Updatable Signatures and Message Authentication Codes

Valerio Cini[‡], Sebastian Ramacher[‡], Daniel Slamanig[‡], Christoph Striecks[‡], Erkan Tairi[§]

PKC 2021, May 10

8

TECHNISCHE UNIVERSITÄT Vienna | Austria

AIT Austrian Institute of Technology

Technische Universität Wien

- Rotate keys and update signatures/MACs to the new key (using a compact token),
- Previous work on Updatable Encryption (e.g., [Bon+13] and [LT18]),
- Equally important in context of signatures and MACs to follow good key management practices (e.g., key-rotation in software distribution).

Our Framework

epoch **e**

epoch **e**

We introduced two security notions:

- existential unforgeability under chosen-message attack (UX-EUF-CMA),
- unlinkable updates under chosen-message attack (UX-UU-CMA),

for $X \in \{MAC, S\}$.

We use the concept of a leakage profile originally defined, for updatable encryption, in [LT18], to capture key, token, and signature "leakage" that cannot be directly captured via oracles.

- Key-update inferences,
- Token inferences,
- Signature-update inferences,

epoch:	e — 5	e – 4	е — 3	e – 2	e — 1	е	e + 1	e + 2	e + 3	e + 4
keys:	k _{e-5}	k _{e-4}	k _{e-3}	k _{e-2}	k _{e-1}	k _e	k_{e+1}	k_{e+2}	k _{e+3}	k _{e+4}
tokens:	Δ_{e-4}	Δ_{e-3}	Δ_{e-2}	Δ_{e-1}	Δ_e	Δ_{e+1}	Δ_{e+2}	Δ_{e+3}	Δ_{e+4}	Δ_{e+5}
signature:	σ_{e-5}	σ_{e-4}	σ_{e-3}	σ_{e-2}	σ_{e-1}	σ_{e}	σ_{e+1}	σ_{e+2}	σ_{e+3}	σ_{e+4}

epoch:	e — 5	e – 4	е — 3	e – 2	e — 1	е	e + 1	e + 2	e + 3	e + 4
keys:	k _{e-5}	k _{e-4}	k _{e-3}	k _{e-2}	k _{e-1}	k _e	k_{e+1}	k_{e+2}	k _{e+3}	k _{e+4}
tokens:	Δ_{e-4}	Δ_{e-3}	Δ_{e-2}	Δ_{e-1}	Δ_e	Δ_{e+1}	Δ_{e+2}	Δ_{e+3}	Δ_{e+4}	Δ_{e+5}
signature:	σ_{e-5}	σ_{e-4}	σ_{e-3}	σ_{e-2}	σ_{e-1}	σ_{e}	σ_{e+1}	σ_{e+2}	σ_{e+3}	σ_{e+4}

epoch:	e — 5	e – 4	е — 3	e – 2	e — 1	е	e + 1	e + 2	e + 3	e + 4
keys:	k _{e-5}	k _{e-4}	k _{e-3}	k _{e-2}	k _{e-1}	k _e	k_{e+1}	k_{e+2}	k _{e+3}	k _{e+4}
tokens:	Δ_{e-4}	Δ_{e-3}	Δ_{e-2}	Δ_{e-1}	Δ_e	Δ_{e+1}	Δ_{e+2}	Δ_{e+3}	Δ_{e+4}	Δ_{e+5}
signature:	σ_{e-5}	σ_{e-4}	σ_{e-3}	σ_{e-2}	σ_{e-1}	σ_{e}	σ_{e+1}	σ_{e+2}	σ_{e+3}	σ_{e+4}

epoch:	e — 5	e – 4	е — 3	e – 2	e — 1	е	e + 1	e + 2	e + 3	e + 4
keys:	k _{e-5}	k _{e-4}	k _{e-3}	k _{e-2}	k _{e-1}	k _e	k_{e+1}	k_{e+2}	k _{e+3}	k _{e+4}
tokens:	Δ_{e-4}	Δ_{e-3}	Δ_{e-2}	Δ_{e-1}	Δ_e	Δ_{e+1}	Δ_{e+2}	Δ_{e+3}	Δ_{e+4}	Δ_{e+5}
signature:	σ_{e-5}	σ_{e-4}	σ_{e-3}	σ_{e-2}	σ_{e-1}	σ_{e}	σ_{e+1}	σ_{e+2}	σ_{e+3}	σ_{e+4}

epoch:	e — 5	e – 4	e – 3	e – 2	e — 1	е	e + 1	e + 2	e + 3	e + 4
keys:	k _{e-5}	k _{e-4}	k _{e-3}	k _{e-2}	k _{e-1}	k _e	k_{e+1}	<i>k</i> _{e+2}	k _{e+3}	k _{e+4}
tokens:	Δ_{e-4}	Δ_{e-3}	Δ_{e-2}	Δ_{e-1}	Δ_e	Δ_{e+1}	Δ_{e+2}	Δ_{e+3}	Δ_{e+4}	Δ_{e+5}
signature:	σ_{e-5}	σ_{e-4}	σ_{e-3}	σ_{e-2}	σ_{e-1}	σ_{e}	σ_{e+1}	σ_{e+2}	σ_{e+3}	σ_{e+4}

Constructions

• US from Key-Homomorphic Signatures [DS19],

- US from Key-Homomorphic Signatures [DS19],
- Lattice-based candidate US construction [GPV08],

- US from Key-Homomorphic Signatures [DS19],
- Lattice-based candidate US construction [GPV08],
- UMAC from "almost" key-homomorphic PRFs [Bon+13],

- US from Key-Homomorphic Signatures [DS19],
- Lattice-based candidate US construction [GPV08],
- UMAC from "almost" key-homomorphic PRFs [Bon+13],
- Security Proof Ideas.

Definition (Secret Key to Public Key Homomorphism [DS19])

Let Σ be a signature scheme, where secret and public key elements live in groups $(\mathbb{H}, +)$ and (\mathbb{E}, \cdot) respectively. A Secret Key to Public Key Homomorphism is a map $\mu : \mathbb{H} \to \mathbb{E}$, such that:

- $\mu(\mathbf{sk} + \mathbf{sk'}) = \mu(\mathbf{sk}) \cdot \mu(\mathbf{sk'})$ for all $\mathbf{sk}, \mathbf{sk'} \in \mathbb{H}$,
- $pk = \mu(sk)$ for all $(sk, pk) \leftarrow \text{KeyGen}(\lambda)$.

Definition (Secret Key to Public Key Homomorphism [DS19])

Let Σ be a signature scheme, where secret and public key elements live in groups $(\mathbb{H}, +)$ and (\mathbb{E}, \cdot) respectively. A Secret Key to Public Key Homomorphism is a map $\mu : \mathbb{H} \to \mathbb{E}$, such that:

- $\mu(\mathbf{sk} + \mathbf{sk'}) = \mu(\mathbf{sk}) \cdot \mu(\mathbf{sk'})$ for all $\mathbf{sk}, \mathbf{sk'} \in \mathbb{H}$,
- $pk = \mu(sk)$ for all $(sk, pk) \leftarrow KeyGen(\lambda)$.

Example: DL setting (G, p, g)

$$\mathsf{sk} \leftarrow \mathbb{Z}_p, \mathsf{pk} = \mathsf{g}^{\mathsf{sk}} \qquad \mu : egin{cases} \mathbb{Z}_p o \mathbb{G} \ \mathsf{k} \mapsto \mathsf{g}^{\mathsf{k}} \end{cases}$$

Definition (Key-Homomorphic Signatures [DS19])

A signature scheme is called key-homomorphic, if it provides a secret key to public key homomorphism and an additional PPT algorithm Adapt, such that for all $\Delta \in \mathbb{H}$ and all $(pk, sk) \leftarrow \text{Gen}(\lambda)$, all messages $M \in \mathcal{M}$ and all σ with $\text{Ver}(pk, M, \sigma) = 1$ and $(pk', \sigma') \leftarrow \text{Adapt}(pk, M, \sigma, \Delta)$, it holds that

$$\Pr[\operatorname{Ver}(pk', M, \sigma') = 1] = 1 \land pk' = \mu(\Delta) \cdot pk.$$

Definition (Key-Homomorphic Signatures [DS19])

A signature scheme is called key-homomorphic, if it provides a secret key to public key homomorphism and an additional PPT algorithm **Adapt**, such that for all $\Delta \in \mathbb{H}$ and all $(pk, sk) \leftarrow \text{Gen}(\lambda)$, all messages $M \in \mathcal{M}$ and all σ with $\text{Ver}(pk, M, \sigma) = 1$ and $(pk', \sigma') \leftarrow \text{Adapt}(pk, M, \sigma, \Delta)$, it holds that

$$\Pr[\operatorname{Ver}(pk', M, \sigma') = 1] = 1 \land pk' = \mu(\Delta) \cdot pk.$$

KH-based construction

KH-based construction

Simulation:

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Next :

Update :

Update :

Update :

Ver :

Sig:
$$m \longrightarrow F(k, \cdot) \longrightarrow \sigma$$

Sig:
$$m \longrightarrow F(k, \cdot) \longrightarrow \sigma$$
 $\sigma^* \longleftarrow F(k, \cdot) \longleftarrow m$: Ver

Definition (Key-Homomorphic PRFs [Bon+13])

Let $(\mathcal{K}, \oplus), (\mathcal{Y}, +)$ be groups. Then, a keyed function $F \colon \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is a key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

 $F(k_1,x)+F(k_2,x)=F(k_1\oplus k_2,x)$

Definition (Key-Homomorphic PRFs [Bon+13])

Let $(\mathcal{K}, \oplus), (\mathcal{Y}, +)$ be groups. Then, a keyed function $F \colon \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is a key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1,x)+F(k_2,x)=F(k_1\oplus k_2,x)$$

Sig:
$$m \longrightarrow F(k_1, \cdot) \longrightarrow \sigma_1$$

Definition (Key-Homomorphic PRFs [Bon+13])

Let $(\mathcal{K}, \oplus), (\mathcal{Y}, +)$ be groups. Then, a keyed function $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is a key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $\mathbf{x} \in \mathcal{X}$, we have

$$F(k_1, x) + F(k_2, x) = F(k_1 \oplus k_2, x)$$

Sig:
$$m \longrightarrow F(k_1, \cdot) \longrightarrow \sigma_1$$

Update: $m \longrightarrow F(\Delta_2, \cdot)$ $\Delta_2 = k_2 \oplus -k_1$

Definition (Key-Homomorphic PRFs [Bon+13])

Let $(\mathcal{K}, \oplus), (\mathcal{Y}, +)$ be groups. Then, a keyed function $F \colon \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is a key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1, x) + F(k_2, x) = F(k_1 \oplus k_2, x)$$

Definition (Key-Homomorphic PRFs [Bon+13])

Let $(\mathcal{K}, \oplus), (\mathcal{Y}, +)$ be groups. Then, a keyed function $F \colon \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is a key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1,x)+F(k_2,x)=F(k_1\oplus k_2,x)$$

Definition (Almost Key-Homomorphic PRFs [Bon+13])

Let $(\mathcal{K}, \oplus), (\mathcal{Y}, +)$ be groups. Then, a keyed function $F \colon \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is an almost key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1, x) + F(k_2, x) = F(k_1 \oplus k_2, x) + e$$

Definition (Almost Key-Homomorphic PRFs [Bon+13])

Let $(\mathcal{K}, \oplus), (\mathcal{Y}, +)$ be groups. Then, a keyed function $F \colon \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is an almost key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1, x) + F(k_2, x) = F(k_1 \oplus k_2, x) + e$$

Definition (Almost Key-Homomorphic PRFs [Bon+13])

Let $(\mathcal{K}, \oplus), (\mathcal{Y}, +)$ be groups. Then, a keyed function $F \colon \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is an almost key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1, x) + F(k_2, x) = F(k_1 \oplus k_2, x) + e$$

• Reduce UX-EUF-CMA to EUF-CMA of X for $X \in \{MAC, S\}$

- Reduce UX-EUF-CMA to EUF-CMA of X for X \in {MAC, S}
- Key insulation technique of Klooß et al. [KLR19] (i.e., region $[e^-, e^+]$):
 - No key inside the insulated region is corrupted
 - Tokens "on" the borders of the insulated region are not corrupted
 - All tokens inside the insulated region are corrupted

1		2	3		4		5		6		7		8	
sk ₁		sk ₂	sk ₃	S	sk ₄		sk_5		sk ₆		sk ₇		sk ₈	
Δ		2	Δ_3	Δ_4		Δ_5		Δ_6		$\Delta_{\overline{7}}$	7	Δ	8	
σ_1		σ_2	σ_3		σ_4		σ_5		σ_6		σ_7		σ_8	

- + Reduce UX-EUF-CMA to EUF-CMA of X for X \in {MAC, S}
- Key insulation technique of Klooß et al. [KLR19] (i.e., region $[e^-, e^+]$):
 - No key inside the insulated region is corrupted
 - Tokens "on" the borders of the insulated region are not corrupted
 - All tokens inside the insulated region are corrupted

- Reduce UX-EUF-CMA to EUF-CMA of X for $X \in \{MAC, S\}$
- Key insulation technique of Klooß et al. [KLR19] (i.e., region $[e^-, e^+]$):
 - No key inside the insulated region is corrupted
 - Tokens "on" the borders of the insulated region are not corrupted
 - All tokens inside the insulated region are corrupted

• Associate the EUF-CMA challenger of Σ to an epoch within region (e.g., to e^-)

- Associate the EUF-CMA challenger of Σ to an epoch within region (e.g., to e^-)
- Set keys for each epoch within the insulated region (using random $\Delta_i \leftarrow T$)

- Associate the EUF-CMA challenger of Σ to an epoch within region (e.g., to e^-)
- Set keys for each epoch within the insulated region (using random $\Delta_i \leftarrow T$)
- \cdot Use the EUF-CMA challenger of Σ and $\Sigma.Adapt$ algorithm to answer queries

Query: (m, e_5)

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$$

$$sk_{1} \quad sk_{2} \quad sk_{3} \quad sk_{4} \quad sk_{5} \quad sk_{6} \quad sk_{7} \quad sk_{8}$$

$$\Delta_{2} \quad \Delta_{3} \quad \Delta_{4} \quad \Delta_{5} \quad \Delta_{6} \quad \Delta_{7} \quad \Delta_{8}$$

$$\sigma_{1} \quad \sigma_{2} \quad \sigma_{3} \quad \sigma_{4} \quad \sigma_{5} \quad \sigma_{6} \quad \sigma_{7} \quad \sigma_{8}$$

$$\Sigma \cdot \mathcal{O}_{Sig} \quad pk_{i} = pk_{i-1} \cdot \mu(\Delta_{i})$$

Query: $(m, e_5) \longrightarrow \Sigma.\mathcal{O}_{Sig}$

Overview and Instantiations

Table 1: Overview of updatable signature schemes.

Scheme	Assumption	Model	UU-CMA	MD/MI	UB
BLS	co-CDH	RO	\checkmark	MI	\checkmark
BLS	co-CDH	RO	\checkmark	MD	\checkmark
PS	P-LRSW	GGM	\checkmark	MI	\checkmark
PS	P-LRSW	GGM	\checkmark	MD	\checkmark
Waters	co-CDH	SM	\checkmark	MD	\checkmark
GPV ¹	SIS	RO	×	MI	Т

¹Provides US-EUF-CMA security only in a weakened model.

Table 2: Overview of updatable MAC schemes.

Scheme	Assumption	Model	UU-CMA	MD/MI	UB
BLMR (NPR) [Bon+13]	DDH	RO	\checkmark	MD	\checkmark
NPR	DDH	RO	\checkmark	MI	\checkmark
BEKS [Bon+20]	RLWE	RO	\checkmark	MD	Т
Kim [Kim20]	LWE	SM	\checkmark	MD	Т

Conclusion and Open Questions

• New cryptographic primitives, UMAC and US

- $\cdot\,$ New cryptographic primitives, UMAC and US
- Generic constructions from KH-PRF and KH-Sig

- $\cdot\,$ New cryptographic primitives, UMAC and US
- Generic constructions from KH-PRF and KH-Sig
- Message independent constructions

- $\cdot\,$ New cryptographic primitives, UMAC and US
- Generic constructions from KH-PRF and KH-Sig
- Message independent constructions
- Post-quantum instantiations from lattices

- Construction of lattice-based US with full security?
- Concrete bounds for UMAC from almost KH-PRFs?

Thank you for your attention!

(full version of the paper available on ePrint: ia.cr/2021/365)

Y @cini_valerio @erkantairi

References

- [BLS01] D. Boneh, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: International conference on the theory and application of cryptology and information security. Springer. 2001, pp. 514–532.
- [Bon+13] D. Boneh et al. "Key homomorphic PRFs and their applications". In: Annual Cryptology Conference. Springer. 2013, pp. 410–428.
- [Bon+20] D. Boneh et al. "Improving speed and security in updatable encryption schemes". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2020, pp. 559–589.
- [DS19] D. Derler and D. Slamanig. "Key-homomorphic signatures: definitions and applications to multiparty signatures and non-interactive zero-knowledge". In: Designs, Codes and Cryptography 87.6 (2019), pp. 1373–1413.
- [FL19] X. Fan and F.-H. Liu. "Proxy re-encryption and re-signatures from lattices". In: International Conference on Applied Cryptography and Network Security. Springer. 2019, pp. 363–382.

- [GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. "Trapdoors for hard lattices and new cryptographic constructions". In: Proceedings of the fortieth annual ACM symposium on Theory of computing. 2008, pp. 197–206.
- [Kim20] S. Kim. "Key-homomorphic pseudorandom functions from LWE with small modulus". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2020, pp. 576–607.
- [KLR19] M. Klooß, A. Lehmann, and A. Rupp. "(R)CCA Secure Updatable Encryption with Integrity Protection". In: Advances in Cryptology – EUROCRYPT 2019. Springer. 2019, pp. 68–99.
- [LT18] A. Lehmann and B. Tackmann. "Updatable encryption with post-compromise security". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2018, pp. 685–716.