
Group Signatures with User-Controlled and
Sequential Linkability

Jesus Diaz1, Anja Lehmann2

1IBM Research Europe

2Hasso-Plattner-Institute

May 10, 2021



Linkability in Group Signatures
Challenge

I Group signatures have a central party that can open/link.

I Privacy invasive and needs trust.

I Can we get rid of it?

1 / 21



Linkability in Group Signatures
Challenge

I Group signatures have a central party that can open/link.

I Privacy invasive and needs trust.

I Can we get rid of it?

1 / 21



Linkability in Group Signatures
Challenge

I Group signatures have a central party that can open/link.

I Privacy invasive and needs trust.

I Can we get rid of it?

1 / 21



User-Controlled Linkability in Group Signatures

sig1 sig2 sig3 sig4 sig5

2 / 21



User-Controlled Linkability in Group Signatures

sig1 sig2 sig3 sig4 sig5

2 / 21



User-Controlled Linkability in Group Signatures

sig1 sig2 sig3 sig4 sig5

3 / 21



User-Controlled Linkability in Group Signatures

sig1 sig2 sig3 sig4 sig5

3 / 21



User-Controlled Linkability in Group Signatures
Syntax

UCL Group Signatures
Setup (gpk , gsk)← Setup(1τ )

Join,Issue gski ← 〈Joingpk(ski ), Issuegpk(gsk)〉
Sign σ ← Signgski (m)

Verify 1/0← Verifygpk(m, σ)

Link π ← Linkgski ({(mi , σi )}i∈[n])
VerifyLink 1/0← VerifyLinkgpk(π, {(mi , σi )}i∈[n])

Only users can run Link! (on their own sigs.)

4 / 21



User-Controlled Linkability in Group Signatures
Syntax

UCL Group Signatures
Setup (gpk , gsk)← Setup(1τ )

Join,Issue gski ← 〈Joingpk(ski ), Issuegpk(gsk)〉
Sign σ ← Signgski (m)

Verify 1/0← Verifygpk(m, σ)

Link π ← Linkgski ({(mi , σi )}i∈[n])
VerifyLink 1/0← VerifyLinkgpk(π, {(mi , σi )}i∈[n])

Only users can run Link! (on their own sigs.)

4 / 21



Modelling UCL Group Signatures
... without Open

I We do not have open, traditionally crucial for modelling
non-frameability and traceability.

I Non-frame: sigs do not open to a member who did not create
them.

I Trace: sigs open to a valid member.

I Leverage nym approach from DAA (and GL19 group sigs).

5 / 21



Modelling UCL Group Signatures
... without Open

I We do not have open, traditionally crucial for modelling
non-frameability and traceability.
I Non-frame: sigs do not open to a member who did not create

them.
I Trace: sigs open to a valid member.

I Leverage nym approach from DAA (and GL19 group sigs).

5 / 21



Modelling UCL Group Signatures
... without Open

I We do not have open, traditionally crucial for modelling
non-frameability and traceability.
I Non-frame: sigs do not open to a member who did not create

them.
I Trace: sigs open to a valid member.

I Leverage nym approach from DAA (and GL19 group sigs).

5 / 21



Modelling UCL Group Signatures
the nym approach – with Identify helper

I Signatures are accompanied by a pseudonym, nym
deterministically produced from a user-chosen scope scp.
I Same scp =⇒ same nym =⇒ same signer.

I This directly gives implicit user-controlled linkability.

I Explicit user-controlled linkability, achieved via Link.

(m1, scp, σ1, nym)

(m2, scp, σ2, nym)
...

(mn, scp, σn, nym)

Implicitly

linked
(same scp
and nym)

. . .

(m′
1, scp

′, σ′
1, nym

′)

(m′
2, scp

′, σ′
2, nym

′)
...

(m′
n, scp

′, σ′
n, nym

′)

Implicitly

linked
(same scp
and nym)

Explicitly linkable via link proofs

6 / 21



Modelling UCL Group Signatures
the nym approach – with Identify helper

I Signatures are accompanied by a pseudonym, nym
deterministically produced from a user-chosen scope scp.
I Same scp =⇒ same nym =⇒ same signer.

I This directly gives implicit user-controlled linkability.

I Explicit user-controlled linkability, achieved via Link.

(m1, scp, σ1, nym)

(m2, scp, σ2, nym)
...

(mn, scp, σn, nym)

Implicitly

linked
(same scp
and nym)

. . .

(m′
1, scp

′, σ′
1, nym

′)

(m′
2, scp

′, σ′
2, nym

′)
...

(m′
n, scp

′, σ′
n, nym

′)

Implicitly

linked
(same scp
and nym)

Explicitly linkable via link proofs

6 / 21



Modelling UCL Group Signatures
the nym approach – with Identify helper

I Non-frame: Sigs. by different users cannot be linked.
I Trace: All sigs. can be associated via Identify to a valid

member.
I Need to extract secret keys.

I Both properties have to cover implicit and explicit linkability!

7 / 21



Modelling UCL Group Signatures
the nym approach – with Identify helper

I Non-frame: Sigs. by different users cannot be linked.
I Trace: All sigs. can be associated via Identify to a valid

member.
I Need to extract secret keys.

I Both properties have to cover implicit and explicit linkability!

7 / 21



UCL Signatures
Instantiation

I BBS+ signatures for the membership credentials.

I Signing requires proving in ZK knowledge of a BBS+ sig.

I Batching technique for efficient linking.

8 / 21



Sequential UCL Signatures
Why?

I Without an opener, users can easily hide data.

I This can be good... but also not good.

I Compromise: sequential linking.
I For any given sequence of signatures by a same user: link

proofs cannot alter order, omit or insert signatures.

9 / 21



Sequential UCL Signatures
Why?

I Without an opener, users can easily hide data.

I This can be good... but also not good.
I Compromise: sequential linking.

I For any given sequence of signatures by a same user: link
proofs cannot alter order, omit or insert signatures.

9 / 21



Sequential UCL Signatures
Why?

(m1, scp1, σ1, nym1) (m2, scp2, σ2, nym2) (m3, scp3, σ3, nym3) (m4, scp4, σ4, nym4)

93 km/h 90 km/h 95 km/h 98 km/h

10 / 21



Sequential UCL Signatures
Why?

(m1, scp1, σ1, nym1) (m2, scp2, σ2, nym2) (m3, scp3, σ3, nym3)

(m3, scp3, σ3, nym3)

(m4, scp4, σ4, nym4)

98 km/h 99 km/h 105 km/h 20 km/h

11 / 21



Sequential UCL Signatures
Why?

(m1, scp1, σ1, nym1) (m2, scp2, σ2, nym2)

(m3, scp3, σ3, nym3)

(m3, scp3, σ3, nym3) (m4, scp4, σ4, nym4)

98 km/h 99 km/h

105 km/h

20 km/h

11 / 21



Sequential UCL Signatures
Syntax

UCL Group Signatures
Setup (gpk , gsk)← Setup(1τ )

Join,Issue gski ← 〈Joingpk(ski ), Issuegpk(gsk)〉
Sign σ ← Signgski (m, seq)

Verify 1/0← Verifygpk(m, σ)

Seq. Link πs ← SeqLinkgski ([(mi , σi )]i∈[n])

Verify Seq. Link 1/0← VerifySeqLinkgpk(πs , [(mi , σi )]i∈[n])

∗ scp and nym ommitted for readability!

12 / 21



Modelling Sequential UCL Group Signatures

I Non-frameability and traceability as UCL signatures.
I For anonymity we need to prevent (more) trivial wins by

adversaries exploiting order info!
I Cumbersome, but otherwise similar anonymity notion.

SIG∗[uid∗0 ,iSIG∗ ] CSIG[iCSIG] SIG∗[uid∗0 ,iSIG∗+1] CSIG[iCSIG+1]

SSIGN(uid∗0, . . . ):

CH-SSIGNb(. . . ):

Σ1 Σ2 Σ3 Σ4 Σ5

Σ∗1 Σ∗2 Σ∗3

Σi = (mi , scpi , σi , nymi )

Σ∗i = (m∗i , scp
∗
i , σ
∗
i , nym

∗
i )

13 / 21



Modelling Sequential UCL Group Signatures

I Non-frameability and traceability as UCL signatures.
I For anonymity we need to prevent (more) trivial wins by

adversaries exploiting order info!
I Cumbersome, but otherwise similar anonymity notion.

SIG∗[uid∗0 ,iSIG∗ ] CSIG[iCSIG] SIG∗[uid∗0 ,iSIG∗+1] CSIG[iCSIG+1]

SSIGN(uid∗0, . . . ):

CH-SSIGNb(. . . ):

Σ1 Σ2 Σ3 Σ4 Σ5

Σ∗1 Σ∗2 Σ∗3

Σi = (mi , scpi , σi , nymi )

Σ∗i = (m∗i , scp
∗
i , σ
∗
i , nym

∗
i )

13 / 21



Modelling Sequential UCL Group Signatures
Sequentiality Property

I Captures that no honest-then-corrupt user can:
I Swap, omit or insert signatures in a previous sequence.

I Two-phase game:
I Choose phase: A commits to a sequence of signatures

(maybe both honest and dishonest), and picks a target user
(honest up to the second phase).

I Forge phase: A has to forge a sequential proof that includes:
I At least one honest signature by the target user (of which A

receives the secret key).
I Signatures contained in the previously committed set.

I A wins if he produces a valid sequential proof that alters the
order in the sequence committed to in the choose phase.

14 / 21



Sequential UCL Signatures
Instantiation

I We rely on an append-only bulletin board.
I Trusted to verify all signatures before appending.
I But cannot open/link!

15 / 21



Sequential UCL Signatures
Instantiation

On top of UCL signatures:
I seqi = (H(xi ),H(xi ⊕ xi−1), ni ).

I xi = PRF(k , ni ).

I To sequentially link sigi−1 and sigi : Reveal (xi−1, xi ).

16 / 21



[Sequential] UCL Signatures
Evaluation

Signature 4G1 + 1H + 5Zp+3H
Linkability Proof (s sigs.) 1H + 1Zp+sZp

More in the paper.

17 / 21



[Sequential] UCL Signatures
Implementation

https://github.com/IBM/libgroupsig

I Core library in C.

I Wrapper for Python.

I Wrapper for Java.

I Wrapper for NodeJS.

18 / 21

https://github.com/IBM/libgroupsig


[Sequential] UCL Signatures
Implementation

https://github.com/IBM/libgroupsig

I Core library in C.

I Wrapper for Python.

I Wrapper for Java.

I Wrapper for NodeJS.

Supports:
BBS04, KTY04, PS16, GL19, KLAP20,

DL21... and more schemes coming!

18 / 21

https://github.com/IBM/libgroupsig


[Sequential] UCL Signatures
Demo

1. $ docker pull jdiazvico/sucl:latest

2. $ docker run -p 5000:5000 jdiazvico/sucl

3. Access http://127.0.0.1:5000 on your browser.

19 / 21

http://127.0.0.1:5000


[Sequential] UCL Signatures
Further work

I Proof of not linked signatures.
I Blacklisting.

I Security against initially corrupt users?

I Batched verification.

20 / 21



Thanks!

Questions?

@JesusDiazVico

Work supported by the EU’s H2020 under
Grant Agreement Number 76 8953 (ICT4CART).

21 / 21

https://twitter.com/JesusDiazVico

