Group Signatures with User-Controlled and
Sequential Linkability

Jesus Diaz!, Anja Lehmann?

1IBM Research Europe

2Hasso-Plattner-Institute

May 10, 2021

Linkability in Group Signatures
Challenge

» Group signatures have a central party that can open/link.

1/21

Linkability in Group Signatures
Challenge

» Group signatures have a central party that can open/link.

» Privacy invasive and needs trust.

1/21

Linkability in Group Signatures
Challenge

» Group signatures have a central party that can open/link.
» Privacy invasive and needs trust.
> Can we get rid of it?

1/21

User-Controlled Linkability in Group Signatures

w] [] [] (=] [

2/21

User-Controlled Linkability in Group Signatures

v

] [] (] (=] [=

I
1
b

2/21

User-Controlled Linkability in Group Signatures

3/21

User-Controlled Linkability in Group Signatures

2 Y

3/21

User-Controlled Linkability in Group Signatures

Syntax

UCL Group Signatures

Setup (gpk, gsk) « Setup(17)
Join,Issue | gsk; < (Joingp(ski), Issuegpi(gsk))
Sign 0 < Signg.(m)
Verify 1/0 < Verify,,(m, o)
Link T < Linkgskl.({(m,-,a,-)},-e[n])
VerifyLink | 1/0 « VerifyLinkg, (7, {(mi, i) }ie[n))

4/21

User-Controlled Linkability in Group Signatures

Syntax

UCL Group Signatures
Setup (gpk, gsk) « Setup(17)
Join,Issue | gsk; < (Joingp(ski), Issuegpi(gsk))
Sign 0 < Signg.(m)
Verify 1/0 < Verify,,(m, o)
Link T < Linkgskl.({(m,-,a,-)},-e[n])
VerifyLink | 1/0 « VerifyLinkg, (7, {(mi, i) }ie[n))

Only users can run Link! (on their own sigs.)

4/21

Modelling UCL Group Signatures

.. without Open

» We do not have open, traditionally crucial for modelling
non-frameability and traceability.

5/21

Modelling UCL Group Signatures

.. without Open

» We do not have open, traditionally crucial for modelling
non-frameability and traceability.
» Non-frame: sigs do not open to a member who did not create
them.
> Trace: sigs open to a valid member.

5/21

Modelling UCL Group Signatures

.. without Open

» We do not have open, traditionally crucial for modelling
non-frameability and traceability.
» Non-frame: sigs do not open to a member who did not create
them.
> Trace: sigs open to a valid member.

» Leverage nym approach from DAA (and GL19 group sigs).

5/21

Modelling UCL Group Signatures

the nym approach — with Identify helper

> Signatures are accompanied by a pseudonym, nym
deterministically produced from a user-chosen scope scp.

» Same scp = same nym = same signer.
» This directly gives implicit user-controlled linkability.

» Explicit user-controlled linkability, achieved via Link.

6/21

Modelling UCL Group Signatures

the nym approach — with Identify helper

> Signatures are accompanied by a pseudonym, nym
deterministically produced from a user-chosen scope scp.

» Same scp = same nym = same signer.
» This directly gives implicit user-controlled linkability.

» Explicit user-controlled linkability, achieved via Link.

Explicitly linkable via link proofs

l l

Implicitly (my, scp, a1, nym) Implicitly (m}, scp’, oy, nym’)

linked (ma, scp, 02, nym)| linked (mb, scp’, ab, nym')
(same scp . (same scp .

and nym) (m,,,scp,'a,,,nym) and nym) (m;,scp’,'aﬁ,,nym’)

6/21

Modelling UCL Group Signatures

the nym approach — with Identify helper

» Non-frame: Sigs. by different users cannot be linked.

> Trace: All sigs. can be associated via ldentify to a valid
member.

P> Need to extract secret keys.

7/21

Modelling UCL Group Signatures

the nym approach — with Identify helper

» Non-frame: Sigs. by different users cannot be linked.

> Trace: All sigs. can be associated via ldentify to a valid
member.

P> Need to extract secret keys.

» Both properties have to cover implicit and explicit linkability!

7/21

UCL Signatures

Instantiation

» BBS+ signatures for the membership credentials.
» Signing requires proving in ZK knowledge of a BBS+ sig.
» Batching technique for efficient linking.

8/21

Sequential UCL Signatures
Why?

» Without an opener, users can easily hide data.

» This can be good... but also not good.

9/21

Sequential UCL Signatures
Why?

» Without an opener, users can easily hide data.
» This can be good... but also not good.

» Compromise: sequential linking.

» For any given sequence of signatures by a same user: link
proofs cannot alter order, omit or insert signatures.

9/21

Sequential UCL Signatures

Why?

Gty

93 km/h

90 km/h

95 km/h

98 km/h

10/21

Sequential UCL Signatures

Why?

Gimio

98 km/h

99 km/h

105 km/h

20 km/h

(m1, scp1, o1, nymn) | |(m2ySCP2702»",Vm2) | |(m37SCP3,t737"ym3) | |(m4>SCP47¢T4,",Vm4)

11/21

Sequential UCL Signatures

Why?

Gimio

98 km/h

99 km/h

20 km/h

(m1, scp1, o1, nymn) | |(m2ySCP2702»",Vm2) | |("737SCP3»037")’"73) | |(m4>SCP47¢T4,",Vm4)

11/21

Sequential UCL Signatures

Syntax

UCL Group Signatures
Setup (gpk, gsk) + Setup(17)
Join, Issue gsk;j < (Joingpi(ski), Issuegp(gsk))
Sign o < Signgg, (M, seq)
Verify 1/0 < Verify . (m, o)
Seq. Link s < SeqLinkgg. ([(mi, oi)lic(q])
Verify Seq. Link | 1/0 < VerifySeqlLink,, (s, [(mi, 0i)lic[n])

* scp and nym ommitted for readability!

12/21

Modelling Sequential UCL Group Signatures

> Non-frameability and traceability as UCL signatures.

» For anonymity we need to prevent (more) trivial wins by
adversaries exploiting order info!

» Cumbersome, but otherwise similar anonymity notion.

13/21

Modelling Sequential UCL Group Signatures

> Non-frameability and traceability as UCL signatures.

» For anonymity we need to prevent (more) trivial wins by
adversaries exploiting order info!

» Cumbersome, but otherwise similar anonymity notion.

SSIGN(uidg, - . .):

CH-SSIGN,(. ..):

pX}

3o

1]

Yy Y, Ts

M

T T

SIG* [uidg ,igigx] CSIGlicsic] SIG™ [uidg ,igigx +1]

Y = (mj, scpj, oi, nym;)
_ * * % *
- (m,'aSCP,wU,') nymi)

5

CSIG[icsig+1]

13/21

Modelling Sequential UCL Group Signatures

Sequentiality Property

» Captures that no honest-then-corrupt user can:

» Swap, omit or insert signatures in a previous sequence.
» Two-phase game:

» Choose phase: A commits to a sequence of signatures

(maybe both honest and dishonest), and picks a target user
(honest up to the second phase).

> Forge phase: A has to forge a sequential proof that includes:

> At least one honest signature by the target user (of which A
receives the secret key).

> Signatures contained in the previously committed set.
» A wins if he produces a valid sequential proof that alters the
order in the sequence committed to in the choose phase.

14 /21

Sequential UCL Signatures

Instantiation

> We rely on an append-only bulletin board.

» Trusted to verify all signatures before appending.
» But cannot open/link!

15 /21

Sequential UCL Signatures

Instantiation

On top of UCL signatures:
> seq; = (H(xi), H(x; ® xi_1), n;).
> x = PRF(k, n;).

» To sequentially link sigi_1 and sig;: Reveal (xj_1, X;).

16 /21

[Sequential] UCL Signatures

Evaluation

Signature 4Gy + 1H 4 5Zp+3H
Linkability Proof (s sigs.) 1H + 1Zp+sZp

0045

BasicUCL 3
004} Sequentiable UCL E—3 .

0.035

Boo2s
g
£ 002

0.015

0.005 m
o m [Il
Q

PR) o o N o
R . Y\\ﬁ“ «® « \‘_i\o‘*b ° '\\‘#\0
e 3

& RS
Operation

More in the paper.

17/21

[Sequential] UCL Signatures

Implementation

https://github.com/IBM/libgroupsig
» Core library in C.
» Wrapper for Python.
» Wrapper for Java.
» Wrapper for NodelJS.

18/21

https://github.com/IBM/libgroupsig

[Sequential] UCL Signatures

Implementation

Supports:

BBS04, KTY04, PS16, GL19, KLAP20,

DL21... and more schemes coming!
https://github.com/IBM/libgroupsig

» Core library in C.

» Wrapper for Python.

» Wrapper for Java.

» Wrapper for NodelJS.

18/21

https://github.com/IBM/libgroupsig

[Sequential] UCL Signatures

Demo

1. $ docker pull jdiazvico/sucl:latest
2. $ docker run -p 5000:5000 jdiazvico/sucl
3. Access http://127.0.0.1:5000 on your browser.

19/21

http://127.0.0.1:5000

[Sequential] UCL Signatures

Further work

» Proof of not linked signatures.
» Blacklisting.

» Security against initially corrupt users?

» Batched verification.

20/21

Thanks!
Questions?

@JesusDiazVico

Work supported by the EU's H2020 under
Grant Agreement Number 76 8953 (ICT4CART).

21/21

https://twitter.com/JesusDiazVico

