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Introduction Threshold ECDSA

Threshold signature allows n parties to share the message signing ability
without trusting each other, such that no coalition of t < n or fewer users can
generate a valid signature.

Threshold ECDSA in Practice

A threshold signature with t = 1,n = 3 is useful for a hot
wallet of a crypto exchange

• the exchange holds sk1 for online transaction and sk2
for paper backup, and a separate security �rm holds
sk3 to validate transactions

• losing one key from the exchange or the security �rm
does not compromise the hot wallet.

Most blockchain systems just trivially check if t+ 1 signatures are valid...
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Introduction What do we achieve?

• Improve the e�ciency of ZK proofs used in two-party and threshold
ECDSA.

• When applied to two-party ECDSA: the bandwidth of KeyGen ⇓ 47%, and
the running time for KeyGen and Sign ⇑ 35% and ⇑ 104% faster
respectively.

• When applied to threshold ECDSA:
• Scheme 1: optimized for KeyGen (about ⇓ 70% bandwidth and ⇑ 85% faster
computation in KeyGen , at a cost of 20% larger bandwidth in Sign)

• Scheme 2: all-rounded performance improvement (about ⇓ 60% bandwidth,
⇑ 46% faster computation in KeyGen without additional cost in Sign).
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Introduction How do we achieve it?

Many ZK proofs are involved in threshold ECDSA.

We improve the existing ZK proofs involved in two-party/threshold ECDSA.

Table: Modi�cations to the threshold ECDSA in [2] are shown in the box.

IKeyGen(param)
Pi All players {Pj}j6=i

ui
$←− Zq

(kgci, kgdi)← Com(P̂ui )

(ski, pki)← CL.KeyGen()
kgci,pki−−−−−→

kgdi−−−→
πk := ZKPoKRepS(pki; ski : pki = g

ski
q )

πk←→ Abort if the proof fails.
Follow from line 5 of Fig. 4 in in [2].

ISign(param,m)
Pi Phase 1 All players {Pj}j6=i

ki, γi
$←− Zq, ri

$←− [0, S]

(ci, di)← Com(P̂γi )

Cki
← CL.Enc(pki, ki; ri)

Cki
,ci

−−−−−→
πC := ZKPoKEnc((ki, ri) :

((pki,Cki
); (ki, ri)) ∈ REnc)

πC←→ Abort if the proof fails.
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Introduction Additive Homomorphic Encryption

Most two-party or threshold ECDSA schemes use additive homomorphic
encryption.

• Some earlier papers [5, 6, 4] used Paillier encryption.

• [1] used the additive homomorphic Castagnos-Laguillaumie (CL)
encryption [3].

Additive Homomorphic CL Encryption

• based on an unknown order group G, which contains a
subgroup F in which the DL problem is tractable.

• hard subgroup membership (HSM) assumption holds
in G

• can be constructed from class groups of quadratic
�elds.

CL vs. Paillier encryption: the generation of the class group is trustless, and
|class group element| < |Paillier group element|.
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Introduction HSM Group

• The group Gq is a group of unknown order s with a genertor gq.

• F is a group of known order q with a genertor f.

• By construction G = Gq × F and g := f · gq is the generator of G.
• The DL problem in F can be solved by a polynomial time algorithm Solve:

x← Solve(fx), ∀x $←− Zq.

For simplicity, we will call this group the HSM group.

• The HSM group can be instantiated by class groups of imaginary
quadratic order.
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Introduction CL Encryption

CL Encryption:

• Setup. On input a security parameter 1λ and a prime q, it runs
GHSM ← GGenHSM,q(1

λ). It parses GHSM = (s̃, g, f, gq, G̃,G,F,Gq). De�ne
S = s̃ · 2εd for some statistical distance εd. It outputs param = GHSM. The
input param is omitted for other algorithms for simplicity.

• KeyGen. It picks a random sk $←− [0,S] and computes pk = gsk
q . It returns

(sk, pk).
• Encrypt. On input a public key pk and a message m, it picks a random

ρ
$←− [0,S] and outputs the ciphertext C = (C1,C2), where:

C1 = fmpkρ, C2 = gρq.

• Decrypt. On input a secret key sk and a ciphertext C = (C1,C2), it
computes M = C1/C

sk
2 and returns m← Solve(M).
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Introduction CL Encryption

CL Encryption (cont.):

• EvalScal. On input a public key pk, a ciphertext C = (C1,C2) and a
scalar s, it outputs C′ = (C′1 = Cs

1,C
′
2 = Cs

2).

• EvalSum. On input a public key pk, two ciphertexts C = (C1,C2) and
C′ = (C′1,C

′
2), it outputs Ĉ = (Ĉ1 = C1C

′
1, Ĉ2 = C2C

′
2).

Security based on the the hard subgroup membership (HSM) assumption:
hard to distinguish the elements of Gq in G.
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ZK Proof ZK Proof for HSM Group

Technical di�culties: E�cient ZK proofs in the HSM group for

1. DL of an unknown order group element (pk = gsk
q )

2. well-formedness of a CL ciphertext (C1 = fmpkρ,C2 = gρq)

Existing Works

• [1] used a ZK proof with a single bit challenge. To
achieve soundness error of 2−εs , the protocol has to be
repeated for εs-times → ine�cient.

• [2] tackled the �rst DL problem by using a lowest
common multiple (lcm) tricks, which reduces the
repetition of the ZK proof to about εs/10-times. [2]
tackled the second problem based on a strong root
assumption in the HSM group.
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ZK Proof Problems to be tackled

1. ZK proof for DL in HSM group in [2] only reduces the repetition by 10
times (e.g. from 80 times to 8 times for soundness error 280.)

2. ZK proof for CL ciphertext in [2] does not allow a fast, trustless setup.

• [2] use the strong root assumption that when given a random group
element w ∈ G \ F, it is di�cult to output a group element u and a
positive integer e 6= 2k such that ue = w.

• However, a random group generator w can only be obtained from:
• a standardized group: all users have to trust the standardizing authority →
not desirable for decentralized applications such as public blockchain.

• jointly generated by all participating parties during the interactive KeyGen
→ greatly increases the round complexity and the bandwidth used.

© Tsz Hon Yuen 1 Handong Cui 1 Xiang Xie 2 13



ZK Proof DL for HSM Group

We �rst consider a ZK proof for a simple DL relation R in an unknown order
group G for some group elements g,w ∈ G \ F :1

R = {x ∈ Z : w = gx}.

The subgroup F makes the ZK proof on the relation R much more
complicated.

1Since it is easy to compute logg w if g ∈ F, it is impossible to construct a ZK proof for R if

g ∈ F. Hence, we restrict that g ∈ G \ F.
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ZK Proof DL for HSM Group

Attempt 1: Use adaptive root assumption

• The adversary �rst selects a group element w ∈ G \ F. Given a random
prime `, no PPT adversary can output a group element u such that
u` = w.

Algorithm 1: Insecure ZK Proof for the relation R
1 Veri�er sends a random λ-bit prime `.

2 Prover �nds q′ ∈ Z and r ∈ [0, `− 1] s.t. x = q′`+ r. Prover sends Q = gq
′

and r to the veri�er.

3 Veri�er accepts if r ∈ [0, `− 1] and Q`gr = w.
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ZK Proof DL for HSM Group

It is insecure:

• If the prover knows x and y such that w = gxfy for some f ∈ F, he can
compute Q′ = gq

′
f
y
` since the order of f is known. It can pass the

veri�cation since:

Q′
`
gr = (gq

′
f
y
` )`gr = gxfy = w.
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ZK Proof DL for HSM Group

Our solution: use an extra round of challenge to eliminate the elements of
order q in w.

This extra round simply uses q instead of using the prime number `.

Algorithm 2: ZK Proof for the relation R
Param: A security parameter B.

1 Prover chooses k
$←− [−B,B] and sends R = gk to the veri�er.

2 Veri�er sends c
$←− [0, q− 1] to the prover.

3 Prover computes s = k+ cx. Prover �nds d ∈ Z, e ∈ [0, q− 1] s.t.

s = dq+ e and sends D = gd and e to the veri�er.
4 If e ∈ [0, q− 1] and Dqge = Rwc, veri�er sends a random λ-bit prime `.

5 Prover �nds q′ ∈ Z and r ∈ [0, `− 1] s.t. s = q′`+ r. Prover sends Q = gq
′

and r to the veri�er.

6 Veri�er accepts if r ∈ [0, `− 1] and Q`gr = Rwc.
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ZK Proof DL for HSM Group

Safe against previous attack:

• If the prover knows x and y such that w = gxfy for some f ∈ F, and if he
can pass the veri�cation:

Dqge = Rwc = R(gxfy)c

RHS has no element in F → fcy is cancelled out by R → negligible
probability since c is given after R.
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ZK Proof Advantages

Our protocol only runs for one time only for a soundness error of 2−εs , as
compared to εs-times for [1] and εs/10-times for [2].
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Figure: Comparison of ZK Proof of DL relation in HSM group.

97% shorter than CCL+19 [1] and around 74% shorter than CCL+20 ([2],
�5.1) with the same level of soundness error and statistical distance of 2−80.
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ZK Proof Other Comparisons

• As compared with ZK proofs in [2], their strong root assumption is similar
to the strong RSA assumption, while our adaptive root assumption is
more similar to the RSA assumption.

• [2] gives a ZK proof for a modi�ed relation: hy = gx for some public value
y.

• The security of our ZK proofs requires the use of generic group model
while the security of the ZK proofs in [2] does not.
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ZK Proof CL Ciphertext

ZK Proof for CL ciphertext:

REnc = {(pk,C1,C2); (m, ρ)|pk ∈ Gq, ρ ∈ [0, S] : C1 = fmpkρ ∧ C2 = gρq}.

Similar to the DL proof, but special care is needed for the term m, since the
order of f is known.
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ZK Proof CL Ciphertext
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ZK Proof Comparisons

Table: Comparison of communication size for ZK proof of the well-formedness of CL
ciphertext.

Communication Size (Bytes)
Requirement

λ = 112 λ = 128 λ = 192 λ = 256

CCL+19 [1] 37970 49950 95520 156130 ×
CCL+20 [2] 495 645 1214 1972 Random gq ∈ Gq

This paper 1129 1488 2864 4692 pk ∈ Gq, GGM

• Note that CCL+20 [2] required that gq is randomly chosen in Gq prior to
running the ZK proof → gq jointly generated by all participating parties
→ overheads in bandwidth as well as a few more rounds of
communication.

• Our scheme additionally require that pk ∈ Gq. It can be proved by the
owner of the secret key separately (to be used in threshold ECDSA), or
can be embedded into this ZK proof if the prover himself is also the owner
of the secret key (to be used in 2-party ECDSA).
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2P ECDSA Our Construction

We mainly use the two-party ECDSA protocols in [1].

For the ZK proof part, we have to prove the relation:

REnc′ = {(m, ρ, sk) :C1 = fmpkρ ∧ C2 = gρq ∧ Q̂ = P̂m ∧ pk = gsk
q }.
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2P ECDSA Comparison

Table: Comparison for two-party ECDSA with di�erent security levels.

Security IKeyGen ISign Assumption
Level (Bytes) (Bytes)

CCL+19 [1]

λ = 112 38714 575
Hard subgroupλ = 128 50876 697
membershipλ = 192 97230 1260

λ = 256 158850 1973

CCL+19-lcm [2]

λ = 112 4559 575
Hard subgroupλ = 128 5939 697
membershipλ = 192 11280 1260

λ = 256 18351 1973

Our two-party
λ = 112 2453 575 Hard subgroup

ECDSA
λ = 128 3173 697 membership,
λ = 192 6030 1260 adaptive root
λ = 256 9789 1973 subgroup.
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2P ECDSA Comparison
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Figure: Running time of two-party ECDSA.
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Threshold ECDSA Our Scheme 1

Table: Scheme 1: Modi�cations to the threshold ECDSA in [2] are shown in the box.

IKeyGen(param)
Pi All players {Pj}j6=i

ui
$←− Zq

(kgci, kgdi)← Com(P̂ui )

(ski, pki)← CL.KeyGen()
kgci,pki−−−−−→

kgdi−−−→
πk := ZKPoKRepS(pki; ski : pki = g

ski
q )

πk←→ Abort if the proof fails.
Follow from line 5 of Fig. 4 in in [2].

ISign(param,m)
Pi Phase 1 All players {Pj}j6=i

ki, γi
$←− Zq, ri

$←− [0, S]

(ci, di)← Com(P̂γi )

Cki
← CL.Enc(pki, ki; ri)

Cki
,ci

−−−−−→
πC := ZKPoKEnc((ki, ri) :

((pki,Cki
); (ki, ri)) ∈ REnc)

πC←→ Abort if the proof fails.
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Threshold ECDSA Our Scheme 2

If we make the extra adaptive root subgroup assumption, we can keep the
ISign algorithm and the most of the IKeyGen algorithm in CCL+20 [2].

We only need to modify the interactive ISetup algorithm in [2], such that the
proof of knowledge of ti for gi = gtiq is replaced by our ZKPoKRepS protocol.

© Tsz Hon Yuen 1 Handong Cui 1 Xiang Xie 2 30



Threshold ECDSA Comparison
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Threshold ECDSA Comparison

112 128
0

10

20

30

12.6

23.91

1.69 2.5

6.12

12.84

Security Level

R
u
n
n
in
g
T
im
e
(s
ec
)

CCL+20

Our scheme 1

Our scheme 2

(a) IKeyGen.

112 128
0

5

10

15

5.42

8.42

6.57

10.13

5.42

8.42

Security Level
R
u
n
n
in
g
T
im
e
(s
ec
)

(b) ISign.

Figure: Running time of threshold ECDSA with t = 1, n = 3.
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Conclusion

• We propose a compact zero-knowledge proof for the DL relation in HSM
groups and the CL ciphertext.

• When applied to two-party ECDSA and threshold ECDSA, it can
signi�cantly improve the performance in terms of bandwidth used in
IKeyGen, and the running time of IKeyGen and ISign.
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