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1 Paper highlights

I Banquet signature scheme = FS × (MPCitH + ZKPoK).
I EUF-CMA security ≈ OWF of AES (with modified key gen.) in RO.

No public-key assumptions.

I Same line of work as:
• Picnic (now Picnic 3, NIST round 3 alternate)—based on LowMC (600 AND gates).
• BBQ—Picnic with AES (6400 AND gates), attempt #1.

I Improvements:
1 Over Picnic: better assumption (AES instead of LowMC).

2 Over BBQ: better performance (size and speed).
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1 Some numbers

Protocol N Sign (ms) Verify (ms) Size (bytes)
Picnic2 64 41.16 18.21 12 347

16 10.42 5.00 13 831
Picnic3 16 5.33 4.03 12 466
AES bin 64 - - 51 876
BBQ 64 - - 31 876
Banquet 16 6.36 4.86 19 776

107 21.13 18.96 14 784
Table: Signature size and run times (if available) for Picnic2, Picnic3, AES binary, BBQ and
Banquet for comparable MPCitH parameters and 128 bit security.

Full version available as ePrint 2021/068.
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2 MPC-in-the-head: general idea

Zero-knowledge proof of knowledge from MPC:
I “I know w such that C(x,w) = 1” for public circuit C and input x.
I Proof: ability to simulate N -party MPC protocol computing C(x,w).

In short:
I Prover generates and commits to views of N parties.
I Verifier asks to see some of them, and checks they are consistent with

each other and with C(x,w) = 1.

I Soundness: probability that verifier sees inconsistent views.
I Zero-knowledge: semi-honest security of the MPC protocol.
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2 Picnic signature scheme

I KKW and Picnic technique: compute C with an MPC protocol.

I Cut & choose ⇒ verified correlated randomness (masks or triples)
⇒ use communication-efficient MPC protocol.

I Drawback: 100’s of cut & choose required for only 10’s kept.
3-round proof: C has to be wastefully executed each time.
Picnic3: 252 generated for 36 used.

For block cipher F = LowMC written as binary over F2, Picnic uses
plaintext x, ciphertext y, key w, and circuit

C(x,w) = 1 ⇐⇒ Fw(x) = y.
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2 The BBQ signature scheme

LowMC −→ AES
Binary circuit over F2 −→ Arithmetic circuit over F28

AND gate −→ INV gate (which is ≈ S-box)

Masked inversion computation of input s and random r:
1: Compute 〈s · r〉 with triple (〈a〉, 〈b〉, 〈c〉). . +2 openings (+1 elt. for c)
2: Open(s · r). . +1 opening
3: Compute (s · r)−1 locally.
4: Compute 〈s−1〉 = (s−1 · r−1) · 〈r〉.

Requires r 6= 0: restart if it is.
Requires s 6= 0: choose AES key such that this doesn’t happen.
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2 Witness extension and verification
Idea from sacrificing techniques in MPC
I Prover “injects” the results of multiplications—no need to compute.
• The witness is extended with the outputs of non-linear gates.

I MPC parties execute a verification protocol—batching possibilities.
• e.g. Sacrifice one “suspicious” triple to verify another.

ZKPoK protocol sketch
MPC parties receive “suspicious” multiplication results and verify them by
sacrificing “suspicious” random triples ⇒ 4|C|+ 1 elts., no cut & choose.

Inherently ≥ 5-round protocol ⇒ new analysis required for NI soundness.
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3 Verifying inverses

Prover injects “suspicious” inverses t = s−1 into MPCitH.
Parties have m = |C| pairs (s, t) which allegedly multiply to s · t = 1.

Näıve verification protocol
For each ` ∈ [m]:

1: Set multiplication tuple (s`, t`, 1).
2: Sacrifice with triple (a, b, c).

4|C|+ 1 elts.

Can do better!



3 Polynomial-based verification I

Define S, T and P = S · T as:

S(1) = s1 T (1) = t1 P (1) = s1 · t1 = 1
... ... ...

S(m) = sm T (m) = tm P (m) = sm · tm = 1

Check P ?= S · T :
1 Sample random R← F \ {1, . . . ,m};
2 Open P (R), S(R), T (R)
3 Check

P (R) ?= S(R) · T (R).



3 Polynomial-based verification I

Define S, T and P = S · T as:

S(1) = s1 T (1) = t1 P (1) = s1 · t1 = 1
... ... ...

S(m) = sm T (m) = tm P (m) = sm · tm = 1

Check P ?= S · T :
1 Sample random R← F \ {1, . . . ,m};
2 Open P (R), S(R), T (R)
3 Check

P (R) ?= S(R) · T (R).



3 Polynomial-based verification II

Lemma (Schwartz–Zippel)

Let Q ∈ F[x] be non-zero of degree d ≥ 0; for any S ⊆ F,

Pr
R←S

[Q(R) = 0] ≤ d

|S|
.

I Here, Q = P − S · T ; non-zero iff t` 6= s−1
` for some `.

I Opening S(R), T (R) leaks information ⇒ add random points S(0), T (0).
I P (and also Q) is of degree d = 2m and |S| = |F−m|, so

Pr
R←S

[Q(R) = 0] ≤ 2m
|F−m|

.
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3 Polynomial-based verification III

Improved protocol

1 Prover commits to S (randomized) and T ; m elts. for T .
2 Prover commits to P ; (2m+ 1)−m = m+ 1 elts. for P .
3 MPC parties open Q(R) = P (R)− S(R) · T (R), for random R; 3 elts.

In total: 2|C|+ 4 elts.; no cut & choose, no triple.1

(Extra randomness in S prevents correcting one wrong pair with another.)

1Actually, one triple, but hidden!



3 Generalized polynomial-based checking I

Previous protocol verifies:

(
r1s1 · · · rmsm

)
t1
...
tm

 ?=
m∑
`=1

r`.

Now, let m = m1 ·m2, and instead verify:

(
r1s1,k · · · rm1sm1,k

)
t1,k

...
tm1,k

 ?=
m1∑
j=1

rj, k ∈ {0, . . . ,m2 − 1}.

(sj,k and tj,k are rearranged from s` and t`.)
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3 Generalized polynomial-based checking II
Define Sj and Tj as

Sj(k) = rj · sj,k Tj(k) = tj,k k ∈ {0, . . . ,m2 − 1}
Sj(m2) = s̄j Tj(m2) = t̄j;

and let P = ∑m1
j=1 Sj · Tj.

Generalized verification protocol

1 Prover commits to Sj (randomized) and Tj; m elts. for Tj’s.
2 Prover commits to P ; (2m2 + 1)−m2 = m2 + 1 elts. for P .
3 MPC parties open Q(R) = P (R)−∑m1

j=1 Sj(R) · Tj(R), for random R;
1 + 2m1 elts.

Total: m (inherent) + m2 + 2m1 + 2 elts. = |C|+O(
√
|C|), instead of 2|C|.
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4 The Banquet signature scheme I

Key generation
Sample AES key k and plaintext x from {0, 1}κ such that

y ← AESk(x)

presents no 0 input to S-boxes.
Set pk = (x, y) and sk = k.

This sampling methods reduces security of the OWF assumption by 1 ∼ 3 bits.



4 The Banquet signature scheme II

Signature
Parameters: m,m1, N, τ, λ.
I Prover simulates τ parallel MPC instances, each with N parties.
I Together with a sharing of k, the witness includes sharings of t`’s.
I Random oracles are used to generate rj’s, R’s and to select the views.
⇒ 7-round protocol

Verification (of signature)

Recompute executions, check hashes and output.



4 The Banquet signature scheme—security

Theorem
The Banquet signature scheme is EUF-CMA-secure, assuming that Commit,
H1, H2 and H3 are modelled as random oracles, Expand is a PRG with output
computationally εPRG-close to uniform, the seed tree construction is
computationally hiding, the (N, τ,m2, λ) parameters are appropriately chosen,
and the key generation function fx : k 7→ y is a one-way function.
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5 Implementation—Parameter selection

I Attacker can cheat by re-sampling challenges until they match its guess.
Say guess τ1 in 1st round, and τ2 in 2nd round.
⇒ must guess τ3 = τ − τ1 − τ2 to win.

I Let Pi = Pr[guess τi challenges]; depends on (N, τ,m2, λ).
Cost of attack is

C = 1/P1 + 1/P2 + 1/P3

for a given strategy (τ1, τ2, τ3). Need C ≥ 2κ for all strategies.

I Choosing m1 ≈
√
m gives fast and short signatures.



5 Implementation—Performance variation

Scheme N λ τ Sign (ms) Verify (ms) Size (bytes)

AES-128

16 4 41 6.36 4.86 19776
16 6 37 5.91 4.51 20964
31 4 35 8.95 7.46 17456
31 6 31 8.19 6.76 18076
57 4 31 14.22 12.30 15968
57 6 27 12.45 10.75 16188

107 4 28 24.15 21.71 14880
107 6 24 21.13 18.96 14784
255 4 25 51.10 46.88 13696
255 6 21 43.81 40.11 13284

Table: Performance of different parameter sets; all instances (m, m1, m2) = (200, 10, 20).



5 Implementation—Optimizations

I All interpolation points have same x: pre-compute Lagrange coefficients.

I Interpolating shares of polynomials.
(1) re-construct points, (2) interpolate polys. 1/N× interpolations

I For S’s and T ’s, m2 points are the same across parallel repetitions.
Last point only requires adding multiple of Lagrange poly.

I Reduces runtime by 30x to 100 ms, approx.
Further improvements with dedicated field arithmetic and other tricks.



5 Implementation—Comparison

Protocol N M τ Sign (ms) Ver (ms) Size (bytes)
Picnic2 64 343 27 41.16 18.21 12 347

16 252 36 10.42 5.00 13 831
Picnic3 16 252 36 5.33 4.03 12 466
SPHINCS+-fast - - - 14.42 1.74 16 976
SPHINCS+-small - - - 239.34 0.73 8 080
Banquet 16 - 41 6.36 4.86 19 776

107 - 24 21.13 18.96 14 784
255 - 21 43.81 40.11 13 284

Table: Comparison of signature sizes and run times for various MPCitH-based signature
schemes and SPHINCS+ (using “sha256simple” parameter sets).



Thanks!

ePrint/2021/068

cdsg@esat.kuleuven.be
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