
On the (In)Security of the
Diffie-Hellman Oblivious PRF
with Multiplicative Blinding

Stanislaw Jarecki Hugo Krawczyk Jiayu Xu

x k

Oblivious Pseudorandom Function (OPRF) [NR’97,FIPR’05]

Assume PRFk x is a PRF with key k and argument x

• Application Examples #1: “Password-hardening” [FK’00, Boyen’09, JKKX’16, JKX’18, …]:

• OPRFk() maps low-entropy secrets to pseudorandom keys

• OPAQUE [JKX’18]: OPRFk() can upgrade AKE to strong asymmetric PAKE

• Application Examples #2: Set Intersection [HL’08, …]:

• Alice runs OPRFk() so Charlie computes: { PRFk(x) for x  SetCharlie }

• Alice sends to Charlie: { PRFk(y) for y  SetAlice }

• Many other applications: SSE [JJKRS’13], Two-Factor Auth [JHSS’18], Privacy Pass [DGSTV’18],
Key Management [JKR’19], Anonymous Tickets [KDMT’20], Contact Tracing [DPT’20], …

OPRF
protocolPRFk(x)

C input:
argument x

S input:
key k

a = H(x)r

b = ak

UC OPRF: Exponential-blinded Hashed Diffie-Hellman […,JKKX’16]

C input:
argument x r Zp

PRFk(x) = H’(x , b1/r)

Hashed DH PRF

PRFk x ≜ H′(x, H(x)k)

Note: b1/r = (ak)1/r

= ((H(x)r)k)1/r = H(x)k

• Protocol uses 1 exp for S and 2 exps for C

• [JKKX’16]: realizes Universally Composable OPRF under (Gap) One-More DH in ROM

• Question: Can this OPRF be implemented even faster?

• H hashes onto a group (order p)
• PRF key k  Zp

• outer hash H’ de-correlates PRF outputs on
correlated keys, e.g., PRFk and PRF2k

• adding x to hash H’ inputs disambiguates H’ query
as PRF evaluation on a unique (key,argument) pair

S input:
key k

PRFk(x) = H’(x , bz-r)

a = H(x)  gr

OPRF candidate: Multiplicative-blinded Hashed DH

C input:
argument x r Zp

S input:
key k

• multiplicative instead of exponential blinding ( Chaum’s Blind RSA scheme)

• C replaces 2 var-base exps with 2 fixed-base exps (or 1fb+1vb if PRF key z new)

• up to  6-7x speedup for 128-bit security with precomputation

• Question: Is mult-blinded HDH just as secure as exp-blinded HDH?

Hashed DH PRF

PRFk x ≜ H′(x, H(x)k)

b = ak (+ “public key” z = gk)

b  z-r = ak  z-r

= (H(x)  gr)k  (gk)-r

= H(x)k

, z = gk

Effective PRF for malicious server

PRFk, x ≜ H′(x,  H(x)k)

b  z-r =   ak  z-r

=   (H(x)  gr)k  (gk)-r

=   H(x)k

Multiplicative-blinded Hashed DH: server-side attack

C input:
argument x r Zp

S* input:
key k

a = H(x)  gr

Main Question: Is PRFk,() substantially different from PRFk() ?

• Functions PRFk() are  independent RF’s for any keys k chosen by S* (by UC OPRF [JKKX’16])

• Functions PRFk,() can have programmed collisions (=“correlated outputs”) for keys (k,) chosen by S*

Hashed DH PRF

PRFk x ≜ H′(x, H(x)k)

For any (k,) and any x∗, set (k∗,∗) s.t. ∗𝐻(𝑥∗)𝑘
∗
=   𝐻(𝑥∗)𝑘

H’(x , bz-r) = H’(x,   H(x)k)

1. PRFk*,* (x) = PRFk, (x) if x = x∗

2. PRFk*,* (x)  PRFk, (x) if x ≠ x∗ [ independent functions in ROM (this paper)]

+ shift value 

recall what we wanted to compute: malicious S* implements OPRFk, () for new a PRF:

= PRFk,(x)

b =   ak , z = gk

Server-side attack on mult-blinded HDH OPRF (app. example)
In multiplicative-blinded Hashed DH, malicious S* can pick (k,), (k∗,∗) and x∗ s.t.

1. PRFk*,* (x) = PRFk, (x) if x = x∗

2. PRFk*,* (x)  PRFk, (x) if x ≠ x∗ [ independent functions in ROM]

OPRFk*,* ()

x = pwd (k*,*)

v’ = PRFk*,* (x)

OPRFk, ()

x = pwd (k,)

v = PRFk, (x)
attacker S*uses v as encryption key,

stores c = AuthEnc(v,data)

Charlie on Monday

Charlie on Tuesday

S* learns if Charlie’s pwd = x*

uses v’ to decrypt c,
succeeds iff v’=v

protests/complains/retries
iff decryption fails!

bit b = (v’ == v) = (x == x*)

= (k == k*)

No such attack on UC OPRF [JKKX’16], i.e. exp-blinded HDH
In exponential-blinded Hashed DH, functions PRFk (x) are independent for all keys k, k∗:

1. PRFk* (x) = PRFk (x) for all x if k∗ = k

2. PRFk* (x)  PRFk (x) for all x if k∗ ≠ k [ independent functions in ROM]

x = pwd k

v = PRFk (x)
attacker S*

x = pwd k*

v’ = PRFk* (x)

Charlie on Monday

bit b = (v’ == v)
with exp-blinded HDH

S* doesn’t learn
anything new!

OPRFk ()

OPRFk* ()

uses v as encryption key,
stores c = AuthEnc(v,data)

Charlie on Tuesday

uses v’ to decrypt c,
succeeds iff v’=v

protests/complains/retries
iff decryption fails!

Multiplicative-blinded Hashed DH: Can we stop the attack?

r $ (k,)a = H(x)  gr

b =   ak, z = gkPRFk,(x) = H’(x , bz-r) = H’(x,   H(x)k)

How to remove , or remove its effects on adversarial ability to correlate PRFk, functions?

1. S sends NIZKP that k s.t. (b,z) = (ak,gk) bandwidth++, adds 1-2 exp’s for C and S
()

2. C verifies the server’s public key z requires certificates, not good for e.g. PAKEs
(S can still -shift C’s hash calculation but the shift is not x-dependent, so no correlations)

3. Modify PRF to:

Effective PRF for malicious server

PRFk, x ≜ H′(x,  H(x)k)

Attack: S* correlates 𝑃𝑅𝐹𝑘, functions

on chosen arguments x*

PRFk x ≜ H′(x, g𝑘 , H(x)k) does it come at no cost?

 if you need Verifiable OPRF then use mult-blind and NIZKP, otherwise do exp-blind

(x)

Pros and Cons of adding gk to the hash in Hashed DH OPRF

Modified Hashed DH PRF

PRFk x ≜ H′(x, g𝑘, H(x)k)

Hashed DH PRF

PRFk x ≜ H′(x, H(x)k)

Mult-blinded oblivious evaluation

(k)
a = H(x)  gr

, z = gkb = ak
(x)

H’(x , bz-r) vs. H’(x , gk , bz-r)

(k)
a = H(x)r

b = ak
(x)

H’(x , b(1/r)) vs. H’(x , gk , b(1/r))

Exp-blinded oblivious evaluation

Security?

• breaks some applications
Realizes UC OPRF of [JKKX’16]

• fewer exp’s than Exp-blinded

Realizes UC OPRF of [JKKX’16] Realizes UC OPRF of [JKKX’16]

• must store/send z=gk

• IRTF CFRG: push-back
from e.g. IOT applications



✓

✓



• This paper: It is secure for
some important applications

✓

The no-gk version allows e.g.
bandwidth-restricted devices
to use Exp-blinded evaluation

✓

, z = gk

(with disclaimers)

Definitional Approach: Correlated UC OPRF (this paper)
Hashed DH PRF

PRFk x ≜ H′(x, H(x)k)

Effective PRF for malicious servers

PRFk x ≜ H′(x, H(x)k)

“Strong” UC OPRF [JKKX’16]

• PRFk and PRFk*  indep. RF’s k*k

• realized by exp-blinded Hashed-DH
(under Gap OneMore-DH in ROM)

Correlated UC OPRF (this paper)

• PRFk, and PRFk*,* can be correlated on
at most one argument x* (k*,*)  (k,)

• On all xx* these are  indep. RF’s

• realized by mult-blinded Hashed-DH
(under Gap+ OneMore-DH in ROM)

Effective PRF for malicious servers

PRFk, x ≜ H′(x,  H(x)k)

Mult-blinded oblivious evaluationExp-blinded oblivious evaluation

DDH+ oracle, on (A,B,A’,B’,C) replies 1 iff

C = DH(A,B)  DH(A’,B’)

[holds in GGM, implied by bilinear DH]

When is Correlated OPRF safe to use?

x
v = F0 (x)

UC OPRF [JKKX’16] (prior work)

0x’

v’ = F0 (x’)

x

v = F1(x)

…

1

……

0
F0 RF

$

F1 RF
$

Implementation: PRF keys
UC abstraction: pointers to RF’s

UC OPRF [JKKX’16] model implies
attacker S* actions are  choosing
between independent RF’s

… ……

First, compare to the OPRF of [JKKX’16], realized by exp-blinded Hash DH:

When is Correlated OPRF safe to use? Think Password Auth…

In Password Authentication
x = client’s password UC Correlated OPRF (this paper)

1, CL ={ (0,x1) }x

v1 = F1 (x) s.t. F1(x1) = F0(x1)

…

2, CL ={ (0,x2), (1,…) }x

v2 = F2 (x) s.t. F2(x2) = F0(x2)
& ….

n, CL ={ (0,xn), (1,…), …}x

vn = F3 (x)

…

s.t. Fn(xn) = F0(xn)
& ….

Initialization:
v0 will be used for
authentication to S

n authentication
sessions:
application tests
if vi=v0

x
v0 = F0 (x)

0

n online
password tests:
x1, x2, …, xn

F0 RF
$

F1 RF
$

F2 RF
$

Fn RF
$

Correlated OPRF creates avenue for online password tests

only one test per session: attack avenue already part of PAKE

 OPAQUE aPAKE can use mult-blinded Hashed DH

(= UC functionality realized by mult-blinded Hashed DH)

S
(attacker)

Conclusions

• Mult-blinded Hashed DH realizes UC Correlated OPRF
• relaxation of UC OPRF [JKKX’16]

• Correlated OPRF can create on-line password test attacks
• only one per protocol instance, like in PAKE

• In threshold OPRF it can create attack avenue for 1 malicious server [see the paper]

• It can be used if application already has on-line tests
• Password-Authentication, e.g. OPAQUE

 modified OPAQUE reduces cost of strong asymmetric PAKE to  2f + 2v exps per party

• Set Intersection

• other?

• Warning: If OPRF key is re-used then you must verify (i.e. prove) that Correlated OPRF suffices

