On the (In)Security of the Diffie-Hellman Oblivious PRF with Multiplicative Blinding

<u>Stanislaw Jarecki</u>

Hugo Krawczyk

Jiayu Xu

Oblivious Pseudorandom Function (OPRF) [NR'97, FIPR'05]

- Application Examples #1: "Password-hardening" [FK'00, Boyen'09, JKKX'16, JKX'18, ...]:
 - $OPRF_k(\cdot)$ maps low-entropy secrets to pseudorandom keys
 - OPAQUE [JKX'18]: OPRF_k(·) can upgrade AKE to strong asymmetric PAKE
- Application Examples #2: Set Intersection [HL'08, ...]:
 - Alice runs $OPRF_k(\cdot)$ so Charlie computes: { $PRF_k(x)$ for $x \in Set_{Charlie}$ }
 - Alice sends to Charlie: ${PRF_k(y) \text{ for } y \in Set_{Alice}}$
- Many other applications: SSE [JJKRS'13], Two-Factor Auth [JHSS'18], Privacy Pass [DGSTV'18], Key Management [JKR'19], Anonymous Tickets [KDMT'20], Contact Tracing [DPT'20], ...

UC OPRF: *Exponential-blinded* Hashed Diffie-Hellman [...,JKKX'16]

- Protocol uses **1** exp for S and **2** exps for C
- [JKKX'16]: realizes Universally Composable OPRF under (Gap) One-More DH in ROM
- Question: Can this OPRF be implemented even faster?

OPRF candidate: *Multiplicative-blinded* Hashed DH

- *multiplicative* instead of *exponential* blinding (≈ Chaum's Blind RSA scheme)
- C replaces 2 *var-base* exps with 2 *fixed-base* exps (or 1fb+1vb if PRF key z new)
- up to ~ 6-7x speedup for 128-bit security with precomputation
- Question: Is mult-blinded HDH just as secure as exp-blinded HDH?

Multiplicative-blinded Hashed DH: server-side attack

recall what we wanted to compute:

Hashed DH PRF

 $PRF_k(x) \triangleq H'(x, H(x)^k)$

malicious S* implements $OPRF_{k,\delta}(\cdot)$ for new a PRF:

Effective PRF for malicious server $PRF_{k,\delta}(x) \triangleq H'(x, \delta \cdot H(x)^k)$

<u>Main Question</u>: Is $PRF_{k,\delta}(\cdot)$ substantially different from $PRF_k(\cdot)$?

- Functions $PRF_k(\cdot)$ are \approx independent RF's for any keys k chosen by S* (by UC OPRF [JKKX'16])
- Functions $PRF_{k,\delta}(\cdot)$ can have programmed collisions (="correlated outputs") for keys (k, δ) chosen by S*

For any (k,δ) and any x^* , set (k^*,δ^*) s.t. $\delta^* \cdot H(x^*)^{k^*} = \delta \cdot H(x^*)^k$

1.	$PRF_{k^*,\delta^*}(x) = PRF_{k,\delta}(x)$	if $x = x^*$
2.	$PRF_{k^*,\delta^*}(x) \neq PRF_{k,\delta}(x)$	if $x \neq x^*$ [\approx independent functions in ROM (this paper)]

Server-side attack on *mult-blinded* HDH OPRF (app. example)

In *multiplicative-blinded* Hashed DH, malicious S* can pick (k, δ), (k*, δ *) and x* s.t.

1. $\mathsf{PRF}_{k^*,\delta^*}(x) = \mathsf{PRF}_{k,\delta}(x)$ if $x = x^*$ 2. $\mathsf{PRF}_{k^*,\delta^*}(x) \neq \mathsf{PRF}_{k,\delta}(x)$ if $x \neq x^*$ [\approx independent functions in ROM]

No such attack on UC OPRF [JKKX'16], i.e. exp-blinded HDH

In *exponential-blinded* Hashed DH, functions $PRF_k(x)$ are independent for all keys k, k^* :

- 1. $PRF_{k^*}(x) = PRF_k(x)$ for all x if $k^* = k$
- 2. $PRF_{k^*}(x) \neq PRF_k(x)$ for all x if $k^* \neq k$ [\approx independent functions in ROM]

Multiplicative-blinded Hashed DH: Can we stop the attack?

How to remove δ , or remove its effects on adversarial ability to correlate PRF_{k, δ} functions?

- 1. S sends NIZKP that $\exists k \text{ s.t. } (b,z) = (a^k,g^k)$ bandwidth++, adds 1-2 exp's for C and S \Rightarrow if you need *Verifiable* OPRF then use mult-blind and NIZKP, otherwise do exp-blind
- 2. C verifies the server's public key z requires certificates, not good for e.g. PAKEs (S can still δ -shift C's hash calculation but the shift is not x-dependent, so no correlations)
- 3. Modify PRF to: $PRF_k(x) \triangleq H'(x, g^k, H(x)^k)$ does it come at no cost?

Pros and Cons of adding g^k to the hash in Hashed DH OPRF

Definitional Approach: Correlated UC OPRF (this paper)

Hashed DH PRF $PRF_k(x) \triangleq H'(x, H(x)^k)$

Exp-blinded oblivious evaluation

Effective PRF for malicious servers $PRF_{k}(x) \triangleq H'(x, H(x)^{k})$

"Strong" UC OPRF [JKKX'16]

- PRF_k and $PRF_{k^*} \approx indep. RF's \forall k^* \neq k$
- realized by exp-blinded Hashed-DH (under Gap OneMore-DH in ROM)

Mult-blinded oblivious evaluation

Effective PRF for malicious servers $PRF_{k,\delta}(x) \triangleq H'(x, \delta \cdot H(x)^k)$

<u>Correlated UC OPRF</u> (this paper)

- $PRF_{k,\delta}$ and PRF_{k^*,δ^*} can be correlated on at most <u>one argument $x^* \quad \forall (k^*,\delta^*) \neq (k,\delta)$ </u>
- On all $x \neq x^*$ these are \approx indep. RF's
- realized by mult-blinded Hashed-DH (under Gap⁺ OneMore-DH in ROM)

When is *Correlated* OPRF safe to use?

First, compare to the OPRF of [JKKX'16], realized by exp-blinded Hash DH:

Implementation: PRF keys UC abstraction: pointers to RF's

UC OPRF [JKKX'16] model implies attacker S* actions are \approx choosing between independent RF's

When is *Correlated* OPRF safe to use? Think Password Auth...

(= UC functionality realized by mult-blinded Hashed DH)

Conclusions

- Mult-blinded Hashed DH realizes <u>UC Correlated OPRF</u>
 - relaxation of UC OPRF [JKKX'16]
- Correlated OPRF can create on-line password test attacks
 - only one per protocol instance, like in PAKE
 - In threshold OPRF it can create attack avenue for 1 malicious server [see the paper]
- It can be used if application already has on-line tests
 - Password-Authentication, e.g. OPAQUE
 - → modified OPAQUE reduces cost of strong asymmetric PAKE to $\leq 2f + 2v$ exps per party
 - Set Intersection
 - other?
 - Warning: If OPRF key is re-used then you must verify (i.e. prove) that Correlated OPRF suffices