usk  $\rightarrow$ 1exp in  $\mathbb{G}_1 + 1$ hash + 1pair

#### Performance

Size in Bytes (B) with BLS381 curve, for R premature revocations

| pk                                         | Signing<br>Key                 | Update | RL              | σ                                                 |
|--------------------------------------------|--------------------------------|--------|-----------------|---------------------------------------------------|
| $(1+2n)\mathbb{G}_1 \\ +(n+1)\mathbb{G}_2$ | $2\mathbb{G}_1 + \mathbb{Z}_p$ | None   | $R\mathbb{G}_2$ | $ 3\mathbb{G}_1 + 1\mathbb{G}_2 + 2\mathbb{Z}_p $ |
| =48(4n+3)B                                 | = 128 B                        |        | = 96 <i>R</i> B | = 303 B                                           |

#### Computational Complexity

| Signature                                                             | Verification                                                   |
|-----------------------------------------------------------------------|----------------------------------------------------------------|
| $7 \exp_1 + 2 \exp_2 + 2 \operatorname{Hash} + 1 \operatorname{pair}$ | $3\exp_1 + 2\operatorname{Hash} + (3R + 7)\operatorname{pair}$ |

#### Conclusion

GS with time-bound keys is an efficient solution for user revocation

- Users can be revoked immediately using Revocation Lists
- RLs not too large thanks to natural revocation

#### Contributions

- We improve granularity of natural revocation
- We show how to construct it with URS
  - Simple Enrolment, Signature and Verification procedures
  - No need to publish or retrieve update information
- We propose a new URS scheme to implement our construction
  - short, constant size group signature
  - fast signature generation

## thank you