More Efficient Digital Signatures with Tight Multi-User Security

Denis Diemert Kai Gellert Tibor Jager Lin Lyu

IT Security and Cryptography Group University of Wuppertal

PKC 2021

BERGISCHE UNIVERSITÄT WUPPERTAL

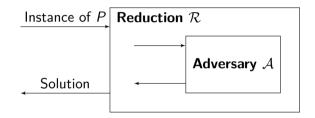
This work

- Tightly-secure signatures in the multi-user setting with adaptive corruption
- First generic construction based on lossy identification schemes and OR-Proofs
 - ▶ We build upon the work of Abe et al. (AC'02) and Fischlin et al. (EC'20)
- Strong unforgeability: first tightly multi-user-secure signature with adaptive corruption
- Short signatures: Instantiated with DDH signature consists only of $3\mathbb{Z}_q$ elements
- Perfect candidate to instantiate tightly-secure authenticated key exchange (AKE)

Tightly Multi-User-Secure Signatures

Cryptographic Reductions

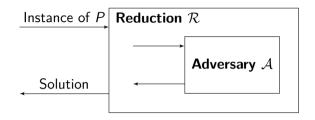
- Hardness of problem $P \implies$ security of scheme Π
- Proof: Adversary ${\mathcal A}$ breaking scheme $\Pi \implies$ algorithm ${\mathcal R}$ solving problem P



• \mathcal{A} with success $\epsilon \quad \rightsquigarrow \quad \mathcal{R}$ with success $\epsilon/\ell \qquad (\ell: \text{ security loss})$

Larger security loss $\ell \Rightarrow$ weaker security garantuees \Rightarrow harder instance of $P \Rightarrow$ inefficient deployment

Tight Cryptographic Reductions

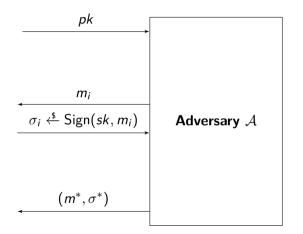


Definition (Tight Reduction)

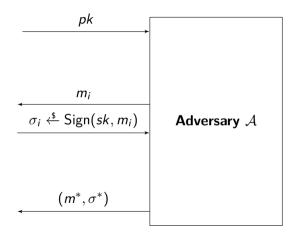
We say a reduction \mathcal{R} is tight if time_{\mathcal{R}} \approx time_{\mathcal{A}} and $\epsilon_{\mathcal{R}} \geq \epsilon_{\mathcal{A}}/\ell$ (ℓ small).

- \bullet That is, security loss ℓ is a small constant
- \bullet Optimal choice of parameters \Rightarrow optimal balance between security and efficiency

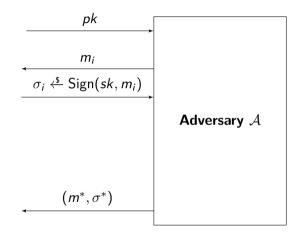
EUF-CMA "Single-User Security"



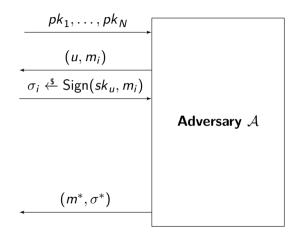
EUF-CMA "Single-User Security"

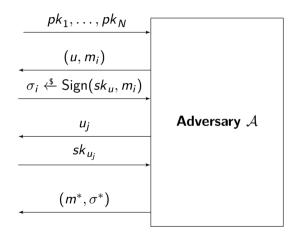


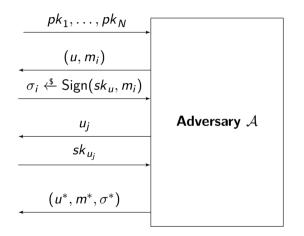
Adversary \mathcal{A} wins if (m^*, σ^*) is valid, and \mathcal{A} did not query a signature for m^* .

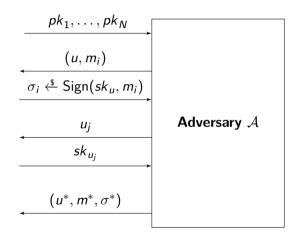












Adversary ${\mathcal A}$ wins if

- (m^*, σ^*) is valid under pk_{u^*} ,
- A did not query a signature for m^{*} under sk_u*, and
- **3** \mathcal{A} did not query for sk_{u^*} .

$EUF-CMA \implies MU-EUF-CMA^{corr}$

- Reduction is a straightforward guessing argument:
 - Guess user \hat{u} for which the adversary outputs a forgery

$EUF-CMA \implies MU-EUF-CMA^{corr}$

- Reduction is a straightforward guessing argument:
 - Guess user \hat{u} for which the adversary outputs a forgery
- "Problem" with this reduction: it is only successful if guess \hat{u} is correct, i.e.

$$\epsilon_R \geq \frac{1}{N} \cdot \epsilon_A$$

 \implies Reduction is not tight! Loss ℓ is linear in #users N

Difficulty of Constructing Tightly-Secure MU-EUF-CMA^{corr} Signatures

A (seemingly) Paradox to Solve

- To avoid guessing, the reduction needs to satisfy
 - **(1)** Knowing all secret keys of all users (to answer corruption queries), AND
 - Being able to extract a solution to the underlying assumption from a forgery while knowing the secret key of the corresponding instance

Difficulty of Constructing Tightly-Secure MU-EUF-CMA^{corr} Signatures

A (seemingly) Paradox to Solve

- To avoid guessing, the reduction needs to satisfy
 - **(1)** Knowing all secret keys of all users (to answer corruption queries), AND
 - Being able to extract a solution to the underlying assumption from a forgery while knowing the secret key of the corresponding instance

Impossibility of a Tight Reduction

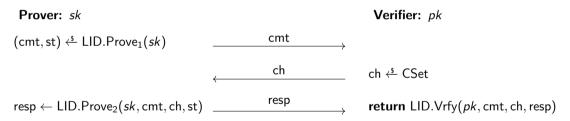
- Bader et al. (EC'16): Impossibility of tightly-MU-EUF-CMA^{corr}-secure signatures under non-interactive assumptions
 - Result only holds for signatures schemes satifying certain properties

Construction

Lossy Identification Schemes (LID) – Abdalla et al. (EC'12)

Syntax like a "standard" identification protocol:

 $(pk, sk) \stackrel{\hspace{0.1em} {\scriptscriptstyle \$}}{\leftarrow} \mathsf{LID}.\mathsf{Gen}$



Properties of LID

Lossiness

- "Lossy" key generation algorithm: $pk \xleftarrow{\$} LID.LossyGen$
- Impossible to find a valid transcript if ID scheme is in lossy mode
- Normal *pk* is indistinguishable from lossy *pk*

Additional properties: completeness, simulatability and uniqueness

Properties of LID

Lossiness

- "Lossy" key generation algorithm: $pk \xleftarrow{\$} LID.LossyGen$
- Impossible to find a valid transcript if ID scheme is in lossy mode
- Normal *pk* is indistinguishable from lossy *pk*

Additional properties: completeness, simulatability and uniqueness

Commitment Recoverability (Kiltz et al. (C'16)) – Intuition

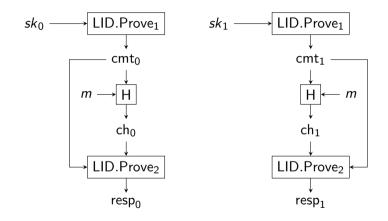
Algorithm LID.Sim that on input (pk, ch, resp) outputs cmt s.t. LID.Vrfy(pk, cmt, ch, resp) = 1

Intuition of the Construction

How to solve the paradox to achieve tight multi-user security?

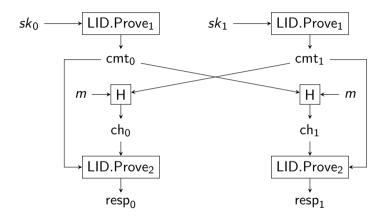
- Basic idea: Use a "double signature" (Bader et al. (TCC'15))
- Signature consists indistinguishable "real" and "fake" component
- Foundation:
 - ▶ Signature based on LID by Abdalla et al. (EC'12) (Fiat-Shamir transform)

Construction

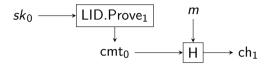


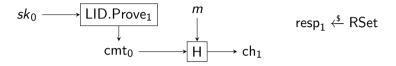
Signature: $\sigma = (cmt_0, cmt_1, resp_0, resp_1)$

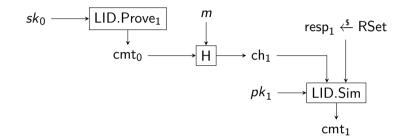
Construction – "Sequential" OR-Proofs by Abe et al. (AC'02)

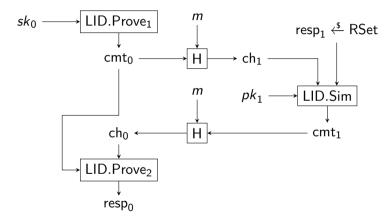


Signature: $\sigma = (cmt_0, cmt_1, resp_0, resp_1)$

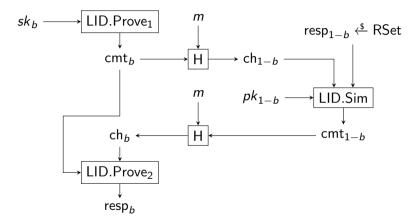






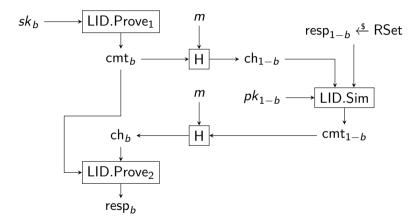


Construction – "Sequential" OR-Proofs by Abe et al. (AC'02) Input: $pk = (pk_0, pk_1)$, $sk = (b, sk_b)$, m



Output:
$$\sigma = (cmt_0, cmt_1, resp_0, resp_1)$$

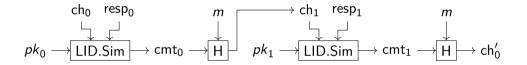
Construction – Our Refined Variant Input: $pk = (pk_0, pk_1)$, $sk = (b, sk_b)$, m



Output: $\sigma = (ch_0, resp_0, resp_1)$

Construction – Verification

Input: $pk = (pk_0, pk_1)$, $\sigma = (ch_0, resp_0, resp_1)$



Output: $1 \iff ch'_0 = ch_0$

Security

- Fischlin et al. (EC'20): Tight "single-user" security in the NPROM
- Our result: Tight multi-user security (MU-sEUF-CMA^{corr}) in the NPROM
 - "real" and "fake" component of the signature are indistinguishable for any user
 - Adversary outputs with probability 1/2 a forgery for the "fake" component
 - This enables to construct a tight reduction to the lossiness of the LID scheme

Comparision with Existing Tightly Multi-User-Secure Signatures

Existing tightly MU-EUF-CMA^{corr}-secure signatures

Bader et al. (BHJKL) (TCC'15):

- First tightly MU-EUF-CMA^{corr}-secure signatures
- Standard model, pairing-based
- Large signatures \implies impractical
- "almost-tight" variant with shorter signatures

Gjøsteen and Jager (GJ) (C'18):

- Based on ("parallel") OR-Proofs (Cramer et al. (C'94))
- Requires a programmable random oracle
- Efficient signatures size

Scheme	$ \sigma $	pk	Loss	Assumption	Setting	sEUF
BHJKL 1	$\mathcal{O}(\lambda) \mathbb{G} $	$\mathcal{O}(1) \mathbb{G} $	$\mathcal{O}(1)$	DLIN	Pairings	_
BHJKL 2 ¹	3 G	$\mathcal{O}(\lambda) \mathbb{G} $	$\mathcal{O}(\lambda)$	SXDH	Pairings	_
GJ	$2 \mathbb{G} +2\lambda+4 q $	$2 \mathbb{G} $	$\mathcal{O}(1)$	DDH	PRO	_
Ours	3 q	4 G	$\mathcal{O}(1)$	Lossy ID	NPRO	\checkmark

 $\lambda:$ Security parameter

- $|\mathbb{G}|$: Size of the an element of group \mathbb{G}
- |q|: Size of the binary representation of q, order of $\mathbb G$

¹Flaw in the proof. Personal communication with one of the authors.

Impact on Tightly-Secure AKE Protocols

Impact on Tightly-Secure AKE Protocols

- Tight MU-EUF-CMA^{corr}-secure signature are the main building block tightly-secure AKE
- Tight security particularly interesting for AKE, due to the large scale use (e.g., TLS)

Protocol	With GJ Sigs. Bytes	With our scheme ² Bytes
GJ (C'18)	544	288
TLS 1.3 (JoC'2?, ACNS'21)	640	384
SIGMA-I (ACNS'21)	640	384
LLGW (AC'20)	544	288
JKRS (EC'21)	416	288

²For more details, consider Table 2 in our paper.

- We construct the first strong and (currently) most efficient MU-EUF-CMA^{corr}-secure signature scheme
- Our construction is perfectly suitable for instantiating tightly-secure AKE:
 - ▶ Strong unforgeability ⇒ strong authentication (matching conversations)
 - ► Short signatures ⇒ efficient key exchange

https://eprint.iacr.org/2021/235