

Banquet: Short and Fast Signatures from AES PKC 2021

C. Baum *C. dSG* D. Kales E. Orsini P. Scholl G. Zaverucha imec-COSIC, KU Leuven; Aarhus University; Graz UoT; Microsoft Research

1 Key Facts

2 Zero-Knowledge Proofs of Knowledge from MPC General idea Computing the circuit Verifying the circuit

- Inverse Verification
 Naïve
 Polynomial-based
 Generalized poly-based
- **4** The Banquet signature scheme

Implementation
 Parameter selection
 Performance
 Optimizations

1 Outline

1 Key Facts

2 Zero-Knowledge Proofs of Knowledge from MPC

3 Inverse Verification

4 The Banquet signature scheme

5 Implementation

1 Paper highlights

- Banquet signature scheme = $FS \times (MPCitH + ZKPoK)$.
- EUF-CMA security ≈ OWF of AES (with modified key gen.) in RO.
 No public-key assumptions.

1 Paper highlights

- Banquet signature scheme = $FS \times (MPCitH + ZKPoK)$.
- ► EUF-CMA security ≈ OWF of AES (with modified key gen.) in RO. No public-key assumptions.
- Same line of work as:
 - Picnic (now Picnic 3, NIST round 3 alternate)—based on LowMC (600 AND gates).
 - BBQ—Picnic with AES (6400 AND gates), attempt #1.

1 Paper highlights

- Banquet signature scheme = $FS \times (MPCitH + ZKPoK)$.
- ► EUF-CMA security ≈ OWF of AES (with modified key gen.) in RO. No public-key assumptions.
- Same line of work as:
 - Picnic (now Picnic 3, NIST round 3 alternate)—based on LowMC (600 AND gates).
 - BBQ—Picnic with AES (6400 AND gates), attempt #1.
- Improvements:
 - 1 Over Picnic: better assumption (AES instead of LowMC).
 - 2 Over BBQ: better performance (size and speed).

1 Some numbers

Protocol	N	Sign (ms)	Verify (ms)	Size (bytes)
Picnic2	64	41.16	18.21	12 347
	16	10.42	5.00	13831
Picnic3	16	5.33	4.03	12 466
AES bin	64	-	-	51876
BBQ	64	-	-	31 876
Banquet	16	6.36	4.86	19776
	107	21.13	18.96	14 784

Table: Signature size and run times (if available) for Picnic2, Picnic3, AES binary, BBQ and Banquet for comparable MPCitH parameters and 128 bit security.

Full version available as ePrint 2021/068.

2 Outline

Key Facts

2 Zero-Knowledge Proofs of Knowledge from MPC

General idea Computing the circuit Verifying the circuit

3 Inverse Verification

4 The Banquet signature scheme

5 Implementation

2 MPC-in-the-head: general idea

Zero-knowledge proof of knowledge from MPC:

- "I know w such that C(x, w) = 1" for public circuit C and input x.
- Proof: ability to simulate N-party MPC protocol computing C(x, w).

2 MPC-in-the-head: general idea

Zero-knowledge proof of knowledge from MPC:

- "I know w such that C(x, w) = 1" for public circuit C and input x.
- ▶ Proof: ability to simulate N-party MPC protocol computing C(x, w).

In short:

- ▶ Prover generates and commits to views of *N* parties.
- ▶ Verifier asks to see some of them, and checks they are consistent with each other and with C(x, w) = 1.

2 MPC-in-the-head: general idea

Zero-knowledge proof of knowledge from MPC:

- "I know w such that C(x, w) = 1" for public circuit C and input x.
- ▶ Proof: ability to simulate N-party MPC protocol computing C(x, w).

In short:

- Prover generates and commits to views of N parties.
- ▶ Verifier asks to see some of them, and checks they are consistent with each other and with C(x, w) = 1.
- Soundness: probability that verifier sees inconsistent views.
- Zero-knowledge: semi-honest security of the MPC protocol.

KKW and Picnic technique: compute *C* with an MPC protocol.

- ▶ KKW and Picnic technique: <u>compute</u> C with an MPC protocol.
- Cut & choose ⇒ verified correlated randomness (masks or triples)
 ⇒ use communication-efficient MPC protocol.

- ▶ KKW and Picnic technique: <u>compute</u> C with an MPC protocol.
- Cut & choose ⇒ verified correlated randomness (masks or triples)
 ⇒ use communication-efficient MPC protocol.
- Drawback: 100's of cut & choose required for only 10's kept. 3-round proof: C has to be wastefully executed each time. Picnic3: 252 generated for 36 used.

▶ KKW and Picnic technique: <u>compute</u> C with an MPC protocol.

- ► Cut & choose ⇒ verified correlated randomness (masks or triples) ⇒ use communication-efficient MPC protocol.
- Drawback: 100's of cut & choose required for only 10's kept. 3-round proof: C has to be wastefully executed each time. Picnic3: 252 generated for 36 used.

For block cipher F = LowMC written as binary over \mathbb{F}_2 , Picnic uses plaintext x, ciphertext y, key w, and circuit

$$C(x,w) = 1 \iff F_w(x) = y.$$

2 The BBQ signature scheme

$\begin{array}{l} \mathsf{LowMC} \longrightarrow \mathsf{AES} \\ \mathsf{Binary\ circuit\ over}\ \mathbb{F}_2 \longrightarrow \mathsf{Arithmetic\ circuit\ over}\ \mathbb{F}_{2^8} \\ \\ \mathsf{AND\ gate} \longrightarrow \mathsf{INV\ gate\ (which\ is\ \approx\ S\text{-box})} \end{array}$

2 The BBQ signature scheme

$\begin{array}{l} \mathsf{LowMC} \longrightarrow \mathsf{AES} \\ \mathsf{Binary\ circuit\ over}\ \mathbb{F}_2 \longrightarrow \mathsf{Arithmetic\ circuit\ over}\ \mathbb{F}_{2^8} \\ \\ \mathsf{AND\ gate} \longrightarrow \mathsf{INV\ gate\ (which\ is\ \approx\ S\text{-box})} \end{array}$

Masked inversion computation of input s and random r:

- 1: Compute $\langle s \cdot r \rangle$ with triple $(\langle a \rangle, \langle b \rangle, \langle c \rangle)$. \triangleright +2 openings (+1 elt. for c) 2: Open $(s \cdot r)$. \triangleright +1 opening
- 3: Compute $(s \cdot r)^{-1}$ locally.
- 4: Compute $\langle s^{-1} \rangle = (s^{-1} \cdot r^{-1}) \cdot \langle r \rangle$.

2 The BBQ signature scheme

$\begin{array}{l} \mathsf{LowMC} \longrightarrow \mathsf{AES} \\ \mathsf{Binary\ circuit\ over}\ \mathbb{F}_2 \longrightarrow \mathsf{Arithmetic\ circuit\ over}\ \mathbb{F}_{2^8} \\ \\ \mathsf{AND\ gate} \longrightarrow \mathsf{INV\ gate\ (which\ is\ \approx\ S\text{-box})} \end{array}$

Masked inversion computation of input s and random r:

- 1: Compute $\langle s \cdot r \rangle$ with triple $(\langle a \rangle, \langle b \rangle, \langle c \rangle)$. \triangleright +2 openings (+1 elt. for c) 2: Open $(s \cdot r)$. \triangleright +1 opening
- 3: Compute $(s \cdot r)^{-1}$ locally.
- 4: Compute $\langle s^{-1} \rangle = (s^{-1} \cdot r^{-1}) \cdot \langle r \rangle$.

Requires $r \neq 0$: restart if it is.

Requires $s \neq 0$: choose AES key such that this doesn't happen.

2 Witness extension and verification

Idea from sacrificing techniques in MPC

- Prover "injects" the results of multiplications—no need to compute.
 - The witness is extended with the outputs of non-linear gates.

2 Witness extension and verification

Idea from sacrificing techniques in MPC

- Prover "injects" the results of multiplications—no need to compute.
 - The witness is extended with the outputs of non-linear gates.
- ► MPC parties execute a verification protocol—batching possibilities.
 - e.g. Sacrifice one "suspicious" triple to verify another.

2 Witness extension and verification

Idea from sacrificing techniques in MPC

- Prover "injects" the results of multiplications—no need to compute.
 - The witness is extended with the outputs of non-linear gates.
- ► MPC parties execute a verification protocol—batching possibilities.
 - e.g. Sacrifice one "suspicious" triple to verify another.

ZKPoK protocol sketch

MPC parties receive "suspicious" multiplication results and verify them by sacrificing "suspicious" random triples $\Rightarrow 4|C| + 1$ elts., no cut & choose.

Inherently \geq 5-round protocol \Rightarrow new analysis required for NI soundness.

3 Outline

Key Facts

2 Zero-Knowledge Proofs of Knowledge from MPC

3 Inverse Verification

Naïve Polynomial-based Generalized poly-based

4 The Banquet signature scheme

5 Implementation

3 Verifying inverses

Prover injects "suspicious" inverses $t = s^{-1}$ into MPCitH. Parties have m = |C| pairs (s, t) which allegedly multiply to $s \cdot t = 1$.

Naïve verification protocol

For each $\ell \in [m]$:

- 1: Set multiplication tuple $(s_{\ell}, t_{\ell}, 1)$.
- 2: Sacrifice with triple (a, b, c).

4|C| + 1 elts.

Can do better!

3 Polynomial-based verification I

Define S, T and $P = S \cdot T$ as:

$$S(1) = s_1 \qquad T(1) = t_1 \qquad P(1) = s_1 \cdot t_1 = 1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$S(m) = s_m \qquad T(m) = t_m \qquad P(m) = s_m \cdot t_m = 1$$

3 Polynomial-based verification I

Define S, T and $P = S \cdot T$ as:

 $S(1) = s_1 \qquad T(1) = t_1 \qquad P(1) = s_1 \cdot t_1 = 1$ $\vdots \qquad \vdots \qquad \vdots$ $S(m) = s_m \qquad T(m) = t_m \qquad P(m) = s_m \cdot t_m = 1$

Check $P \stackrel{?}{=} S \cdot T$:

- 1 Sample random $R \leftarrow \mathbb{F} \setminus \{1, \dots, m\}$;
- 2 Open P(R), S(R), T(R)

3 Check

$$P(R) \stackrel{?}{=} S(R) \cdot T(R).$$

3 Polynomial-based verification II

Lemma (Schwartz-Zippel)

Let $Q \in \mathbb{F}[x]$ be non-zero of degree $d \ge 0$; for any $\mathbb{S} \subseteq \mathbb{F}$,

$$\Pr_{R \leftarrow \mathbb{S}}[Q(R) = 0] \le \frac{d}{|\mathbb{S}|}.$$

• Here,
$$Q = P - S \cdot T$$
; non-zero iff $t_{\ell} \neq s_{\ell}^{-1}$ for some ℓ .

3 Polynomial-based verification II

Lemma (Schwartz-Zippel)

Let $Q \in \mathbb{F}[x]$ be non-zero of degree $d \ge 0$; for any $\mathbb{S} \subseteq \mathbb{F}$,

$$\Pr_{R \leftarrow \mathbb{S}}[Q(R) = 0] \le \frac{d}{|\mathbb{S}|}.$$

- Here, $Q = P S \cdot T$; non-zero iff $t_{\ell} \neq s_{\ell}^{-1}$ for some ℓ .
- Opening S(R), T(R) leaks information \Rightarrow add random points S(0), T(0).

3 Polynomial-based verification II

Lemma (Schwartz-Zippel)

Let $Q \in \mathbb{F}[x]$ be non-zero of degree $d \ge 0$; for any $\mathbb{S} \subseteq \mathbb{F}$,

$$\Pr_{R \leftarrow \mathbb{S}}[Q(R) = 0] \le \frac{d}{|\mathbb{S}|}.$$

- Here, $Q = P S \cdot T$; non-zero iff $t_{\ell} \neq s_{\ell}^{-1}$ for some ℓ .
- Opening S(R), T(R) leaks information \Rightarrow add random points S(0), T(0).
- ▶ P (and also Q) is of degree d = 2m and |S| = |F m|, so

$$\Pr_{R \leftarrow \mathbb{S}}[Q(R) = 0] \le \frac{2m}{|\mathbb{F} - m|}$$

3 Polynomial-based verification III

Improved protocol

- 1 Prover commits to S (randomized) and T; m elts. for T.
- 2 Prover commits to P; (2m+1) m = m + 1 elts. for P.
- 3 MPC parties open $Q(R) = P(R) S(R) \cdot T(R)$, for random R; 3 elts.

In total: 2|C| + 4 elts.; no cut & choose, no triple.¹

(Extra randomness in S prevents correcting one wrong pair with another.)

¹Actually, one triple, but hidden!

3 Generalized polynomial-based checking I

Previous protocol verifies:

$$\begin{pmatrix} r_1 s_1 & \cdots & r_m s_m \end{pmatrix} \begin{pmatrix} t_1 \\ \vdots \\ t_m \end{pmatrix} \stackrel{?}{=} \sum_{\ell=1}^m r_\ell.$$

3 Generalized polynomial-based checking I

Previous protocol verifies:

$$\begin{pmatrix} r_1 s_1 & \cdots & r_m s_m \end{pmatrix} \begin{pmatrix} t_1 \\ \vdots \\ t_m \end{pmatrix} \stackrel{?}{=} \sum_{\ell=1}^m r_\ell.$$

Now, let $m = m_1 \cdot m_2$, and instead verify:

$$\begin{pmatrix} r_1 s_{1,k} & \cdots & r_{m_1} s_{m_1,k} \end{pmatrix} \begin{pmatrix} t_{1,k} \\ \vdots \\ t_{m_1,k} \end{pmatrix} \stackrel{?}{=} \sum_{j=1}^{m_1} r_j, \qquad k \in \{0, \dots, m_2 - 1\}.$$

 $(s_{j,k} \text{ and } t_{j,k} \text{ are rearranged from } s_{\ell} \text{ and } t_{\ell}.)$

3 Generalized polynomial-based checking II

Define S_j and T_j as

$$S_{j}(k) = r_{j} \cdot s_{j,k} \qquad T_{j}(k) = t_{j,k} \qquad k \in \{0, \dots, m_{2} - 1\}$$

$$S_{j}(m_{2}) = \bar{s}_{j} \qquad T_{j}(m_{2}) = \bar{t}_{j};$$

and let $P = \sum_{j=1}^{m_1} S_j \cdot T_j$.

3 Generalized polynomial-based checking II

Define S_j and T_j as

$$S_{j}(k) = r_{j} \cdot s_{j,k} \qquad T_{j}(k) = t_{j,k} \qquad k \in \{0, \dots, m_{2} - 1\}$$

$$S_{j}(m_{2}) = \bar{s}_{j} \qquad T_{j}(m_{2}) = \bar{t}_{j};$$

and let $P = \sum_{j=1}^{m_1} S_j \cdot T_j$.

Generalized verification protocol

- 1 Prover commits to S_j (randomized) and T_j ; *m* elts. for T_j 's.
- 2 Prover commits to *P*; $(2m_2 + 1) m_2 = m_2 + 1$ elts. for *P*.
- 3 MPC parties open $Q(R) = P(R) \sum_{j=1}^{m_1} S_j(R) \cdot T_j(R)$, for random R; $1 + 2m_1$ elts.

Total: m (inherent) + $m_2 + 2m_1 + 2$ elts. = $|C| + O(\sqrt{|C|})$, instead of 2|C|.

4 Outline

1 Key Facts

2 Zero-Knowledge Proofs of Knowledge from MPC

3 Inverse Verification

4 The Banquet signature scheme

5 Implementation

4 The Banquet signature scheme I

Key generation

Sample AES key k and plaintext x from $\{0,1\}^\kappa$ such that

 $y \leftarrow \mathsf{AES}_k(x)$

presents no 0 input to S-boxes. Set pk = (x, y) and sk = k.

This sampling methods reduces security of the OWF assumption by $1 \sim 3$ bits.

4 The Banquet signature scheme II

Signature

Parameters: m, m_1, N, τ, λ .

- > Prover simulates τ parallel MPC instances, each with N parties.
- ▶ Together with a sharing of k, the witness includes sharings of t_{ℓ} 's.
- Random oracles are used to generate r_j 's, R's and to select the views. \Rightarrow 7-round protocol

Verification (of signature)

Recompute executions, check hashes and output.

4 The Banquet signature scheme—security

Theorem

The Banquet signature scheme is EUF-CMA-secure, assuming that Commit, H_1 , H_2 and H_3 are modelled as random oracles, Expand is a PRG with output computationally ϵ_{PRG} -close to uniform, the seed tree construction is computationally hiding, the (N, τ, m_2, λ) parameters are appropriately chosen, and the key generation function $f_x : k \mapsto y$ is a one-way function.

5 Outline

1 Key Facts

2 Zero-Knowledge Proofs of Knowledge from MPC

3 Inverse Verification

4 The Banquet signature scheme

5 Implementation

Parameter selection Performance Optimizations

5 Implementation—Parameter selection

- Attacker can cheat by re-sampling challenges until they match its guess. Say guess τ₁ in 1st round, and τ₂ in 2nd round.
 ⇒ must guess τ₃ = τ − τ₁ − τ₂ to win.
- Let $P_i = \Pr[\text{guess } \tau_i \text{ challenges}]$; depends on (N, τ, m_2, λ) . Cost of attack is

 $C = 1/P_1 + 1/P_2 + 1/P_3$

for a given strategy (τ_1, τ_2, τ_3) . Need $C \ge 2^{\kappa}$ for all strategies.

• Choosing $m_1 \approx \sqrt{m}$ gives fast and short signatures.

5 Implementation—Performance variation

Scheme	$\mid N$	λ	au	Sign (ms)	Verify (ms)	Size (bytes)
AES-128	16	4	41	6.36	4.86	19776
	16	6	37	5.91	4.51	20964
	31	4	35	8.95	7.46	17456
	31	6	31	8.19	6.76	18076
	57	4	31	14.22	12.30	15968
	57	6	27	12.45	10.75	16188
	107	4	28	24.15	21.71	14880
	107	6	24	21.13	18.96	14784
	255	4	25	51.10	46.88	13696
	255	6	21	43.81	40.11	13284

Table: Performance of different parameter sets; all instances $(m, m_1, m_2) = (200, 10, 20)$.

5 Implementation—Optimizations

► All interpolation points have same *x*: pre-compute Lagrange coefficients.

- Interpolating shares of polynomials.
 (1) re-construct points, (2) interpolate polys. 1/N× interpolations
- For S's and T's, m₂ points are the same across parallel repetitions. Last point only requires adding multiple of Lagrange poly.
- Reduces runtime by 30x to 100 ms, approx.
 Further improvements with dedicated field arithmetic and other tricks.

5 Implementation—Comparison

Protocol	$\mid N$	M	au	Sign (ms)	Ver (ms)	Size (bytes)
Picnic2	64	343	27	41.16	18.21	12 347
	16	252	36	10.42	5.00	13831
Picnic3	16	252	36	5.33	4.03	12 466
SPHINCS ⁺ -fast	-	-	-	14.42	1.74	16 976
SPHINCS ⁺ -small	-	-	-	239.34	0.73	8 080
Banquet	16	-	41	6.36	4.86	19776
	107	-	24	21.13	18.96	14 784
	255	-	21	43.81	40.11	13 284

Table: Comparison of signature sizes and run times for various MPCitH-based signature schemes and SPHINCS⁺ (using "sha256simple" parameter sets).

Thanks!

ePrint/2021/068

cdsg@esat.kuleuven.be