
‡

AIT Austrian Institute of Technology

§

Technische Universität Wien

Updatable Signatures and Message Authentication Codes

Valerio Cini‡, Sebastian Ramacher‡, Daniel Slamanig‡, Christoph Striecks‡, Erkan Tairi§

PKC 2021, May 10

Motivation

• Rotate keys and update signatures/MACs to the new key (using a compact
token),

• Previous work on Updatable Encryption (e.g., [Bon+13] and [LT18]),

• Equally important in context of signatures and MACs to follow good key
management practices (e.g., key-rotation in software distribution).

1

Our Framework

Definition

BP

pke, ske

m, ...
σe

σe+1

Next

server/database

σe
∆e+1

epoch e

pke, ske pke+1, ske+1, ∆e+1

Update

2

Definition

BP

pke, ske

m, ...

σe

σe+1

Next

server/database

σe

∆e+1

epoch e

pke, ske pke+1, ske+1, ∆e+1

Update

2

Definition

BP

pke, ske

m, ...

σe

σe+1

Next

server/database

σe
∆e+1

epoch e

pke, ske pke+1, ske+1, ∆e+1

Update

2

Definition

BP

pke, ske

m, ...

σe

σe+1

Next

server/database

σe
∆e+1

epoch e

pke, ske

pke+1, ske+1, ∆e+1

Update

2

Definition

BP

pke, ske

m, ...

σe

σe+1

Next

server/database

σe
∆e+1

epoch e+ 1

pke, ske

pke+1, ske+1, ∆e+1

Update

2

Definition

BP

pke+1, ske+1

m, ...

σe

σe+1

Next

server/database

σe

∆e+1

epoch e+ 1

pke, ske pke+1, ske+1, ∆e+1

Update

2

Definition

BP

pke+1, ske+1

m, ...

σe

σe+1

Next

server/database

σe
∆e+1

epoch e+ 1

pke, ske pke+1, ske+1, ∆e+1

Update

2

Security

We introduced two security notions:

• existential unforgeability under chosen-message attack (UX-EUF-CMA),
• unlinkable updates under chosen-message attack (UX-UU-CMA),

for X ∈ {MAC, S}.

3

Leakage Profile [LT18]

We use the concept of a leakage profile originally defined, for updatable
encryption, in [LT18], to capture key, token, and signature “leakage” that cannot be
directly captured via oracles.

• Key-update inferences,

• Token inferences,

• Signature-update inferences,

4

Example of Leakage

epoch: e− 5 e− 4 e− 3 e− 2 e− 1 e e+ 1 e+ 2 e+ 3 e+ 4

keys: ke−5 ke−4 ke−3 ke−2 ke−1 ke ke+1 ke+2 ke+3 ke+4

tokens: ∆e−4 ∆e−3 ∆e−2 ∆e−1 ∆e ∆e+1 ∆e+2 ∆e+3 ∆e+4 ∆e+5

signature: σe−5 σe−4 σe−3 σe−2 σe−1 σe σe+1 σe+2 σe+3 σe+4

Figure 1: Example of directly obtained (green) and inferable information (blue) for UX
schemes.

5

Example of Leakage

epoch: e− 5 e− 4 e− 3 e− 2 e− 1 e e+ 1 e+ 2 e+ 3 e+ 4

keys: ke−5 ke−4 ke−3 ke−2 ke−1 ke ke+1 ke+2 ke+3 ke+4

tokens: ∆e−4 ∆e−3 ∆e−2 ∆e−1 ∆e ∆e+1 ∆e+2 ∆e+3 ∆e+4 ∆e+5

signature: σe−5 σe−4 σe−3 σe−2 σe−1 σe σe+1 σe+2 σe+3 σe+4

Figure 1: Example of directly obtained (green) and inferable information (blue) for UX
schemes.

5

Example of Leakage

epoch: e− 5 e− 4 e− 3 e− 2 e− 1 e e+ 1 e+ 2 e+ 3 e+ 4

keys: ke−5 ke−4 ke−3 ke−2 ke−1 ke ke+1 ke+2 ke+3 ke+4

tokens: ∆e−4 ∆e−3 ∆e−2 ∆e−1 ∆e ∆e+1 ∆e+2 ∆e+3 ∆e+4 ∆e+5

signature: σe−5 σe−4 σe−3 σe−2 σe−1 σe σe+1 σe+2 σe+3 σe+4

Figure 1: Example of directly obtained (green) and inferable information (blue) for UX
schemes.

5

Example of Leakage

epoch: e− 5 e− 4 e− 3 e− 2 e− 1 e e+ 1 e+ 2 e+ 3 e+ 4

keys: ke−5 ke−4 ke−3 ke−2 ke−1 ke ke+1 ke+2 ke+3 ke+4

tokens: ∆e−4 ∆e−3 ∆e−2 ∆e−1 ∆e ∆e+1 ∆e+2 ∆e+3 ∆e+4 ∆e+5

signature: σe−5 σe−4 σe−3 σe−2 σe−1 σe σe+1 σe+2 σe+3 σe+4

Figure 1: Example of directly obtained (green) and inferable information (blue) for UX
schemes.

5

Example of Leakage

epoch: e− 5 e− 4 e− 3 e− 2 e− 1 e e+ 1 e+ 2 e+ 3 e+ 4

keys: ke−5 ke−4 ke−3 ke−2 ke−1 ke ke+1 ke+2 ke+3 ke+4

tokens: ∆e−4 ∆e−3 ∆e−2 ∆e−1 ∆e ∆e+1 ∆e+2 ∆e+3 ∆e+4 ∆e+5

signature: σe−5 σe−4 σe−3 σe−2 σe−1 σe σe+1 σe+2 σe+3 σe+4

Figure 1: Example of directly obtained (green) and inferable information (blue) for UX
schemes.

5

Constructions

Outline

• US from Key-Homomorphic Signatures [DS19],

• Lattice-based candidate US construction [GPV08],

• UMAC from “almost” key-homomorphic PRFs [Bon+13],

• Security Proof Ideas.

6

Outline

• US from Key-Homomorphic Signatures [DS19],

• Lattice-based candidate US construction [GPV08],

• UMAC from “almost” key-homomorphic PRFs [Bon+13],

• Security Proof Ideas.

6

Outline

• US from Key-Homomorphic Signatures [DS19],

• Lattice-based candidate US construction [GPV08],

• UMAC from “almost” key-homomorphic PRFs [Bon+13],

• Security Proof Ideas.

6

Outline

• US from Key-Homomorphic Signatures [DS19],

• Lattice-based candidate US construction [GPV08],

• UMAC from “almost” key-homomorphic PRFs [Bon+13],

• Security Proof Ideas.

6

Key-Homomorphic Signatures [DS19] (1/2)

Definition (Secret Key to Public Key Homomorphism [DS19])
Let Σ be a signature scheme, where secret and public key elements live in
groups (H, +) and (E, ·) respectively. A Secret Key to Public Key Homomorphism
is a map µ : H→ E, such that:

- µ(sk+ sk′) = µ(sk) · µ(sk′) for all sk, sk′ ∈ H,
- pk = µ(sk) for all (sk,pk)← KeyGen(λ).

Example: DL setting (G,p,g)

sk← Zp,pk = gsk µ :

Zp → G

k 7→ gk

7

Key-Homomorphic Signatures [DS19] (1/2)

Definition (Secret Key to Public Key Homomorphism [DS19])
Let Σ be a signature scheme, where secret and public key elements live in
groups (H, +) and (E, ·) respectively. A Secret Key to Public Key Homomorphism
is a map µ : H→ E, such that:

- µ(sk+ sk′) = µ(sk) · µ(sk′) for all sk, sk′ ∈ H,
- pk = µ(sk) for all (sk,pk)← KeyGen(λ).

Example: DL setting (G,p,g)

sk← Zp,pk = gsk µ :

Zp → G

k 7→ gk

7

Key-Homomorphic Signatures [DS19] (2/2)

Definition (Key-Homomorphic Signatures [DS19])
A signature scheme is called key-homomorphic, if it provides a secret key to
public key homomorphism and an additional PPT algorithm Adapt, such that for
all ∆ ∈ H and all (pk, sk)← Gen(λ), all messages M ∈M and all σ with
Ver(pk,M,σ) = 1 and (pk′,σ′)← Adapt(pk,M,σ, ∆), it holds that

Pr[Ver(pk′,M,σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk.

m Sig σ = H(m)sk Adapt pk′ = pk · g∆

σ′ = σ · H(m)∆

sk pk,m, ∆Example: [BLS01]

8

Key-Homomorphic Signatures [DS19] (2/2)

Definition (Key-Homomorphic Signatures [DS19])
A signature scheme is called key-homomorphic, if it provides a secret key to
public key homomorphism and an additional PPT algorithm Adapt, such that for
all ∆ ∈ H and all (pk, sk)← Gen(λ), all messages M ∈M and all σ with
Ver(pk,M,σ) = 1 and (pk′,σ′)← Adapt(pk,M,σ, ∆), it holds that

Pr[Ver(pk′,M,σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk.

m Sig σ = H(m)sk Adapt pk′ = pk · g∆

σ′ = σ · H(m)∆

sk pk,m, ∆Example: [BLS01]

8

KH-based construction

m Sig σe

Update = Adapt σe+1

ske

pke,m

Next

∆e+1 ← H;
pke+1 := pke · µ(∆e+1)

ske+1 := ske + ∆e+1

9

KH-based construction

m Sig σe

Update = Adapt σe+1

ske

pke,m

Next

∆e+1 ← H;
pke+1 := pke · µ(∆e+1)

ske+1 := ske + ∆e+1

9

KH-based construction

m Sig σe Update = Adapt

σe+1

ske

pke,m

Next

∆e+1 ← H;
pke+1 := pke · µ(∆e+1)

ske+1 := ske + ∆e+1

9

KH-based construction

m Sig σe Update = Adapt σe+1

ske

pke,m

Next

∆e+1 ← H;
pke+1 := pke · µ(∆e+1)

ske+1 := ske + ∆e+1

9

Lattice-based candidate construction (1/2)

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Simulation: pke · σe = H(m)

10

Lattice-based candidate construction (1/2)

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Real: pke

· σe = H(m)

10

Lattice-based candidate construction (1/2)

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Real: pke

· σe

= H(m)

10

Lattice-based candidate construction (1/2)

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Real: pke · σe = H(m)

10

Lattice-based candidate construction (1/2)

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Simulation: pke

· σe = H(m)

10

Lattice-based candidate construction (1/2)

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Simulation: pke · σe

= H(m)

10

Lattice-based candidate construction (1/2)

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Simulation: pke · σe = H(m)

10

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

11

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Next :

pke+1 · ∆e+1 = pke

11

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Next : pke+1

· ∆e+1 = pke

11

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Next : pke+1

· ∆e+1

= pke

11

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Next : pke+1 · ∆e+1 = pke

11

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Update :

∆e+1 · σe

︸ ︷︷ ︸
σe+1

11

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Update :

∆e+1 ·

σe

︸ ︷︷ ︸
σe+1

11

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Update : ∆e+1 · σe

︸ ︷︷ ︸
σe+1

11

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Update : ∆e+1 · σe

︸ ︷︷ ︸
σe+1

11

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Ver :

pke+1 · ∆e+1 · σe
?
= H(m)

11

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Ver : pke+1 · ∆e+1 · σe
?
= H(m)

11

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Ver : pke+1 · ∆e+1

︸ ︷︷ ︸
pke

· σe
?
= H(m)

11

Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Ver : pke+1 · ∆e+1

︸ ︷︷ ︸
pke

· σe
3
= H(m)

11

UMAC from (almost) key-homomorphic PRFs

Let F be a secure PRF, then we can construct a canonical MAC from it

Sig : m F(k1, ·) σ1

m : VerF(k, ·)σ∗=

0/1Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m)

m : VerF(k2, ·)σ∗2=

0/1

12

UMAC from (almost) key-homomorphic PRFs

Let F be a secure PRF, then we can construct a canonical MAC from it

Sig : m F(k, ·) σ

m : VerF(k, ·)σ∗=

0/1Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m)

m : VerF(k2, ·)σ∗2=

0/1

12

UMAC from (almost) key-homomorphic PRFs

Let F be a secure PRF, then we can construct a canonical MAC from it

Sig : m F(k, ·) σ m : VerF(k, ·)σ∗

=

0/1Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m)

m : VerF(k2, ·)σ∗2=

0/1

12

UMAC from (almost) key-homomorphic PRFs

Let F be a secure PRF, then we can construct a canonical MAC from it

Sig : m F(k, ·) σ m : VerF(k, ·)σ∗=

0/1

Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m)

m : VerF(k2, ·)σ∗2=

0/1

12

UMAC from (almost) key-homomorphic PRFs

Definition (Key-Homomorphic PRFs [Bon+13])
Let (K,⊕), (Y , +) be groups. Then, a keyed function F : K ×X → Y is a
key-homomorphic PRF if F is a secure PRF and for every key k1, k2 ∈ K and every
input x ∈ X , we have

F(k1, x) + F(k2, x) = F(k1 ⊕ k2, x)

m : VerF(k, ·)σ∗=

0/1Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m)

m : VerF(k2, ·)σ∗2=

0/1

12

UMAC from (almost) key-homomorphic PRFs

Definition (Key-Homomorphic PRFs [Bon+13])
Let (K,⊕), (Y , +) be groups. Then, a keyed function F : K ×X → Y is a
key-homomorphic PRF if F is a secure PRF and for every key k1, k2 ∈ K and every
input x ∈ X , we have

F(k1, x) + F(k2, x) = F(k1 ⊕ k2, x)

Sig : m F(k1, ·) σ1

m : VerF(k, ·)σ∗=

0/1Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m)

m : VerF(k2, ·)σ∗2=

0/1

12

UMAC from (almost) key-homomorphic PRFs

Definition (Key-Homomorphic PRFs [Bon+13])
Let (K,⊕), (Y , +) be groups. Then, a keyed function F : K ×X → Y is a
key-homomorphic PRF if F is a secure PRF and for every key k1, k2 ∈ K and every
input x ∈ X , we have

F(k1, x) + F(k2, x) = F(k1 ⊕ k2, x)

Sig : m F(k1, ·) σ1

m : VerF(k, ·)σ∗=

0/1

Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m)

m : VerF(k2, ·)σ∗2=

0/1

12

UMAC from (almost) key-homomorphic PRFs

Definition (Key-Homomorphic PRFs [Bon+13])
Let (K,⊕), (Y , +) be groups. Then, a keyed function F : K ×X → Y is a
key-homomorphic PRF if F is a secure PRF and for every key k1, k2 ∈ K and every
input x ∈ X , we have

F(k1, x) + F(k2, x) = F(k1 ⊕ k2, x)

Sig : m F(k1, ·) σ1

m : VerF(k, ·)σ∗=

0/1

Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m)

m : VerF(k2, ·)σ∗2=

0/1

12

UMAC from (almost) key-homomorphic PRFs

Definition (Key-Homomorphic PRFs [Bon+13])
Let (K,⊕), (Y , +) be groups. Then, a keyed function F : K ×X → Y is a
key-homomorphic PRF if F is a secure PRF and for every key k1, k2 ∈ K and every
input x ∈ X , we have

F(k1, x) + F(k2, x) = F(k1 ⊕ k2, x)

Sig : m F(k1, ·) σ1

m : VerF(k, ·)σ∗=

0/1

Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m)

m : VerF(k2, ·)σ∗2=

0/1

12

UMAC from (almost) key-homomorphic PRFs

Definition (Almost Key-Homomorphic PRFs [Bon+13])
Let (K,⊕), (Y , +) be groups. Then, a keyed function F : K ×X → Y is an almost
key-homomorphic PRF if F is a secure PRF and for every key k1, k2 ∈ K and every
input x ∈ X , we have

F(k1, x) + F(k2, x) = F(k1 ⊕ k2, x) + e

Sig : m F(k1, ·) σ1

m : VerF(k, ·)σ∗=

0/1

Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m)

m : VerF(k2, ·)σ∗2=

0/1

12

UMAC from (almost) key-homomorphic PRFs

Definition (Almost Key-Homomorphic PRFs [Bon+13])
Let (K,⊕), (Y , +) be groups. Then, a keyed function F : K ×X → Y is an almost
key-homomorphic PRF if F is a secure PRF and for every key k1, k2 ∈ K and every
input x ∈ X , we have

F(k1, x) + F(k2, x) = F(k1 ⊕ k2, x) + e

Sig : m F(k1, ·) σ1

m : VerF(k, ·)σ∗=

0/1

Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m) + e

m : VerF(k2, ·)σ∗2=

0/1

12

UMAC from (almost) key-homomorphic PRFs

Definition (Almost Key-Homomorphic PRFs [Bon+13])
Let (K,⊕), (Y , +) be groups. Then, a keyed function F : K ×X → Y is an almost
key-homomorphic PRF if F is a secure PRF and for every key k1, k2 ∈ K and every
input x ∈ X , we have

F(k1, x) + F(k2, x) = F(k1 ⊕ k2, x) + e

Sig : m F(k1, ·) σ1

m : VerF(k, ·)σ∗=

0/1

Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m) + e

m : VerF(k2, ·)σ∗2≈δ

0/1

12

Security Proof

• Reduce UX-EUF-CMA to EUF-CMA of X for X ∈ {MAC, S}

• Key insulation technique of Klooß et al. [KLR19] (i.e., region [e−, e+[):
– No key inside the insulated region is corrupted
– Tokens “on” the borders of the insulated region are not corrupted
– All tokens inside the insulated region are corrupted

13

Security Proof

• Reduce UX-EUF-CMA to EUF-CMA of X for X ∈ {MAC, S}
• Key insulation technique of Klooß et al. [KLR19] (i.e., region [e−, e+[):

– No key inside the insulated region is corrupted
– Tokens “on” the borders of the insulated region are not corrupted
– All tokens inside the insulated region are corrupted

13

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

e− = 3 e+ = 7

• Reduce UX-EUF-CMA to EUF-CMA of X for X ∈ {MAC, S}
• Key insulation technique of Klooß et al. [KLR19] (i.e., region [e−, e+[):

– No key inside the insulated region is corrupted
– Tokens “on” the borders of the insulated region are not corrupted
– All tokens inside the insulated region are corrupted 13

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

e− = 3 e+ = 7

• Reduce UX-EUF-CMA to EUF-CMA of X for X ∈ {MAC, S}
• Key insulation technique of Klooß et al. [KLR19] (i.e., region [e−, e+[):

– No key inside the insulated region is corrupted
– Tokens “on” the borders of the insulated region are not corrupted
– All tokens inside the insulated region are corrupted 13

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

Σ.OSig

pki = pki−1 · µ(∆i)

• Associate the EUF-CMA challenger of Σ to an epoch within region (e.g., to e−)

• Set keys for each epoch within the insulated region (using random ∆i ←$ T)
• Use the EUF-CMA challenger of Σ and Σ.Adapt algorithm to answer queries

14

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

Σ.OSig pki = pki−1 · µ(∆i)

• Associate the EUF-CMA challenger of Σ to an epoch within region (e.g., to e−)
• Set keys for each epoch within the insulated region (using random ∆i ←$ T)

• Use the EUF-CMA challenger of Σ and Σ.Adapt algorithm to answer queries

14

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

Σ.OSig pki = pki−1 · µ(∆i)

• Associate the EUF-CMA challenger of Σ to an epoch within region (e.g., to e−)
• Set keys for each epoch within the insulated region (using random ∆i ←$ T)
• Use the EUF-CMA challenger of Σ and Σ.Adapt algorithm to answer queries

14

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

Σ.OSig pki = pki−1 · µ(∆i)

Query : (m, e5)

Σ.OSig Σ.Adaptpk3,∆4 Σ.Adaptpk4,∆5 σ5

σ∗6 : ForgeryΣ.Adaptpk6,−∆6
Σ.Adaptpk5,−∆5Σ.Adaptpk4,−∆4σ∗3

14

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

Σ.OSig pki = pki−1 · µ(∆i)

Query : (m, e5) Σ.OSig

Σ.Adaptpk3,∆4 Σ.Adaptpk4,∆5 σ5

σ∗6 : ForgeryΣ.Adaptpk6,−∆6
Σ.Adaptpk5,−∆5Σ.Adaptpk4,−∆4σ∗3

14

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

Σ.OSig pki = pki−1 · µ(∆i)

Query : (m, e5) Σ.OSig Σ.Adaptpk3,∆4

Σ.Adaptpk4,∆5 σ5

σ∗6 : ForgeryΣ.Adaptpk6,−∆6
Σ.Adaptpk5,−∆5Σ.Adaptpk4,−∆4σ∗3

14

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

Σ.OSig pki = pki−1 · µ(∆i)

Query : (m, e5) Σ.OSig Σ.Adaptpk3,∆4 Σ.Adaptpk4,∆5 σ5

σ∗6 : ForgeryΣ.Adaptpk6,−∆6
Σ.Adaptpk5,−∆5Σ.Adaptpk4,−∆4σ∗3

14

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

Σ.OSig pki = pki−1 · µ(∆i)

Query : (m, e5) Σ.OSig Σ.Adaptpk3,∆4 Σ.Adaptpk4,∆5 σ5

σ∗6 : Forgery

Σ.Adaptpk6,−∆6
Σ.Adaptpk5,−∆5Σ.Adaptpk4,−∆4σ∗3

14

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

Σ.OSig pki = pki−1 · µ(∆i)

Query : (m, e5) Σ.OSig Σ.Adaptpk3,∆4 Σ.Adaptpk4,∆5 σ5

σ∗6 : ForgeryΣ.Adaptpk6,−∆6

Σ.Adaptpk5,−∆5Σ.Adaptpk4,−∆4σ∗3

14

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

Σ.OSig pki = pki−1 · µ(∆i)

Query : (m, e5) Σ.OSig Σ.Adaptpk3,∆4 Σ.Adaptpk4,∆5 σ5

σ∗6 : ForgeryΣ.Adaptpk6,−∆6
Σ.Adaptpk5,−∆5

Σ.Adaptpk4,−∆4σ∗3

14

Security Proof

1

sk1

∆2

σ1

2

sk2

∆3

σ2

3

sk3

∆4

σ3

4

sk4

∆5

σ4

5

sk5

∆6

σ5

6

sk6

∆7

σ6

7

sk7

∆8

σ7

8

sk8

σ8

Σ.OSig pki = pki−1 · µ(∆i)

Query : (m, e5) Σ.OSig Σ.Adaptpk3,∆4 Σ.Adaptpk4,∆5 σ5

σ∗6 : ForgeryΣ.Adaptpk6,−∆6
Σ.Adaptpk5,−∆5Σ.Adaptpk4,−∆4σ∗3

14

Overview and Instantiations

Updatable Signatures

Table 1: Overview of updatable signature schemes.

Scheme Assumption Model UU-CMA MD/MI UB

BLS co-CDH RO 3 MI 3

BLS co-CDH RO 3 MD 3

PS P-LRSW GGM 3 MI 3

PS P-LRSW GGM 3 MD 3

Waters co-CDH SM 3 MD 3

GPV1 SIS RO 7 MI T

1Provides US-EUF-CMA security only in a weakened model.

15

Updatable MACs

Table 2: Overview of updatable MAC schemes.

Scheme Assumption Model UU-CMA MD/MI UB

BLMR (NPR) [Bon+13] DDH RO 3 MD 3

NPR DDH RO 3 MI 3

BEKS [Bon+20] RLWE RO 3 MD T
Kim [Kim20] LWE SM 3 MD T

16

Conclusion and Open Questions

Conclusion

• New cryptographic primitives, UMAC and US

• Generic constructions from KH-PRF and KH-Sig
• Message independent constructions
• Post-quantum instantiations from lattices

17

Conclusion

• New cryptographic primitives, UMAC and US
• Generic constructions from KH-PRF and KH-Sig

• Message independent constructions
• Post-quantum instantiations from lattices

17

Conclusion

• New cryptographic primitives, UMAC and US
• Generic constructions from KH-PRF and KH-Sig
• Message independent constructions

• Post-quantum instantiations from lattices

17

Conclusion

• New cryptographic primitives, UMAC and US
• Generic constructions from KH-PRF and KH-Sig
• Message independent constructions
• Post-quantum instantiations from lattices

17

Open Questions

• Construction of lattice-based US with full security?

• Concrete bounds for UMAC from almost KH-PRFs?

18

Thank you for your attention!
(full version of the paper available on ePrint: ia.cr/2021/365)

7 @cini valerio @erkantairi

Supported by:

https://eprint.iacr.org/2021/365
https://twitter.com/cini_valerio
https://twitter.com/erkantairi

References

[BLS01] D. Boneh, B. Lynn, and H. Shacham. “Short signatures from the Weil pairing”. In: International
conference on the theory and application of cryptology and information security. Springer. 2001,
pp. 514–532.

[Bon+13] D. Boneh et al. “Key homomorphic PRFs and their applications”. In: Annual Cryptology Conference.
Springer. 2013, pp. 410–428.

[Bon+20] D. Boneh et al. “Improving speed and security in updatable encryption schemes”. In: International
Conference on the Theory and Application of Cryptology and Information Security. Springer. 2020,
pp. 559–589.

[DS19] D. Derler and D. Slamanig. “Key-homomorphic signatures: definitions and applications to multiparty
signatures and non-interactive zero-knowledge”. In: Designs, Codes and Cryptography 87.6 (2019),
pp. 1373–1413.

[FL19] X. Fan and F.-H. Liu. “Proxy re-encryption and re-signatures from lattices”. In: International
Conference on Applied Cryptography and Network Security. Springer. 2019, pp. 363–382.

20

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. “Trapdoors for hard lattices and new cryptographic
constructions”. In: Proceedings of the fortieth annual ACM symposium on Theory of computing.
2008, pp. 197–206.

[Kim20] S. Kim. “Key-homomorphic pseudorandom functions from LWE with small modulus”. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. Springer.
2020, pp. 576–607.

[KLR19] M. Klooß, A. Lehmann, and A. Rupp. “(R)CCA Secure Updatable Encryption with Integrity Protection”.
In: Advances in Cryptology – EUROCRYPT 2019. Springer. 2019, pp. 68–99.

[LT18] A. Lehmann and B. Tackmann. “Updatable encryption with post-compromise security”. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. Springer.
2018, pp. 685–716.

21

	Our Framework
	Constructions
	Overview and Instantiations
	Conclusion and Open Questions
	References

