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Linkability in Group Signatures
Challenge

I Group signatures have a central party that can open/link.

I Privacy invasive and needs trust.

I Can we get rid of it?
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User-Controlled Linkability in Group Signatures
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User-Controlled Linkability in Group Signatures
Syntax

UCL Group Signatures
Setup (gpk , gsk)← Setup(1τ )

Join,Issue gski ← 〈Joingpk(ski ), Issuegpk(gsk)〉
Sign σ ← Signgski (m)

Verify 1/0← Verifygpk(m, σ)

Link π ← Linkgski ({(mi , σi )}i∈[n])
VerifyLink 1/0← VerifyLinkgpk(π, {(mi , σi )}i∈[n])

Only users can run Link! (on their own sigs.)

4 / 21



User-Controlled Linkability in Group Signatures
Syntax

UCL Group Signatures
Setup (gpk , gsk)← Setup(1τ )

Join,Issue gski ← 〈Joingpk(ski ), Issuegpk(gsk)〉
Sign σ ← Signgski (m)

Verify 1/0← Verifygpk(m, σ)

Link π ← Linkgski ({(mi , σi )}i∈[n])
VerifyLink 1/0← VerifyLinkgpk(π, {(mi , σi )}i∈[n])

Only users can run Link! (on their own sigs.)

4 / 21



Modelling UCL Group Signatures
... without Open

I We do not have open, traditionally crucial for modelling
non-frameability and traceability.

I Non-frame: sigs do not open to a member who did not create
them.

I Trace: sigs open to a valid member.

I Leverage nym approach from DAA (and GL19 group sigs).
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Modelling UCL Group Signatures
the nym approach – with Identify helper

I Signatures are accompanied by a pseudonym, nym
deterministically produced from a user-chosen scope scp.
I Same scp =⇒ same nym =⇒ same signer.

I This directly gives implicit user-controlled linkability.

I Explicit user-controlled linkability, achieved via Link.

(m1, scp, σ1, nym)

(m2, scp, σ2, nym)
...
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Implicitly

linked
(same scp
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. . .
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Implicitly

linked
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and nym)

Explicitly linkable via link proofs
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Modelling UCL Group Signatures
the nym approach – with Identify helper

I Non-frame: Sigs. by different users cannot be linked.
I Trace: All sigs. can be associated via Identify to a valid

member.
I Need to extract secret keys.

I Both properties have to cover implicit and explicit linkability!
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UCL Signatures
Instantiation

I BBS+ signatures for the membership credentials.

I Signing requires proving in ZK knowledge of a BBS+ sig.

I Batching technique for efficient linking.
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Sequential UCL Signatures
Why?

I Without an opener, users can easily hide data.

I This can be good... but also not good.

I Compromise: sequential linking.
I For any given sequence of signatures by a same user: link

proofs cannot alter order, omit or insert signatures.
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Sequential UCL Signatures
Why?
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Sequential UCL Signatures
Syntax

UCL Group Signatures
Setup (gpk , gsk)← Setup(1τ )

Join,Issue gski ← 〈Joingpk(ski ), Issuegpk(gsk)〉
Sign σ ← Signgski (m, seq)

Verify 1/0← Verifygpk(m, σ)

Seq. Link πs ← SeqLinkgski ([(mi , σi )]i∈[n])

Verify Seq. Link 1/0← VerifySeqLinkgpk(πs , [(mi , σi )]i∈[n])

∗ scp and nym ommitted for readability!
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Modelling Sequential UCL Group Signatures

I Non-frameability and traceability as UCL signatures.
I For anonymity we need to prevent (more) trivial wins by

adversaries exploiting order info!
I Cumbersome, but otherwise similar anonymity notion.

SIG∗[uid∗0 ,iSIG∗ ] CSIG[iCSIG] SIG∗[uid∗0 ,iSIG∗+1] CSIG[iCSIG+1]

SSIGN(uid∗0, . . . ):

CH-SSIGNb(. . . ):

Σ1 Σ2 Σ3 Σ4 Σ5

Σ∗1 Σ∗2 Σ∗3

Σi = (mi , scpi , σi , nymi )

Σ∗i = (m∗i , scp
∗
i , σ
∗
i , nym

∗
i )
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Modelling Sequential UCL Group Signatures
Sequentiality Property

I Captures that no honest-then-corrupt user can:
I Swap, omit or insert signatures in a previous sequence.

I Two-phase game:
I Choose phase: A commits to a sequence of signatures

(maybe both honest and dishonest), and picks a target user
(honest up to the second phase).

I Forge phase: A has to forge a sequential proof that includes:
I At least one honest signature by the target user (of which A

receives the secret key).
I Signatures contained in the previously committed set.

I A wins if he produces a valid sequential proof that alters the
order in the sequence committed to in the choose phase.
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Sequential UCL Signatures
Instantiation

I We rely on an append-only bulletin board.
I Trusted to verify all signatures before appending.
I But cannot open/link!
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Sequential UCL Signatures
Instantiation

On top of UCL signatures:
I seqi = (H(xi ),H(xi ⊕ xi−1), ni ).

I xi = PRF(k , ni ).

I To sequentially link sigi−1 and sigi : Reveal (xi−1, xi ).
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[Sequential] UCL Signatures
Evaluation

Signature 4G1 + 1H + 5Zp+3H
Linkability Proof (s sigs.) 1H + 1Zp+sZp

More in the paper.
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[Sequential] UCL Signatures
Implementation

https://github.com/IBM/libgroupsig

I Core library in C.

I Wrapper for Python.

I Wrapper for Java.

I Wrapper for NodeJS.
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Implementation

https://github.com/IBM/libgroupsig

I Core library in C.

I Wrapper for Python.

I Wrapper for Java.

I Wrapper for NodeJS.

Supports:
BBS04, KTY04, PS16, GL19, KLAP20,

DL21... and more schemes coming!
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[Sequential] UCL Signatures
Demo

1. $ docker pull jdiazvico/sucl:latest

2. $ docker run -p 5000:5000 jdiazvico/sucl

3. Access http://127.0.0.1:5000 on your browser.
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[Sequential] UCL Signatures
Further work

I Proof of not linked signatures.
I Blacklisting.

I Security against initially corrupt users?

I Batched verification.
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Thanks!

Questions?

@JesusDiazVico

Work supported by the EU’s H2020 under
Grant Agreement Number 76 8953 (ICT4CART).
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