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Motivation

• Rotate keys and update signatures/MACs to the new key (using a compact
token),

• Previous work on Updatable Encryption (e.g., [Bon+13] and [LT18]),

• Equally important in context of signatures and MACs to follow good key
management practices (e.g., key-rotation in software distribution).
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Our Framework
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Security

We introduced two security notions:

• existential unforgeability under chosen-message attack (UX-EUF-CMA),
• unlinkable updates under chosen-message attack (UX-UU-CMA),

for X ∈ {MAC, S}.

3



Leakage Profile [LT18]

We use the concept of a leakage profile originally defined, for updatable
encryption, in [LT18], to capture key, token, and signature “leakage” that cannot be
directly captured via oracles.

• Key-update inferences,

• Token inferences,

• Signature-update inferences,
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Example of Leakage

epoch: e− 5 e− 4 e− 3 e− 2 e− 1 e e+ 1 e+ 2 e+ 3 e+ 4

keys: ke−5 ke−4 ke−3 ke−2 ke−1 ke ke+1 ke+2 ke+3 ke+4

tokens: ∆e−4 ∆e−3 ∆e−2 ∆e−1 ∆e ∆e+1 ∆e+2 ∆e+3 ∆e+4 ∆e+5

signature: σe−5 σe−4 σe−3 σe−2 σe−1 σe σe+1 σe+2 σe+3 σe+4

Figure 1: Example of directly obtained (green) and inferable information (blue) for UX
schemes.
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Constructions



Outline

• US from Key-Homomorphic Signatures [DS19],

• Lattice-based candidate US construction [GPV08],

• UMAC from “almost” key-homomorphic PRFs [Bon+13],

• Security Proof Ideas.
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Key-Homomorphic Signatures [DS19] (1/2)

Definition (Secret Key to Public Key Homomorphism [DS19])
Let Σ be a signature scheme, where secret and public key elements live in
groups (H, +) and (E, ·) respectively. A Secret Key to Public Key Homomorphism
is a map µ : H→ E, such that:

- µ(sk+ sk′) = µ(sk) · µ(sk′) for all sk, sk′ ∈ H,
- pk = µ(sk) for all (sk,pk)← KeyGen(λ).

Example: DL setting (G,p,g)

sk← Zp,pk = gsk µ :

Zp → G

k 7→ gk
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Key-Homomorphic Signatures [DS19] (2/2)

Definition (Key-Homomorphic Signatures [DS19])
A signature scheme is called key-homomorphic, if it provides a secret key to
public key homomorphism and an additional PPT algorithm Adapt, such that for
all ∆ ∈ H and all (pk, sk)← Gen(λ), all messages M ∈M and all σ with
Ver(pk,M,σ) = 1 and (pk′,σ′)← Adapt(pk,M,σ, ∆), it holds that

Pr[Ver(pk′,M,σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk.

m Sig σ = H(m)sk Adapt pk′ = pk · g∆

σ′ = σ · H(m)∆

sk pk,m, ∆Example: [BLS01]
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KH-based construction

m Sig σe

Update = Adapt σe+1

ske

pke,m

Next

∆e+1 ← H;
pke+1 := pke · µ(∆e+1)

ske+1 := ske + ∆e+1
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Lattice-based candidate construction (1/2)

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Simulation: pke · σe = H(m)
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Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.
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UMAC from (almost) key-homomorphic PRFs

Let F be a secure PRF, then we can construct a canonical MAC from it

Sig : m F(k1, ·) σ1

m : VerF(k, ·)σ∗=

0/1Update : m F(∆2, ·)

∆2 = k2 ⊕−k1

+ σ2

σ2 = F(k2,m)

m : VerF(k2, ·)σ∗2=

0/1
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UMAC from (almost) key-homomorphic PRFs

Definition (Almost Key-Homomorphic PRFs [Bon+13])
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Security Proof

• Reduce UX-EUF-CMA to EUF-CMA of X for X ∈ {MAC, S}

• Key insulation technique of Klooß et al. [KLR19] (i.e., region [e−, e+[):
– No key inside the insulated region is corrupted
– Tokens “on” the borders of the insulated region are not corrupted
– All tokens inside the insulated region are corrupted
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Overview and Instantiations



Updatable Signatures

Table 1: Overview of updatable signature schemes.

Scheme Assumption Model UU-CMA MD/MI UB

BLS co-CDH RO 3 MI 3

BLS co-CDH RO 3 MD 3

PS P-LRSW GGM 3 MI 3

PS P-LRSW GGM 3 MD 3

Waters co-CDH SM 3 MD 3

GPV1 SIS RO 7 MI T

1Provides US-EUF-CMA security only in a weakened model.
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Updatable MACs

Table 2: Overview of updatable MAC schemes.

Scheme Assumption Model UU-CMA MD/MI UB

BLMR (NPR) [Bon+13] DDH RO 3 MD 3

NPR DDH RO 3 MI 3

BEKS [Bon+20] RLWE RO 3 MD T
Kim [Kim20] LWE SM 3 MD T
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Conclusion and Open Questions



Conclusion

• New cryptographic primitives, UMAC and US

• Generic constructions from KH-PRF and KH-Sig
• Message independent constructions
• Post-quantum instantiations from lattices
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Open Questions

• Construction of lattice-based US with full security?

• Concrete bounds for UMAC from almost KH-PRFs?
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Thank you for your attention!
(full version of the paper available on ePrint: ia.cr/2021/365)

7 @cini valerio @erkantairi
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